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INTRODUCTION

Group extensions of dynamical systems form an important and efficiently

explored class of extensions. This large class enjoys a great variety of useful

properties that make considerations on them quite fruitful. The group extensions

are considered in measure-theoretic ergodic theory and in topological dynamics

as well. In both cases the results are formally similar however the methods are

different. The methods applied in the study of the class of group extensions are

usually of algebraic and topological character, therefore some differences in the

methods may be observed on appearance (or not) of compactness of the group

in the considered group extension. In applications it is rather difficult to exceed

behind of the class of locally compact groups – the groups that admit a one-point

compactification. This is one of the main reasons to limit the object of research

to the locally compact groups, frequently even to the compact ones.

Let us now define more precisely the objects that will appear in this disserta-

tion. By [2], an ergodic extension T̃ : (Z,A,m)→ (Z,A,m) of an automorphism

T : (X,B, µ)→ (X,B, µ) is of the form

T̃ : (X × Y,B⊗ C, µ⊗ ν)→ (X × Y,B⊗ C, µ⊗ ν),

T̃ (x, y) = (Tx, ψ(x)(y)),

(1)

where ψ:X → Aut(Y, ν) is a measurable map (and ψ is called a Rokhlin cocycle).

Some examples of Rokhlin cocycles can be obtained in the following way. First

take G a locally compact second countable group and let ϕ:X → G be a cocycle.

Then suppose that G acts measurably on (Y,C, ν) as G 3 g 7→ γg ∈ Γ = {γg :

g ∈ G}. Then let

Tϕ,Γ: (X × Y,B⊗ C, µ⊗ ν)→ (X × Y,B⊗ C, µ⊗ ν)

be given by

(2) Tϕ,Γ(x, y) = (Tx, γϕ(x)(y)).

7



8 Mieczys law K. Mentzen

The extensions of the form (2) seem to be a very particular case of the general

situation (1). However, quite surprisingly, as noticed in [14], each Rokhlin ex-

tension (1) is isomorphic, as an extension, to (2); moreover, G may be taken

countable and amenable.

In this dissertation we consider measure-theoretic dynamical systems and

topological systems as well. In both cases the basic tools used in the study

are similar: joinings (ergodic in ergodic theory, and either minimal or B-sets

in topological dynamics), and the groups of essential values of cocycles. The

corresponding results obtained in ergodic theory and in topological dynamics

are comparable, not identical. Generally, the universe of group extensions in

topological dynamics pictured in this dissertation turns out to be more diverse

and containing few regularity – in contrast with the universe of measure-theoretic

group extensions.

This dissertation consists of eight chapters. Chapter 2 and Chapter 3 deal

with measure-theoretic ergodic theory, in Chapters 4 to 7 topological dynamics is

explored, Chapter 8 compares some results and properties in measure-theoretic

ergodic theory and in topological dynamics. Chapter 1 contains preliminary

notions, definitions, useful facts and theorems applied in the sequel.

The results of Chapter 2 come from a joint with A. del Junco and M. Lema-

czyk paper [44]. In [95], Veech proved a theorem describing factors of ergodic

2-fold simple automorphisms in terms of compact subgroups of the centralizer

(see also [45]). The property 2-fold simplicity is defined by 2-joinings – invariant

measures on Cartesian square of the given system, projecting onto the system

as the original measures. In particular, each system is a factor any of its join-

ing. In the 2-fold simplicity case, each ergodic 2-self-joining is either a graph

measure or the product measure and this property is sufficient to describe all

factors. But a graph measure, as a dynamical system, is isomorphic to the

original system and the natural projection factor map is one-to-one a.s. with

respect to the joining measure. In other words, a graph measure λ is one point

extension of the base system X. In particular, the relative product λ ×X λ is

ergodic. We will use this observation to define a new class of ergodic automor-

phisms, called semisimple automorphisms. An ergodic automorphism is called

semisimple if for each its ergodic self-joining the automorphism corresponding

to the self-joining is relatively weakly mixing with respect to the both marginal

σ-algebras. It turns out that many classes of automorphisms previously studied

are semisimple. Indeed, all discrete spectrum, 2-fold simple, direct products of

minimal self-joinings, Gaussian–Kronecker automorphisms are semisimple. We

exhibit a structure of factors of semisimple automorphisms; in particular, we

prove that one can decompose a given factor map X → Y of a semisimple X

into X → Ỹ → Y , where the extension X → Ỹ is relatively weakly mixing and

Ỹ → Y is a compact group extension.
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In order to study the structure of factors of a given automorphisms, we intro-

duce the notion of a natural family of factors. A general factorization theorem

for an automorphism X possessing a natural family of factors says that if Y is

a factor of X then there exists a decomposition X → Ỹ → Y for some natu-

ral factor Ỹ with the remaining properties as above, i.e. X → Ỹ is relatively

weakly mixing and Ỹ → Y is a compact group extension. We also explore er-

godic compact group extensions of semisimple automorphisms. In Section 2.5 we

describe ergodic joinings of such extensions. In Section 2.6 we apply the concept

of a natural family of factors to give a description of factors of group extensions

of 2-fold simple automorphisms, generalizing earlier results from [64] and [71].

Finally, we consider the conjecture that if, for an automorphism with a natural

family of factors, all natural factors are coalescent then all factors so are. We

give the positive answer in case of group extensions of rotations (Theorem 2.6.7).

Chapter 3 contains results from a joint with M. Lemaczyk and H. Nakada

paper [66]. It is an important problem in ergodic theory to study classes of

automorphisms with a “given” set of self-joinings, see [94]. Historically, such

an approach was first presented in [86] by D. Rudolph, where the existence of

automorphisms (so called MSJ) with a minimal structure of self-joinings was

shown. A generalization of this notion appeared in [95] and then in [45] – the

notion of 2-fold simplicity. A further generalization was proposed in Chapter 2,

where the notion called semisimplicity was introduced. As proved in Chapter 2,

such automorphisms have still strong ergodic properties, and in particular the

structure of their factors can be easily described. Based on some earlier results

of J.-P. Thouvenot, it was already remarked in Chapter 2 that some Gaussian

automorphisms are semisimple (recall that Gaussian automorphisms are never

2-fold simple). In [68] a far reaching study of Gaussian automorphisms with

a minimal (in the category of Gaussian automorphisms) set of self-joinings (called

GAG) is presented. All GAG systems turn out to be semisimple.

Almost all examples of automorphisms presented above are weakly mixing.

In fact, the only exception are ergodic rotations which are 2-fold simple but not

weakly mixing. Being more precise, the MSJ property implies weak mixing, while

in the class of 2-fold simple automorphisms we have: either such an automor-

phism is weakly mixing or it is a rotation (see [45]). In the class of semisimple

automorphisms it is a question whether the existence of a discrete part in the

spectrum forces a decomposition into direct product of the form “discrete spec-

trum automorphism × weakly mixing automorphism”. The question is natural

because it has been noticed in Chapter 2 that an ergodic distal automorphism is

semisimple if and only if it is a rotation. It follows that more is true: since each

ergodic automorphism is relatively weakly mixing over its maximal distal factor,

if an ergodic automorphism is semisimple then it is relatively weakly mixing over

its Kronecker factor (see Section 2.4).
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In Chapter 3 we will construct semisimple weakly mixing extensions of irra-

tional rotations. The main idea of the construction comes from some papers by

D. Rudolph [88] and E. Glasner, B. Weiss [38]. Roughly, we fix a simple (or even

semisimple) action of an Abelian locally compact second countable group that

will serve as fiber automorphisms of a skew product whose base is an irrational

rotation. When some assumptions on the relevant fiber cocycle are put then the

skew product turn out to be semisimple (it cannot be 2-fold simple). In order

to see that we have constructed a completely new class (in particular, no fore-

mentioned direct product decomposition exists) of semisimple automorphisms

we use some recent results from [63]: the class we will consider is disjoint in the

sense of Furstenberg from all weakly mixing automorphisms, on the other hand

the automorphisms from this class are relatively weakly mixing extension of the

base irrational rotation.

An essential part of this chapter is to show the existence of some cocycles over

irrational rotations, taking values in Abelian locally compact second countable

groups and having strong ergodic properties (see Section 3.3). Here, we consider

two examples of well known (one being real-valued, described in Subsection 3.3.1,

and the second, described in Subsection 3.3.2, integer-valued) cocycles over the

rotation by an irrational α, where α has bounded partial quotients.

Chapter 4 is based on [36] (a joint paper with E. Glasner and A. Siemaszko).

Given a dynamical system (either measure theoretical or topological), its family

of factors can have a rich and complex structure. An interesting step towards

a systematic classification of this family (in the measure theoretical case), was

taken in Chapter 2. It was shown there that for an ergodic system (X,B, µ, T ),

there always exists a unique minimal natural family of factors, N, that includes

all those factors arising from ergodic self-joinings and that has the following

property: for every factor sub-algebra A of B there exists a natural cover Â ⊃ A

such that the corresponding factor map from the factor defined by Â to the one

defined by A, is a compact group extension. This natural subfamily of factors is

strongly related to structure theory and can, in some cases, considerably simplify

the study of the family of all factors. Two such cases are studied in Chapter 2:

the case of an ergodic group extension of a group rotation and the case of what

is called in Chapter 2 semisimple systems. In some cases the minimal family of

natural factors coincides with the entire family of factors (see [26], where this

is shown for Bernoulli systems; see also [33]). However, even in these cases, the

mere fact that N consists of all factors is of great interest.

The purpose of the investigation is to study several analogies of the notion of

natural family of factors in topological dynamics, or more precisely, in the theory

of minimal dynamical systems (called here minimal flows). Our first approach

(expounded in Section 4.2) is perhaps the most straightforward one. We define

a self-joining of the minimal system (X,T ) to be any minimal subset of X ×X.

With this definition of joining we mimic the definition of natural family of factors
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given in Chapter 2. As in the measure theoretical case we get in this way the

existence of a unique smallest natural family of factors N, that includes all the

factors arising from self-joinings. This family N has the property that for every

factor Y of X there exists a unique natural cover Ỹ ∈ N such that the map

Ỹ → Y is a regular (but not necessarily a group) extension. We characterize the

least member of the smallest natural family of factors of the system (X,T ) as the

unique maximal regular factor of (X,T ). At the end of Section 4.2 we consider

an alternative approach. We call a non-empty subset W of X × X a B-set if

it is closed, T × T invariant, topologically transitive and such that the union of

the minimal subsets of W is dense in W . Now we enlarge the class of admissible

self-joinings by allowing all B-sets to be joinings. The corresponding notion of

a natural family of factors now has the property that the map π: Ỹ → Y is again

regular and in addition admits a decomposition π = ω ◦ κ, where κ is a group

extension and ω a proximal one. We show that for this type of natural family the

Kronecker factor is the least member of the smallest natural family. By a result

of Bronstein, for a PI-flow X, and in particular for a distal flow, a B-set in X×X
is necessarily minimal ([10], see also [7]), and the two notions of natural families

coincide. Unlike the situation in ergodic theory, the largest zero entropy factor

of a minimal system need not be natural.

Section 4.4, motivated by [44], [64], [71] and [92], deals with natural families

of factors for a minimal group extension of a group rotation. We show by direct

methods that for such a flow the family {X/F : F a closed normal subgroup

of G}, is a natural family of factors for the G-extension (X,T ) of the group

rotation Z = X/G (Proposition 4.4.8).

In Chapter 5, based on a joint with M. Lemaczyk paper [65], we will study

dynamical properties of extensions by topological cocycles taking values in a lo-

cally compact group G. Such a subject is under research mainly in the measure-

theoretic setting. K. Schmidt in [89] developed the idea of an essential value of

a cocycle as a tool to investigate ergodic properties of extensions by cocycles with

values in G. It is also well known that one of the consequences of Dye’s theorem

([15]) on orbital equivalence is that the first cohomology group (of cocycles tak-

ing values in a fixed locally compact group) is the same for all ergodic systems.

In particular, if G = R then for each ergodic system there exist non-regular (in

the sense of [89]) cocycles (these are cocycles φ which are not cohomologous to

any cocycle taking values in the group of essential values of φ). Of course the

structure of such cocycles is far from being understood.

In the topological setup Dye’s theorem is no more valid and we may hope

that for some classes of topological systems the structure of cocycles will be

much more clear. In this paper we make first steps following this direction and

show that a particularly easy classification appears if we study real cocycles

over minimal rotations T . We show that if such a cocycle φ is not regular then

necessarily
∫
φdµ 6= 0 (µ is a unique T -invariant measure). In this case the
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partition into orbits of the corresponding skew product

Tφ:X × R→ X × R, Tφ(x, t) = (Tx, φ(x) + t)

is the decomposition of Tφ into minimal components. Otherwise, when
∫
φdµ

= 0, the cocycle is regular and moreover, either it is a topological coboundary

or Tφ is topologically ergodic.

We should emphasize that such a classification is no longer valid for strictly

ergodic systems that are not rotations (see Section 5.5).

In [28] and [38], S. Glasner and B. Weiss studied the problem of topological

disjointness from the class WM of all minimal weakly mixing topological systems.

They considered the following situation. Assume that T :X → X is a minimal

rotation and let (St)t∈R be a weakly mixing flow on a compact Hausdorff space Y .

Assume that φ:X → R is a topological cocycle and let

T̃φ:X × Y → X × Y, T̃φ(x, y) = (Tx, Sφ(x)(y).

Then for φ running through a certain generic set of cocycles, the following results

have been proved: T̃φ is not PI but it is disjoint from all weakly mixing trans-

formations, if moreover, (St)t∈R is regular then T̃φ is a multiplier of the class of

topological systems disjoint from WM. We introduce the notion of universally

ergodic cocycles and show that the two disjointness results hold under the only

assumption of universal ergodicity of φ.

The purpose of Chapter 6, containing results of [72], is to describe groups

of essential values of continuous cocycles (over minimal rotations) taking values

in locally compact Abelian groups whose dual is connected. Recall that in the

measure-theoretic context the notion of essential values over ergodic actions has

been introduced by K. Schmidt ([89]). In topological dynamics a parallel theory

has been developed by G. Atkinson [6], although only for extensions by Rm. An

adaptation of Schmidt’s concepts was considered in Chapter 5. It was suggested

that a full description of all groups of essential values is possible over minimal

rotations and indeed, in Chapter 5 it has been shown that the only possible

groups of essential values for cocycles taking values in R are {0} and R. Here

we go further and study the case of cocycles taking values in locally compact

Abelian groups without compact subgroups. By a classification of LCA groups

([77, Theorem 25]), such a group is of the form Rm ⊕ D, where D is discrete,

torsion-free. Our main result shows that a group of essential values is then

contained in Rm and moreover, it must be a linear subspace of Rm. We will

also prove that an Rm-extension of a minimal rotation is conservative iff the

cocycle has zero mean (with respect to Haar measure), and that topological

non-ergodicity of a conservative Rm-extension leads to a functional equation.

Both these results are essential improvements of the paper by G. Atkinson [6].

In this chapter we also propose the notion of a regularity of a topological

cocycle. Namely, we say that a cocycle ϕ is regular if it is cohomologous to
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a cocycle taking all values in the group E(ϕ) of essential values of ϕ. In this case

infinity is not an essential value of the quotient map ϕ̃:X → G/E(ϕ), however

the converse does not appear to hold in general. Due to our analysis of possible

groups of essential values we show that a cocycle (over a minimal rotation) is

regular iff the corresponding extension is conservative.

We should like to emphasize that our analysis of cocycle group extensions

essentially exploits the fact that we study cocycles over minimal rotations. It

has been already noticed in Chapter 5 that the group of essential values may be

Z for some minimal extensions by R, however in this case the base cannot be

a rotation.

Chapter 7, based on [75], a joint paper with A. Siemaszko, is devoted to the

problem of minimal subsets of cylinder transformations. Let X be a compact

metric space and T :X → X be a homeomorphism of X. Let ϕ:X → R be

a continuous function. By a cylinder transformation we mean a homeomorphism

Tϕ:X ×R→ X ×R (or rather a Z-action generated by it) given by the formula

Tϕ(x, r) = (Tx, ϕ(x) + r).

We will also consider the case Rm instead of R. It is essentially proved by

A. S. Besicovitch in [8] that the cylinder transformation cannot itself be minimal.

We also mention a deep result of P. Le Calvez and J.-Ch. Yoccoz saying that

there is no minimal homeomorphism on the infinite annulus or more generally

on the two-dimensional sphere with a finite set of points removed [60]. This of

course generalizes Besicovitch’s result.

The problem of the minimal subsets of a cylinder transformation turns out to

be related to the problem of possible forms of ω-limit sets. H. Poincaré was the

first to consider flows (generated by differential equations) on R3 that had time

one homeomorphisms topologically isomorphic to cylinder cocycle extensions

over irrational rotations [83]. He made an attempt at classifying possible form of

the vertical section of ω-limit sets. His classification turned out to be partial and

only A. B. Krygin gave the full classification in [55]. In [56] A. B. Krygin gave

a full classification in the differentiable situation proving that actually there are

four possibilities: either {0} – the case of coboundary, or R – the case of transitive

point, or R+, or R−.

In Sections 7.1 and 7.2 of this chapter we show that there are no minimal

sets for any transitive cylinder transformation defined by bounded variation co-

cycles over an irrational rotation on the circle (Theorem 7.1.4) and over adding

machines (Theorem 7.2.4). Moreover, the only compact monothetic groups that

do not admit transitive cocycles are finite cyclic groups (Theorem 7.3.6).

Chapter 8, based on [74], is devoted to compare some twin notions in mea-

sure-theoretic ergodic theory and in topological dynamics. Some notions and

theorems in topological dynamics imitate their analogues from measure-theoretic
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ergodic theory (see [34]). However the structure of objects in topological dy-

namics is sometimes more complicated than in ergodic theory. In particular the

theorem saying that each measure-theoretic dynamical system is built up from

ergodic components has no appropriate version in topological dynamics. The two

most similar counterparts in topological dynamics of measure-theoretic ergod-

icity are minimality and topological transitivity (topological ergodicity). Both

notions have some properties similar to ergodicity, unfortunately not all of them.

In this chapter we will compare some properties of special cocycle extensions

(see (2) above) in measure-theoretic ergodic theory and in topological dynamics.

It is known that each measure-theoretic extension is a cocycle extension [2],

however the cocycle takes its values in a big Polish group, namely in the group

of all automorphisms of a fixed Lebesgue space. In topological dynamics there are

extensions that cannot be represented as cocycle extensions (see Example 8.2.1).

The special cocycle extensions considered below will strongly depend on cocycles

taking values in locally compact groups.

To study them, the main tool we will use is the notion of the group of

essential values of a cocycle. This notion was introduced by Klaus Schmidt ([89])

in the measure-theoretic context. A topological version of the notion of group

of essential values inherits many properties and consequences of the original

Schmidt’s definition (see [6], [64]). In this chapter we also work with the problem

whether the conjugacy class of the group of essential values is a cohomology

invariant in a nonabelian case. In measure-theoretic ergodic theory this is not

true – see [5]. We present a counterexample to this guess in topological dynamics

(see Example 8.2.3). In [74] a comment on this example was given that this

is a topological counterexample to a relevant measure-theoretic theorem [13,

Proposition 1.1]. This comment miss the goal as [13, Proposition 1.1] is based

on an extra assumption that the cocycle under considerations is regular. It is

easy to see that the Danilenko’s proof works also in topological dynamics. On

the other hand, for some constructions and strong theorems in ergodic theory

there is a topological counterpart. In this chapter we compare descriptions of

isomorphisms of Rokhlin cocycle extensions in ergodic theory and topological

dynamics.

In the topological context we will study only extensions of the form (2) and

here Γ is assumed to be a continuous action of a locally compact second countable

group G on a compact metric space Y . In the study of extensions of the form (2)

an important role is played by associated, so named, cylindrical transformations

Tϕ:X ×G→ X ×G, Tϕ(x, g) = (Tx, ϕ(x)g). Similarly to the measure-theoretic

situation central object is the set E∞(ϕ) of essential values of ϕ. We will give

(Section 8.2) examples that some important properties of E∞(ϕ) that hold in

ergodic theory are not inherited by topological dynamics. In this paper we also

describe (Section 8.3) base preserving equivariant homeomorphisms of Rokhlin

cocycle extensions of minimal flows, that means, equivariant homeomorphisms
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of the form Ŝ: (X × Y1, T̃ ) → (X × Y2, T ), where both T̃ and T are Rokhlin

cocycle extensions of a given topologically transitive flows (X,T ), and both these

extensions are defined by the same cocycle ϕ:X → G. The results of this chapter

refer to [63, Proposition 5], [14, Theorem 7.3], [67, Proposition 2.1].



CHAPTER 1

PRELIMINARIES

1.1. Measure-theoretic dynamical systems

Let T be an automorphism of a probability Lebesgue space (X,B, µ) (some
basic information on Lebesgue spaces can be found in Appendix A). Then the
quadruple X = (X,B, µ, T ) will be called a measure-theoretic dynamical sys-
tem, or shortly a dynamical system. In the sequel we will often shortly call T
a dynamical system.

One of the most important theorems in ergodic theory is so named the
Birkhoff–Khinchin Ergodic Theorem:

Theorem 1.1.1 (Birkhoff–Khinchin Ergodic Theorem). Let (X,B, µ, T ) be
a dynamical system and f ∈ L1(X,B, µ). Then for µ-almost every x ∈ X the
following limits exist and are equal to each other

lim
n→∞

1
n

n−1∑
k=0

f(T kx) = lim
n→∞

1
n

n−1∑
k=0

f(T−kx)(1.1)

= lim
n→∞

1
2n+ 1

n∑
k=−n

f(T kx) def= f(x).

Further f(Tx) = f(x) whenever the limits above exist. Moreover,

(1.2) f ∈ L1(X,B, µ) and
∫
X

f(x) dµ =
∫
X

f(x) dµ.

The limits that appear in the Birkhoff–Kchinchin Ergodic Theorem are called
time means or means along trajectory.

A measurable set A is called invariant with respect to the automorphism T if
µ(A4TA) = µ(A4T−1A) = 0. A measurable function f is said to be invariant
with respect to the automorphism T if µ({x ∈ X : f(x) 6= f(Tx)}) = 0.

Now we formulate one of the most important definition in ergodic theory.

17
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Definition 1.1.2. A dynamical system (X,B, µ, T ) is said to be ergodic if for
any invariant with respect to T set A, either µ(A) = 0 or µ(Ac) = µ(X \A) = 0.
In such a case T is said to be an ergodic automorphism.

Each ergodic dynamical system may be characterized in the following way.

Proposition 1.1.3. Let T be an automorphism of a probability Lebesgue
space (X,B, µ). The following statements are equivalent.

(a) T is ergodic.
(b) For every A ∈ B with µ(A) > 0 we have µ

(⋃
n>0 T

−nA
)

= 1.
(c) For every A,B ∈ B with µ(A) > 0, µ(B) > 0 there exists n > 0 with

µ(T−nA ∩B) > 0.

Now we give a characterization of ergodicity in terms of measurable real
functions.

Proposition 1.1.4. Let T be an automorphism of a probability Lebesgue
space (X,B, µ). The following statements are equivalent.

(a) T is ergodic.
(b) If f is measurable and (f ◦ T )(x) = f(x) a.e. then f is constant a.e.
(c) If f ∈ L2(X,B, µ) and (f ◦ T )(x) = f(x) a.e. then f is constant a.e.

Theorem 1.1.5. Suppose that T is an automorphism of a probability Le-
besgue space (X,B, µ). Then T is ergodic if and only if for all A,B ∈ B

lim
n→∞

1
n

n−1∑
i=0

µ(T−iA ∩B) = µ(A)µ(B).

Definition 1.1.6. Let T be an automorphism of a probability Lebesgue
space (X,B, µ).

(a) We say that T is weakly mixing if

lim
n→∞

1
n

n−1∑
i=0

|µ(T−iA ∩B)− µ(A)µ(B)| = 0 for all A,B ∈ B.

(b) We say that T is strongly mixing or mixing if

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B) for all A,B ∈ B.

Evidently each strongly mixing transformation is weakly mixing, and each
weakly mixing is ergodic. We also have the following characterization of weakly
mixing automorphisms.
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Theorem 1.1.7. Suppose that T is an automorphism of a probability Lebes-
gue space (X,B, µ). The following statements are equivalent:

(a) T is weakly mixing.
(b) There exists a subset J ⊂ Z+ of density zero such that

lim
J 63n→∞

µ(T−nA ∩B) = µ(A)µ(B) for all A,B ∈ B.

(c) For each A,B ∈ B we have

lim
n→∞

1
n

n−1∑
i=0

|µ(T−iA ∩B)− µ(A)µ(B)|2 = 0.

(d) T × T : (X ×X,B⊗B, µ× µ)→ (X ×X,B⊗B, µ× µ) is ergodic.
(e) T ×T : (X×X,B⊗B, µ×µ)→ (X×X,B⊗B, µ×µ) is weakly mixing.

(f) If 0 6= f ∈ L2(X,B, µ) and λ ∈ C satisfy f ◦ T = λf then λ = 1 and f

is constant a.e.

If we are given a dynamical system T on a probability space (X,B, µ), then
other T -invariant probability measures on (X,B, µ) may exist. The following
theorem gives some information on the structure of the set of such measures.

Theorem 1.1.8. Suppose T is a dynamical system on a measurable space
(X,B) along with two probability T -invariant measures µ and ν on B. Then:

(a) If µ is ergodic with respect to T while ν is absolutely continuous with
respect to µ, then µ = ν.

(b) If both measures µ and ν are ergodic with respect to T then either µ = ν,
or µ and ν are mutually singular.

Theorem 1.1.9. Let T be an automorphism of a probability Lebesgue space
(X,B, µ). Then there exists a measurable partition P of X satisfying the follo-
wing conditions.

(a) Each element of the partition P is a T -invariant set.
(b) If C ∈ P and µC is the conditional measure on C, then T is ergodic on

the Lebesgue space (X,B, µC).

The partition P the theorem above is describing is called a decomposition of
T into ergodic components. By virtue of Theorem A.2.6, such a decomposition is
unique. Each system (X,B, µC) is called an ergodic component of the dynamical
system (X,B, µ, T ). The decomposition (see Definition A.2.5)

µ =
∫
X/P

µC dµ
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is called the decomposition of the measure µ into ergodic components or the ergo-
dic decomposition. Denote by E(X,T ) the family of all ergodic for T probability
measures on X. By Theorem 1.1.9, E(X,T ) is non-empty.

Definition 1.1.10. Let T : (X,B, µ) → (X,B, µ) be an automorphism of
a probability Lebesgue space. By the centralizer C(T ) of T we mean the set

C(T ) = {S:X → X : S preserves µ and ST = TS}.

Note that the centralizer is always a semigroup, not necessarily a group. The
notion of coalescence, described below, comes from [80].

Definition 1.1.11. Let T : (X,B, µ) → (X,B, µ) be an ergodic automor-
phism. We will say that T is coalescent , if C(T ) is a group.

We equip C(T ) with the weak topology in the following way. We say that
a sequence (Sn)n≥1 of elements of C(T ) converges weakly to S ∈ C(T ) if

µ(S−1
n (A)4S−1(A)) n→∞−−−→ 0 for each A ∈ B.

Definition 1.1.12. Let (X,B, µ, T ) and (Y,C, ν, S) be two measure-theo-
retic dynamical systems, and let π:X → Y be a measurable map satisfying
µ(π−1(C)) = ν(C) for all C ∈ C. If S ◦π = π◦T then we call π a homomorphism.
In such a case (Y,C, ν, S) is said to be a factor of (X,B, µ, T ), and (X,B, µ, T )
is said to be an extension of (Y,C, ν, S). If π is a conjugacy (i.e. π−1 is an
isomorphism of the σ-algebras C and B), then we call π an isomorphism.

1.2. Ergodic dynamical systems with discrete spectrum

The content of this section is borrowed from [98, Chapter 3].
Let (X,B, µ, T ) be a dynamical system. Define

UT :L2(X,B, µ)→ L2(X,B, µ)

by UT (f) = f ◦ T . Then UT is a unitary operator on L2(X,B, µ). It is clear
that if (X,B, µ, T ) and (Y,C, ν, S) are two isomorphic dynamical systems then
the corresponding unitary operators UT and US are conjugate, i.e. there exists
an invertible linear operator W :L2(X,B, µ) → L2(Y,C, ν) such that UT ◦W =
W ◦ UT and

∫
Wf ·Wg dν =

∫
f · g dµ for all f, g ∈ L2(X,B, µ) (i.e. W is an

isomorphism of Hilbert spaces).
An important role in ergodic theory play eigenvalues of UT . It is clear that

if T and S are isomorphic then UT and US have the same eigenvalues.

Theorem 1.2.1. Let (X,B, µ, T ) be an ergodic dynamical system and let
UT be the corresponding unitary operator. Then:

(a) It UT f = λf , where λ ∈ C, f ∈ L2(X,B, µ, T ), f 6≡ 0, then |λ| = 1 and
|f | = const a.e.
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(b) Eigenvalues corresponding to different eigenvalues of UT are orthogonal.
(c) If f and g are both eigenvalues corresponding to the eigenvalue λ then

f = cg a.e. for some c ∈ C.
(d) The eigenvalues of UT form a subgroup of the unit circle T = {z ∈ C :
|z| = 1}.

Definition 1.2.2. We say that an ergodic dynamical system (X,B, µ, T )
has discrete spectrum (pure-point spectrum) if there exists an orthonormal basis
for L2(X,B, µ, T ) consisting of eigenvalues of T .

Theorem 1.2.3 (Discrete Spectrum Theorem). Let (X,B, µ, T ), (Y,C, ν, S)
be ergodic dynamical systems with discrete spectrum. Then these systems are
isomorphic if and only if UT and US have the same eigenvalues.

Natural examples of ergodic transformations with discrete spectrum are ro-
tations on groups. For a compact Abelian group G, denote by ν the normalized
Haar measure on G, and by Ĝ the character group of the group G. Let a ∈ G,
the automorphism T :G → G defined by T (g) = ag, g ∈ G, is called a rotation
on the group G. If moreover this automorphism is ergodic with respect to the
Haar measure ν, we call T an ergodic rotation.

Theorem 1.2.4. Let T , given by T (g) = ag, be an ergodic rotation on
a compact Abelian group G. Then T has discrete spectrum. Moreover, every
eigenfunction of UT is a constant multiple of a character, and the eigenvalues of
UT are {γ(a) : γ ∈ Ĝ}.

Theorem 1.2.5 (Representation Theorem). Every ergodic dynamical sys-
tem (X,B, µ, T ) with discrete spectrum is isomorphic to an ergodic rotation on
some compact Abelian group. The group is metrizable if and only if (X,B, µ) has
a countable basis.

Theorem 1.2.6 (Existence Theorem). Every subgroup Λ ⊂ T = {z ∈ C :
|z| = 1} is the group of eigenvalues of an automorphism with discrete spectrum.

Consider now an ergodic dynamical system X = (X,B, µ, T ) and let π:X→
Y = (Y,C, ν, S) be a homomorphism such that the system Y has discrete spec-
trum. Then Y is a canonical factor of X in the sense that whenever π:X →
Y = (Y ,C, ν, S) is another homomorphism such that Y is isomorphic to Y, then
π−1(C) = π−1(C), [79]. Using this property one can deduce that each ergodic
dynamical system X is possessed of the largest factor with discrete spectrum, i.e.
a factor with discrete spectrum Y such that whenever Y is another factor with
discrete spectrum of X, then Y is a factor of Y.

Definition 1.2.7. Let X be an ergodic dynamical system. The largest factor
with discrete spectrum of X is called the Kronecker factor.



22 Mieczys law K. Mentzen

1.3. Measure-theoretical joinings

If T : (X,B, µ) → (X,B, µ), S: (Y,C, ν) → (Y,C, ν) are ergodic automorphi-
sms then by a joining of T and S we mean any T × S-invariant measure λ on
X × Y such that, for B ∈ B and C ∈ C,

λ(B × Y ) = µ(B), λ(X × C) = ν(C).

The set of all joinings of T and S we will denote by J(T, S) or J(X,Y ), while
the subset of J(T, S) consisting of all T × S-ergodic joinings, by Je(T, S) or
Je(X,Y ). Obviously the product measure µ×ν is a joining of T and S, therefore
J(T, S) 6= ∅.

Proposition 1.3.1. If λ ∈ J(T, S) and if

λ =
∫
E(T,S)

γ dτ(γ)

is its ergodic decomposition, where E(T, S) stands for all T ×S-ergodic measures
on X × Y , then τ(Je(T, S)) = 1.

Proof. As λ is a joining, for any B ∈ B we have

µ(B) = λ(B × Y ) =
∫
E(T,S)

γ(B × Y ) dτ(γ).

Each measure γ( · ×Y ) is an ergodic measure on B, hence the equality above gives
an ergodic decomposition of µ. However µ is already ergodic, so γ( · × Y ) = µ

for τ -a.e. γ ∈ E(T, S). In a similar way we prove that γ(X × · ) = ν for τ -a.e.
γ ∈ E(T, S). Thus γ ∈ Je(T, S) for τ -a.e. γ ∈ E(T, S). �

Proposition 1.3.1 says that the ergodic decomposition of a joining consists of
joinings. In particular Je(T, S) 6= ∅.

If f :X → Y is a measurable map then we define a graph measure µf on X×Y
by

µf (A×B) = µ(A ∩ f−1(B)).

It is easy to observe that the µf -measure of the graph of the map f in X × Y is
equal to 1 (notice that if µf ∈ J(T, S) then S ◦ f = f ◦ T ).

Lemma 1.3.2. If λ ∈ Je(T, S) then

(1.3) λ = µf ⇔ ∀
C∈C

∃
B∈B

λ(B × Cc ∪Bc × C) = 0.

Proof. If λ = µf , then for a C ∈ C put B = f−1(C). Clearly the equality
λ(B × Cc ∪Bc × C) = 0 holds.

To prove the converse observe first that for such sets C and B we have µ(B) =
ν(C) = λ(B×C). If λ(B′×Cc∪B′c×C) = 0, then µ(B′∩B) = µ(B) = µ(B′),
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so B = B′ almost surely. Thus for a given C the set B is unique up to the
measure µ. Define an isomorphism F of the Boolean σ-algebras C̃ and B̃ by

F (C) = B ⇔ λ(B × Cc ∪Bc × C) = 0.

Then F defines an isomorphism of Lebesgue spaces f : (X,B, µ)→ (Y,C, ν) such
that f−1(C) = F (C) for all C ∈ C. Clearly λ = µf and we are done. �

If Y = X and f = Id, the identity function, then the graph measure µId we
will call the diagonal measure.

Now we present the definition of simple and minimal self-joinings transforma-
tion (see [45]). Let (X,B, µ, T ) be an ergodic dynamical system. If S1, . . . , Sk ∈
C(T ) then we call the image of the measure µ under the map

X 3 x 7→ (S1x, . . . , Skx) ∈ X × . . .×X︸ ︷︷ ︸
k times

= Xk}

an off-diagonal measure. Each off-diagonal measure is clearly an ergodic k-joining.
By a product of off-diagonal (POOD) on Xk we mean that the set {1, . . . , k} has
been split into ti-element subsets Ai, i = 1, . . . , r, then on each Xti we put an
off-diagonal measure and then take the product of these off-diagonal measures. A
POOD is evidently a self-joining of (X,T ). Note that both product measure and
off-diagonal measures on Xk are POOD. We say that T is k-simple if C(T ) is
a group and each k-self-joining of (X,T ) is POOD and T is simple if it is k-simple
for each positive integer k. If T is simple and additionally C(T ) = {Tn : n ∈ Z}
then we say that T has minimal self-joinings, (MSJ).

Definition 1.3.3 ([22]). Two automorphisms Ti: (Xi,Bi, µi)→(Xi,Bi, µi),
i = 1, 2, are said to be disjoint if J(T1, T2) = {µ1 × µ2}. We will then write
T1 ⊥ T2.

The notion of disjointness given in Definition 1.3.3 is also called the disjoint-
ness in Furstenberg sense.

Definition 1.3.4. If S: (Y,C, ν)→ (Y,C, ν) is a common factor of

Ti: (Xi,Bi, µi)→ (Xi,Bi, µi), i = 1, 2,

and λ ∈ J(Y, Y ), by the relatively independent extension λ̂ ∈ J(X1, X2) of λ we
mean the measure

λ̂(A1 ×A2) =
∫
Y×Y

E(A1|Y )(y1)E(A2|Y )(y2) dλ(y1, y2).

Denote by λ̂ = µ1 ×C µ2 the relatively independent extension of the diagonal
measure on Y ×Y . By the relative product T1×S T2 of T1 and T2 with respect to
S we mean the relatively independent extension of the diagonal measure on Y .
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We say that T1 and T2 are relatively disjoint over S, if the relative product
T1 ×S T2 is ergodic.

1.4. Group extensions of measure-theoretic dynamical systems

Let T : (X,B0) → (X,B0) be an automorphism of a standard Borel space
(X,B0), that means T is a bijective map such that T−1B0 = B0. Let µ be a pro-
bability T -invariant measure on (X,B0). Denote by B the T -invariant σ-algebra
of all µ-measurable subsets of X. Then (X,B, µ) is a probability Lebesgue space
with T being an automorphism of it. In what follows all σ-algebras under consi-
deration will be complete with respect to the corresponding measure.

Let G be a locally compact group with the unit element e, equipped with
a left-invariant Haar measure ν = νG defined on the σ-algebra B(G) of Borel
subsets of G. Suppose that ϕ:X → G is a Borel map. Define a Z-cocycle ϕ( · ):Z×
X → G for the Z-action n 7→ Tn, n ∈ Z, by

(1.4) ϕ(n)(x) =


ϕ(Tn−1x)ϕ(Tn−2x) . . . ϕ(Tx)ϕ(x), n > 1,

e, n = 0,

ϕ(Tnx)−1ϕ(Tn+1x)−1 . . . ϕ(T−1x)−1, n 6 −1.

Then the cocycle identity

(1.5) ϕ(n+k)(x) = ϕ(n)(T kx)ϕ(k)(x)

is fulfilled. Note that each measurable Z-cocycle Φ = Φ(n, x) is of the form (1.4):
simply define ϕ(x) = Φ(1, x). In what follows we will shortly call measurable
ϕ:X → G a cocycle. Such a cocycle allows us to define an Tϕ:X ×G→ X ×G
by the formula

(1.6) Tϕ(x, g) = (Tx, ϕ(x)g).

Then

(1.7) (Tϕ)n(x, g) = (Tnx, ϕ(n)(x)g), n ∈ Z.

The map Tϕ preserves the (possible) infinite measure µ×νG. The dynamical sys-
tem (X×G,B⊗B(G), µ×νG, Tϕ) is called a group extension of T , or, indicating
the group, a G-extension of T . If G is compact then Tϕ is also called a compact
group extension. We say that the cocycle ϕ is ergodic if the corresponding group
extension Tϕ is ergodic, i.e. if for each Tϕ-invariant set A ∈ B ⊗ B(G), either
(µ× νG)(A) = 0 or (µ× νG)(Ac) = 0.

For each g ∈ G, let σg(x, h) = (x, hg). For this right action of G on X × G
we have Tϕσg = σgTϕ.
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If H ⊂ G is a closed subgroup then we define Tϕ,H :X ×G/H → X ×G/H
by the formula

(1.8) Tϕ,H(x, gH) = (Tx, ϕ(x)gH).

If no confusion can arise then we will denote the measure ν restricted to the sets
of the form BH =

⋃
b∈B bH, B ⊂ G, i.e. to the sets invariant with respect to

the right action of H on X ×G, again by ν = νG. Let µ̃ = µ× ν. Denote by B̃

the product σ-algebra B⊗ B(G). If p:G → G/H is the natural projection then
we denote

(1.9) B̃H = B⊗ p(B(D)).

The factor Tϕ,H of Tϕ we will call a natural factor of Tϕ and Tϕ,H an isometric
extension of T . If the group H is normal in G, then we call Tϕ,H a normal natural
factor of Tϕ.

Theorem 1.4.1 (Veech’s Theorem, [34]). Let us assume that T : (X,B, µ)→
(X,B, µ) is an ergodic automorphism and that C is its factor. Let

µ⊗C µ =
∫
J22 (T )

γ dP (γ)

be the ergodic decomposition of the relatively independent extension of the diago-
nal measure on C⊗C. If P -a.e. γ is a graph measure, then there exists a compact
subgroup H ⊂ C(T ) such that Y = X/H, i.e.

C = {B ∈ B : h(B) = B for all h ∈ H}.

In other words, B is a group extension of A by the group H.

The proof of the theorem below, that is a relative version of Veech’s Theorem,
was communicated to the author by M. Lemaczyk.

Theorem 1.4.2. Suppose that T : (X,B, µ) → (X,B, µ) is an ergodic au-
tomorphism, G is a compact metric group equipped with the normalized Haar
measure ν defined on the σ-algebra G of Borel subsets of G. Denote µ = µ × ν.
Let ϕ:X → G be a measurable cocycle such that Tϕ is ergodic. If A is a factor of
Tϕ such that B⊗ {∅, G} ⊂ A, then there exists a compact subgroup H ⊂ G such
that A = B⊗B(G)H , where B(G)H is the Borel structure on the quotient space
G/H. In other words, each factor A satisfying B ⊗ {∅, G} ⊂ A ⊂ B ⊗ B(G) is
an isometric extension of B.

Proof. Let

µ⊗A µ =
∫
Je2 (T )

γ dP (γ)
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be the ergodic decomposition of the relatively independent extension of the
diagonal measure ∆A on A⊗A. Observe that

P ({γ ∈ Je2 (T ) : γ|A⊗A = ∆A}) = 1.

Now suppose that γ ∈ Je2 (T ) satisfies γ|A⊗A = ∆A, then

γ|(B⊗{∅,G)⊗(B⊗{∅,G}) = ∆B⊗{∅,G},

and consequently

γ({(x, g, x, h) : x ∈ X, g, h ∈ G}) = 1.

The (measurable) map (x, g, x, h) 7→ g−1h is Tϕ×Tϕ-invariant, hence it is γ-a.e.
constant, i.e. there is g0 ∈ G such that g−1h = g0 for γ-a.e. (x, g, x, h). This is
equivalent to say that γ is a graph joining. By virtue of Veech’s Theorem, there
exists a compact subgroup H ⊂ G such that

A = {B ∈ B⊗B(G) : Bh = B for all h ∈ H} = B⊗B(G)H ,

which finishes the proof. �

The content of the following can be found e.g. in [50]–[52]. We will list some
basic facts concerning the ergodic decomposition of a compact group extension
of an ergodic automorphism and, in Section 2.5, apply them in our analysis of
ergodic joinings for group extensions of semisimple automorphisms.

Let (X,B, µ, T ) be an ergodic dynamical system. Let G be a compact metric
group equipped with the normalized Haar measure ν on the family B(G) of Borel
subsets of G. Assume that ϕ:X → G is a Borel map. Because the G-extension
Tϕ is not necessarily ergodic with respect to µ̃, let

µ̃ =
∫
E(Tϕ)

λ dγ(λ)

be the ergodic decomposition of µ̃.
Take any λ ∈ E(Tϕ). Denote by H the stabilizer of λ in G, i.e. H = {g ∈

G : λg = λ}.

Lemma 1.4.3.

(a) H is a closed subgroup of G.
(b) If (x, g), (x, h) ∈ Y , then hH = gH.

Let us decompose λ over the factor (X,µ, T ):

λ =
∫
X

λx dµ(x).

Let νH denote the Haar measure on H.
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Lemma 1.4.4. For almost each x ∈ X there exists a g = gx ∈ G such that

λx = δx × gνH .

Let us define a function τ :X → G/H by

(1.10) τ(x) = gxH

where gx is defined by Lemma 1.4.4. Then (X × G/H, λ, Tϕ) is isomorphic to
(X,µ, T ): the map p:X × G/H → X, p(x, gH) = x is measurable and λ-a.e.
one-to-one. Therefore p is invertible and p−1(x) = (x, τ(x)). It forces τ to be
measurable. Also

(1.11) τ(Tx) = ϕ(x)τ(x)

Theorem 1.4.5. There exists a function t:X → G such that the system
(X ×G,λ, Tϕ) is isomorphic to (X ×H,µ× νH , Tψ), where

ψ(x) = t(Tx)−1ϕ(x)t(x).

By [89], ergodicity of Tϕ may be described using the notion of essential values
of ϕ. Denote G∞ = G ∪ {∞} to be the one-point compactification of G (if G is
compact then G∞ = G).

Definition 1.4.6. A g ∈ G∞ is called an essential value of ϕ if for each
positive measure set U ∈ B and for each open neighbourhood G∞ ⊃ V 3 g there
exists an integer n such that the set

U ∩ T−nU ∩ {x ∈ X : ϕ(n)(x) ∈ V }

has positive measure. Denote by E∞(ϕ) the set of all essential values of ϕ and
set

E(ϕ) = E∞(ϕ) ∩G.

The set E(ϕ) has the following properties.

Proposition 1.4.7.

(a) E(ϕ) is a closed subgroup of G;
(b) ϕ is a coboundary if and only if E∞(ϕ) = {0};
(c) Tϕ is ergodic if and only if E(ϕ) = G.

Given a cocycle ϕ:X → G, let ϕ∗:X → G/E(ϕ) be the corresponding qu-
otient cocycle.

Lemma 1.4.8. E(ϕ∗) = {0}.
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Definition 1.4.9. Assume that the group G is Abelian. We say that ϕ is
regular if it is cohomologous to a an ergodic cocycle ψ taking all values in E(ϕ)
i.e. if there exists a measurable function f :X → G such that all values of the
cocycle ψ(x) = (f(Tx))−1ϕ(x)f(x) are in E(ϕ).

By [89], regular cocycles are, in measure-theoretic ergodic theory, characte-
rized by the following property.

Proposition 1.4.10. A cocycle ϕ is regular if and only if E∞(ϕ∗) = {0}.

It follows that a regular ϕ is cohomologous to a cocycle ψ:X → E(ϕ) and
the latter cocycle is ergodic as a cocycle with values in E(ϕ). In particular, if
E(ϕ) is cocompact then ϕ is regular and as a direct consequence we obtain that
all cocycles taking values in compact groups are regular.

Proposition 1.4.11 ([69]). Let T be an ergodic automorphism. Assume that
G and H are Abelian locally compact second countable groups and let π:G→ H

be a continuous group homomorphism. Let ϕ:X → G be a cocycle. Then

π(E(ϕ)) ⊂ E(π ◦ ϕ).

Moreover, if ϕ is regular then

π(E(ϕ)) = E(π ◦ ϕ).

1.5. Rokhlin cocycle extensions

Let (Y,C, ν) be a probability Lebesgue space, G an Abelian locally compact
second countable group; in what follows we will assume that G contains no
non-trivial compact subgroup. Let {Rg}g∈G be a measurable action of G on
(Y,C, ν) by automorphisms of the Lebesgue space (Y,C, ν), i.e. the following
map

G× Y 3 (g, y) 7→ Rg(y) ∈ Y
is measurable, and satisfies Re = IdY and Rg+h = Rg ◦Rh.

Definition 1.5.1. We say that the action {Rg}g∈G is ergodic if for any
C ∈ C satisfying ν(RgC4C) = 0 for all g ∈ G we have ν(C) = 0 or ν(C) = 1.

Definition 1.5.2 ([67], [90]). We say that the action {Rg}g∈G is mildly
mixing if for any sequence (gk)k≥1 of elements of G going to infinity in G, and for
any C ∈ C satisfying limk→∞ ν(RgkC4C)→ 0 we have ν(C) = 0 or ν(C) = 1.

Definition 1.5.3. We say that the action {Rg}g∈G is weakly mixing if the
action G× (Y × Y ) 3 (g, y1, y2) 7→ (Rg(y1), Rg(y2)) ∈ Y × Y is ergodic.
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Let T : (X,B, µ) → (X,B, µ) be an ergodic automorphism, G = {Rg}g∈G an
action of G on (Y,C, ν), where G is an Abelian locally compact second countable
group. Assume that ϕ:X → G is a cocycle. We define

Tϕ,G : (X × Y,B⊗ C, µ× ν)→ (X × Y,B⊗ C, µ× ν),

Tϕ,G(x, y) = (Tx,Rϕ(x)(y)).

We call T
ϕ,G a Rokhlin cocycle extension of T . We will make use of some recent

results from [63] (Propositions 1.5.4 and 1.5.5 below).

Proposition 1.5.4. If G is ergodic and ϕ is ergodic then Tϕ,G is ergodic.

Proposition 1.5.5.

(a) If the action G is mildly mixing and Tϕ,G is ergodic, then the extension
Tϕ,G → T is relatively weakly mixing.

(b) If G is weakly mixing, Tϕ,G is ergodic and the maximal spectral type of
G satisfies the group property then the extension Tϕ,G → T is relatively
weakly mixing. In particular, the assertion holds whenever the action G

is Gaussian.

We will also make use of the following relative unique ergodicity result ([63])
for Rokhlin cocycle extensions.

Proposition 1.5.6. Assume that ϕ is ergodic and G is a Borel action on
(Y,C). Suppose that ρ is an ergodic Tϕ,G-invariant measure (on B ⊗ C) whose
projection on B equals µ. Then ρ = µ⊗ ν′, where ν′ is G-invariant and ergodic.

The following disjointness result has been proved in [67].

Proposition 1.5.7. Suppose that W is an ergodic automorphism. If T ⊥
W , ϕ:X → G is ergodic and the action G = {Rg}g∈G is mildly mixing, then
Tϕ,G ⊥W .

1.6. Gauss dynamical systems

The definition of Gauss dynamical system given below comes from [12]. Con-
sider the space M of all bisequences of real numbers, i.e. let M = RZ. We will
use the following notation: if x ∈ M , then let x[s] be the sth position in the
sequence x. Suppose that M is the σ-algebra generated by the cylinder subsets
of the space M , i.e. by the sets of the form

Cs,A = {x ∈M : x[s] ∈ A},

where s ∈ Z, A ⊂ R is a Borel set. Denote by T the shift transformation in
the space M given by (Tx)[s] = x[s + 1]. A probability measure µ on M is
said to be a Gauss measure if the joint distribution of any family of variables
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x[s1], x[s2], . . . , x[sr] is an r-dimensional Gauss distribution. It is known that
such a probability distribution is well defined by the numbers

(1.12)
m(si) =

∫
x[s] dµ(x), i = 1, . . . , r,

b(si, sj) =
∫
x[si] · x[sj ] dµ(x), i, j = 1, . . . , r.

If µ is a Gauss measure, then (M,M, µ) is said to be a Gauss random process.
The Gauss measure µ is stationary (that means invariant with respect to T ) if

(1.13) m(s) = m = const, b(s1, s2) = b(s1 + s, s2 + s),

for all s1, s2, s ∈ Z, equivalently

b(s1, s2) = b(0, s2 − s1) def= b(s2 − s1), s1, s2 ∈ Z.

One usually assumes that the mean m vanishes, since the transformation x[s] 7→
x[s]−m maps arbitrary Gauss measure µ into a Gauss measure with zero mean.
The function b(s), s ∈ Z, is said to be the correlation function of the Gauss
measure. Moreover, the correlation function is positive definite. By the Herglotz
theorem (Theorem A.3.3), it may be presented in the form

b(s) =
∫ π

−π
eiλs dσ(λ),

where σ is a finite positive Borel measure on the circle T. The measure σ is called
the spectral measure of the Gauss measure µ. If m = 0 then the spectral measure
σ uniquely determines the original measure µ. Moreover, as b(s) = b(−s), we
have σ(A) = σ(−A) for any Borel set A ⊂ T.

Definition 1.6.1. The shift transformation on the space (M,M) equipped
with a Gauss stationary measure µ is said to be a Gauss automorphism.

There is a more abstract equivalent definition of Gauss automorphism. Sup-
pose T is an automorphism of a measure space (M,M, µ). The real element
h0 ∈ L2(M,M, µ) is said to be a Gauss element with zero mean if for any
collection of integers n1, . . . , nr the random variables hjj , j = 1, . . . , r, where
hn = UnT h0 = h0 ◦ Tn, have the joint Gauss probability distribution with zero
mean. In such a case for Borel sets C1, . . . , Cr ⊂ R we have

µ({x : hn1(x) ∈ C1, . . . , hnr (x) ∈ Cnr})

=
∫
C1×...×Cr

p(t(1), . . . , t(r)) dt(1) . . . dt(r),

where p(t(1), . . . , t(r)) = const · exp[−(Dt, t)/2], t = (t(1), . . . , t(r)), D is the ma-
trix inverse to the scalar product matrix B =

(
‖(hni , hnj )‖

)
i,j

and the constant
is determined by the normalization condition.
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Definition 1.6.2. The automorphism T is called a Gauss automorphism if
there exists a Gauss element h0 ∈ L2(M,M, µ) with zero mean such that the
T -invariant minimal σ-algebra Mh0 containing of all sets of the form Bn,C =
{x ∈M : hn(x) ∈ C}, n ∈ Z, C ⊂ R, is a Borel set, coincides with M.

In general, if h0 is a Gauss element, then we refer to the σ-algebra Mh0 as
to Gauss subalgebra.

1.7. Topological dynamics – definitions and notations

Let X be a locally compact space. By Hom(X,X) we denote the group of all
homeomorphisms of the space X with the uniform convergence topology, making
Hom(X,X) a topological group. For a compact metric (X, d) the topology of
uniform convergence is defined by the metric

d(p, q) = sup
x∈X

d(p(x), q(x)) + sup
x∈Y

d(p−1(x), q−1(x))

for p, q ∈ Hom(X,X).
Let T be a locally compact group acting on X as a group of homeomor-

phisms Γ = {γt : t ∈ T} ⊂ Hom(X,X). More precisely, we consider a map
T × X 3 (t, x) 7→ γt(x) ∈ X that is continuous and satisfies the conditions:
γts(x) = γt(γs(x)), γe(x) = x = IdX(x), where e denotes the unit of T . In the
sequel we will assume that the action Γ is effective i.e. γt = IdX if and only if
t = e. The pair (X,Γ) will be called a locally compact T -flow , or shortly a T -flow .
To emphasize that X is compact we call (X,Γ) a compact T -flow . For the case
T = Z, any action of Z is defined by one homeomorphism γ1; this homeomor-
phism is traditionally denoted by T and in such a case we will denote a Z-flow
by (X,T ).

Let (X1,Γ1) and (X2,Γ2) be two T -flows. By (X1 ×X2,Γ1 × Γ2) we denote
the T -flow given by the action (x1, x2, t) 7→ (γ1

t (x1), γ2
t (x2)).

Let (X,Γ) be a T -flow. For x ∈ X denote

Orb(x) = OrbΓ(x) = {γt(x) : t ∈ T},

the orbit, and

Orb(x) = OrbΓ(x) = Orb(x),

the orbit closure of the point x. Similarly, for a set A ⊂ X write OrbΓ(A) =
{γt(x) : x ∈ A, t ∈ T} for the orbit, and OrbΓ(A) = Orb(A) for the orbit closure
of the set A. The flow (X,Γ) is point transitive, if there exists x0 ∈ X with dense
orbit: Orb(x0) = X. A set A ⊂ X is said to be Γ-invariant, if γt(A) = A for
all t ∈ T . We say that a set M ⊂ X is Γ-minimal, if M is closed, Γ-invariant
and each nonempty closed invariant subset of M is equal to M . If X is minimal
itself, we call the T -flow (X,Γ) a minimal flow.
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Theorem 1.7.1. If X is a compact Hausdorff space then there exists a mi-
nimal subset of the T -flow (X,Γ).

Theorem 1.7.1 fails when the phase space X is only locally compact, an
example (somewhat artificial) can be found in [7, Chapter 1, pp. 27–28]. In
Chapter 7 a large family of quite natural locally compact flows that do not
admit minimal subset will be described.

For open sets U, V ⊂ X the dwelling set D(U, V ) ⊂ T is defined by

D(U, V ) = {t ∈ T : γt(U) ∩ V 6= ∅}.

For x ∈ X and an open U ⊂ X define the dwelling set D(x, U) by

D(x, U) = {t ∈ T : γt(x) ∈ U}.

Clearly X is point transitive if and only if there exists x0 ∈ X such that
D(x0, U) 6= ∅ for every nonempty open U ⊂ X. A point x ∈ X is almost perio-
dic if for each nonempty open neighbourhood U 3 x the dwelling set D(x, U)
is syndetic (a set A ⊂ T is syndetic whenever there exists a compact subset C
of T such that T = CA; see e.g. [97, IV(1.2)]). If T = Z, then the notion of
a syndetic set coincide with the notion of a relatively dense one: a set A ⊂ Z is
relatively dense if there exists a positive integer N with the property that each
n ∈ Z has a form n = k + r, where k ∈ A and 0 6 r 6 N . Each element of
a compact minimal set is almost periodic; for each almost periodic point x0, the
closure orbit OrbΓ(x0) is a compact minimal set. A flow (X,Γ) is topologically
ergodic if D(U, V ) 6= ∅ for any non-empty open sets U, V ⊂ X. Equivalently, X
is topologically ergodic if and only if each nonempty open invariant subset of X
is dense. Each point transitive flow is topologically ergodic, not vice versa. Both
these notions coincide however in the case of metric spaces.

Let (X,T ) be a Z-flow. An x ∈ X is called a recurrent point if for any
open neighbourhood U of x the dwelling set D(x, U) is both upper and lower
unbounded. In other words, a point x ∈ X is recurrent if there exist sequences
of integers ni → +∞, mi → −∞ such that Tnix → x, Tmix → x. An x ∈ X
is called a wandering point if there exists an open neighbourhood U of x such
that D(U,U) = {0}, i.e. the sets TnU , n ∈ Z, are pair-wise disjoint. If X is
a complete metric space then the set consisting of all recurrent and wandering
points is residual ([40, Theorem 7.24]). By definition, T is conservative if for
any non-empty open set U ⊂ X, D(U,U) \ {0} 6= ∅. Clearly, T is conservative
if and only if no point in X is wandering. If (X,T ) is point transitive and X is
a perfect space then T is conservative. Conservative homeomorphisms are also
called regionally recurrent ([40]) or non-wandering ([97]).

We say that (X,Γ) is uniformly rigid (or shortly rigid) if there exists a sequ-

ence (tj)j>1 of elements of the group T such that tj
j→∞−−−→ ∞ and γtj

j→∞−−−→ Id
uniformly; we will then call (tj)j>1 a rigidity time for T ([37]). The simplest
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uniformly rigid homeomorphisms are rotations on monothetic groups: if X is
a monothetic group with {an : n ∈ Z} = X, then the homeomorphism T :X → X

defined by T (x) = ax, x ∈ X, is called a minimal rotation (note that such a T
is indeed a minimal homeomorphism). If T is such a rotation and Tntx→ x for
some x, then (nt)t>1 is a rigidity time for T .

A pair (x, y) ∈ X×X is called distal if there exists δ = δ(x, y) > 0 such that
d(γt(x), γt(y)) > δ for all t ∈ T . If a pair is not distal, it is said to be proximal .
A flow (X,Γ) is called distal if each pair (x, y) ∈ X ×X, x 6= y, is distal. A flow
(X,Γ) is called proximal if each pair (x, y) ∈ X × X is proximal. No Abelian
group T admits non-trivial proximal flows (see [27]).

Every distal flow can be decomposed into minimal pieces (see [16]). From
this it is easy to deduce Ellis’s result that if (X,Γ) is a minimal flow, then the
T -flow (X ×X,Γ× Γ) is decomposable into minimal pieces if and only if (X,Γ)
is distal.

We say that two compact flows T -flows (X1,Γ1) and (X2,Γ2) are disjoint , if
for the T -flow (X1 ×X2,Γ1 × Γ2), the only nonempty closed Γ1 × Γ2-invariant
subset D ⊂ X1 × X2 satisfying πi(D) = X1, where πi(x1, x2) = xi, i = 1, 2, is
just X1 ×X2. In such a case we will write X1 ⊥ X2.

The centralizer , C(X,Γ), of (X,Γ) is the set of all continuous S:X → X

that commute with the action Γ of T :

C(X,Γ) = {S:X → X : S is continuous and S ◦ γt = γt ◦ S for all t ∈ T}.

Clearly, C(X,Γ) equipped with the topology of uniform convergence is a topo-
logical semigroup. The set of all invertible elements of C(X,Γ) we denote by
Aut(X,Γ). We endow Aut(X,Γ) with the topology induced by the metric given
by the formula

d(f1, f2) = sup
x∈X

d(f1(x), f2(x)) + sup
x∈X

(f−1
1 (x), f−1

2 (x)),

that makes Aut(X,Γ) a topological group.
Let (X,Γ) be a T -flow. We say that a T -flow (Y,∆) is a factor of (X,Γ) if

there exists a continuous map π:X → Y (called a homomorphism) such that
π(X) = Y and π ◦ γt = δt ◦ π. In such a case (X,Γ) (or sometimes π) is called
an extension of (Y,∆). It is easy to see that any factor of a minimal flow is also
minimal. If the map π is also a homeomorphism, we say that (X,Γ) and (Y,∆) are
isomorphic and call π an isomorphism. If π: (X,Γ)→ (Y,∆) is a homomorphism
we can define a closed equivalence relation Rπ ⊂ X ×X by

(1.15) Rπ = {(x, x′) ∈ X ×X : π(x) = π(x′)}.

The relation Rπ is Γ-invariant, that means (γt(x), γt(x′)) ∈ Rπ for each t ∈ T
whenever (x, x′) ∈ Rπ. Obviously, the quotient space (XRπ ,ΓRπ ) (here ΓRπ de-
notes the quotient action of T on XRπ ) with the quotient topology is isomorphic
to (Y, S). This allows us to picture factors of (X,Γ) as Γ × Γ-invariant, closed
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equivalence relations (ICER’s) on X, also called factor relations. Conversely, gi-
ven such a relation R we can define a homomorphism π: (X,Γ) → (XR,ΓR) by
π(x) = [x]R (here [x]R denotes an equivalence class of x). Note that if we have two
factor relations Ri, i = 1, 2, and a homomorphism π: (XR1 , TR1) → (XR2 , TR2)
with πR2 = π◦πR1 , then R1 ⊂ R2. If we have a family {Ri}i∈I of factor relations,
by
∨
i∈I Ri we denote the smallest factor relation containing all Ri’s.

If Y ⊂ X and R is a factor relation on X × X, then by RY we denote the
restriction of R to Y (i.e. RY = R ∩ (Y × Y )).

We say that a T -flow (X,Γ) is equicontinuous, if for each x ∈ X and for
each α ∈ AX – the uniform structure on X (see Section B.1 for the definition
of uniform structure), there exists an open neighbourhood U of x such that
γg(U) ⊂ α[γg(x)] for all g ∈ G. The standard examples of equicontinuous flows
are rotations on topological groups. An extension π: (X,Γ) → (Y,∆) is said to
be an equicontinuous extension if for each α ∈ AX there exists β ∈ AX such that
(γt(x), γt(x′)) ∈ α for all t ∈ T and for all (x, x′) ∈ Rπ.

Next we describe a special class of extensions – the group extensions. The
following definition is a slight modification of [97, V (4.1)].

Definition 1.7.2. An extension π: (X,Γ) → (Y,∆) of T -flows is called
a group extension with group K whenever the following conditions are fulfilled:

(a) K is a topological group acting continuously on X from the right as
a subgroup of Aut(X,Γ) of automorphisms of (X,Γ);

(b) the fibers of π are precisely the K-orbits in X.

An important example of a group extension is a cocycle extension.

Definition 1.7.3. Let (X,Γ) be a T -flow, K a locally compact group, Φ:
T ×X → K a continuous cocycle. Define a T -action γΦ:T ×X ×K → X ×K
by the formula

(1.16) γΦ(g, x, k) = (γg(x),Φ(g, x)k).

Denote ΓΦ = {(γt( · ),Φ(t, · )) : t ∈ T}. The T -flow (X×K,ΓΦ) is called a cocycle
extension of (X,Γ).

If the cocycle extension (X × K,ΓΦ) is point transitive, we say that Φ is
a point transitive cocycle.

In this dissertation we will deal mainly with T = Z. In this case each cocycle is
defined by a single continuous map. To be more precise consider a Z-flow (X,T ),
where T :X → X is a homeomorphism, and a continuous map ϕ:X → K, where
K is a locally compact group. Define a cocycle Φ = ϕ( · ):Z×X → K by

(1.17) ϕ(n)(x) =


ϕ(Tn−1x)ϕ(Tn−2x) . . . ϕ(Tx)ϕ(x), n > 1,

e, n = 0,

ϕ(Tnx)−1ϕ(Tn+1x)−1 . . . ϕ(T−1x)−1, n 6 −1.
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Then clearly the cocycle identity ϕ(n+k)(x) = ϕ(n)(T kx)ϕ(k)(x) is fulfilled. Thus
a continuous map ϕ defines a Z-cocycle ϕ(n). Conversely, each Z-cocycle Ψ:Z×
X → G is of the form Ψ(n, x) = ϕ(n)(x), where ϕ(x) = Ψ(1, x). Therefore we
will call a continuous function ϕ:X → K a Z-cocycle.

Definition 1.7.4. Let (X,T ) be a compact Z-flow, (Y,Γ) a compact G-flow,
where G is a locally compact Abelian group and Γ = {γg : g ∈ G} an effective
continuous left action of G on Y . Assume that ϕ:X → G is a continuous map.
We define a homeomorphism Tϕ,Γ:X × Y → X × Y by

Tϕ,Γ(x, y) = (Tx, γϕ(x)(y)), x ∈ X, y ∈ Y.

The Z-flow (X × Y, Tϕ,Γ) we will call a Rokhlin cocycle extension of T .

A homomorphism π: (X,Γ) → (Y,∆) of T -flows is called isometric if there
exists a group extension ρ:Z → Y and a homomorphism σ:Z → X such that
π ◦ σ = ρ.

A minimal T -flow (X,Γ) is regular if for each almost periodic point (x, y) ∈
X ×X there exists an S ∈ C(X,Γ) such that y = S(x).

The following theorem is due to W. H. Gottschalk, [39], and J. Auslander, [7].

Theorem 1.7.5. Every compact regular distal flow is equicontinuous (is a
group extension of a trivial flow).

The notions of distality and regularity can be “relativized” (with respect to
factor). Let π: (X,Γ) → (Y,∆) be a homomorphism of T -flows. Then π is said
to be distal (regular) provided the defining conditions from the absolute case
hold for every (x, y) ∈ Rπ. The homomorphism is called proximal if every pair
(x, y) ∈ Rπ is a proximal pair; it is called a weakly mixing homomorphism if the
flow (Rπ, T × T ) is point transitive. In any such a case the flow (X,Γ) is called
a distal (regular, proximal, weakly mixing) extension of (Y,∆), respectively.

We will also use the relativized version of Theorem 1.7.5, [29]. This could
be considered as a topological version of theorem of Veech (see [95], also [45];
a proof of Veech’s theorem is also contained in [61]).

Theorem 1.7.6. Let (X,T ) be a compact minimal Z-flow and let π:X → Y

be a regular distal homomorphism. Then π is a group extension.

1.8. Universal flows

Let T be a group with the discrete topology. Suppose that X is a compact
Hausdorff space and Γ ⊂ Hom(X,X) is a continuous left action of T on X,
i.e. (X,Γ) is a T -flow. Fix x0 ∈ X. Such a flow with distinguished point will be
called a pointed flow and denoted either by (X,Γ, x0) or shortly by (X,x0). If we
have a family {(Zσ, zσ)}σ∈Σ of pointed minimal flows we may choose x0 ∈

∏
σ∈Σ
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satisfying x0(σ) = zσ and set

(1.18)
∨
σ∈Σ

(Zσ, zσ) = (Orb(x0), x0).

For two pointed minimal flows (X,x0) and (Y, y0) we will use the notation

(1.19) (X,x0) ∨ (Y, y0) = (X ∨ Y, (x0, y0)).

By Theorem B.2.5, the continuous map T 3 t 7→ γt(x0) ∈ X can be extended to
a continuous map βT 3 p 7→ px0 ∈ X. In such a way we have defined an action
of T on βT by (t, p) 7→ tp. Clearly each map p 7→ tp is a homeomorphism so
we can consider a T -flow (βT, T ). This flow is evidently point transitive. Now,
if (X,Γ, x0) is a pointed T -flow that is point transitive with Orb(x0) = X, then
we are able to define a homeomorphism π: (βT, T ) → (X,Γ) in the following
way. Extend the map T 3 t 7→ γt(x0) ∈ X to a continuous map βT 3 p 7→
px0 = π(x0) ∈ X. Then (X,Γ) is a factor of (βT, T ). This means that (βT, T ) is
the universal flow in the class of all compact Hausdorff point transitive T -flows.
Notice that it is true that for each x ∈ X the map βT 3 p 7→ px ∈ X is
continuous, however in general the mapX 3 x 7→ px ∈ X need not be continuous.
Observe also that (pq)x = p(qx) for p, q ∈ βT , x ∈ X.

Lemma 1.8.1. Let (X,Γ) be a compact Hausdorff flow and x ∈ X.

(a) Orb(x) = (βT )x.
(b) Orb(x) is minimal if and only if x ∈Mx for each minimal ideal M ⊂ βT

if and only if in each minimal ideal there is an idempotent v such that
vx = x.

Proof. The property (a) is clear.
(b) Assume that Orb(x) = (βT )x is a minimal set. Then (βT )x = Mx

and x = ex ∈ (βT )x = Mx, where e is the unit element of the group T , so
x ∈ Mx. In particular, x = m0x for some m0 ∈ M . Consider the nonempty
set {m ∈ M : mx = x}. By Lemma B.2.7, this set contains an idempotent.
Suppose now that vx = x, where v ∈ M is an idempotent; then x = vx ∈ Mx.
To this end assume that x ∈ Mx for each minimal ideal M ⊂ βT . We will
show that Mx is a minimal set. Suppose A ⊂ Mx is an invariant closed set.
Then (βT )A ⊂ A. Let mx ∈ A, then (βT )mx ⊂ Mx, (βT )m ⊂ M , and, by
minimality of M , (βT )m = M . Thus (βT )mx = Mx ⊂ A, hence Mx is minimal.
As Mx = (βT )x = Orb(x), Orb(x) is a minimal set. �

Lemma 1.8.2. Let (X,Γ) be a compact Hausdorff T -flow, x, y ∈ X. The
following conditions are equivalent.

(a) x and y are proximal.
(b) There exists p ∈ βT such that px = py.
(c) There is a minimal ideal M such that px = py for every p ∈M .
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Proof. Suppose x and y are proximal, then there is a net (ti)i∈I of elements
of T such that γti(x)→ z, γti(y)→ z. Passing to a subnet if necessary we may
assume that ti → p ∈ βT . Then px = z = py.

Suppose that (b) is true, px = py. Let M be a minimal ideal, then N = Mp

is also a minimal ideal and clearly qx = qy for all q ∈ N .
Clearly (c) implies (a). �

Lemma 1.8.3. Let (X,Γ) be a minimal compact Hausdorff T -flow, x ∈ X.
Then

P (x) = {y ∈ X : x and y are proximal}
= {vx : v is an idempotent in some minimal ideal of βT}.

Proof. If x and y are proximal, then, by Lemma 1.8.2, there is a minimal ideal
M such that px = py for all p ∈ M . As X is minimal, there is an idempotent
v ∈ M such that y = vy (Lemma 1.8.1) and vx = vy = y. Conversely, if v is an
idempotent in βT then x and vx are proximal since vx = v(vx). �

Lemma 1.8.4. Let (X,Γ) be a compact Hausdorff T -flow, v an idempotent
in some minimal ideal of βT . Then every pair of different points in vX = {x ∈
X : vx = x} is distal.

Proof. If x, y ∈ vX, then v(x, y) = (x, y) and hence Orb(x, y) ⊂ X × X

is a minimal set (Lemma 1.8.1(b)). If x and y were proximal, this minimal set
would be included in the diagonal. �

Now fix a minimal ideal M in βT . Denote by J the set of all idempotents in
M and choose a distinguished idempotent u ∈ J . Denote

G = uM.

By Proposition B.2.8, G is a group.
Given a compact Hausdorff minimal T -flow (X,Γ), choose a point x0 ∈ uX =

{ux : x ∈ X} = {x : ux = x}. Under the map βT 3 p 7→ px0 ∈ X, the ideal M
is mapped onto X and u onto x0. Thus (M,u) is a universal minimal pointed
flow in the sense, that for every minimal flow X there is a point x0 ∈ X such
that (X,x0) is a factor of (M,u). Unless we say otherwise the base point x0 of
a minimal pointed flow (X,x0) will be chosen so that ux0 = x0.

Definition 1.8.5. Let (X,x0) be a pointed minimal flow. Define the Ellis
group of (X,x0) to be

G(X,x0) = {α ∈ G : αx0 = x0}.

It is clear that G(X,x0) is a subgroup of G.
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Proposition 1.8.6. Let π: (X,x0)→ (Y, y0) be a homomorphism of pointed
minimal flows.

(a) G(X,x0) ⊂ G(Y, y0).
(b) G(X,x0) = G(Y, y0) if and only if π is proximal.
(c) If π is proximal then π−1(y) ⊂ Jx for any x ∈ π−1(y).
(d) π is distal if and only if for every y ∈ Y and p ∈ M with py0 = y the

following holds: π−1(y) = pG(Y, y0)x0.

Proof. (a) Let α ∈ G(X,x0), then αy0 = απ(x0) = π(αx0) = π(x0) = y0).
(b) Suppose G(X,x0) = G(Y, y0). We show that x1, x2 ∈ π−1(y0) implies x1

and x2 are proximal. For such x1, x2 we have x1 = px0, x2 = qx0 for p, q ∈
M . Denote α = up−1q, then αy0 = up−1qy0 = up−1qπ(x0) = up−1π(qx0) =
up−1π(px0) = upp−1π(x0) = uy0 = y0. Thus α ∈ G(Y, y0) and hence α ∈
G(X,x0) i.e. up−1qx0 = x0. Thus ux1 = upx0 = up(up−1qx0) = uqx0 = ux2 and
x1, x2 are proximal.

Conversely suppose that π is proximal and let α ∈ G(Y, y0). Then π(αx0) =
αy0 = y0 implies αx0 and x0 are proximal. On the other hand αx0 and x0 are
distal (α = uα) by Lemma 1.8.2(c), hence αx0 = x0 and α ∈ G(X,x0).

(c) Suppose π is proximal and let x, x1 ∈ π−1(y), then x and x1 are proximal
and by Lemma 1.8.2(b) there exists an idempotent v′ in some minimal ideal L
of βT such that x1 = v′x. Now let v ∈ J be equivalent to v′ (i.e. vv′ = v′,
v′v = v, see Lemma B.2.10), then y = π(v′x) = π(vv′x) = vπ(v′x) = vy, and
hence π(vx) = vπ(x) = vy = y. It follows that vx and v′x are proximal. But
vv′x = v′x ant thus vx, v′x ∈ vX and by Lemma 1.8.2(c), vx and v′x are also
distal. Therefore x1 = v′x = vx ∈ Jx, and the proof is complete.

(d) Suppose π−1(py0) = pG(Y, y0)x0, and let v ∈ J be such that vp = p.
Then pG(Y, y0)x0 ⊂ vX and π is distal by Lemma 1.8.2(c).

Let π be distal. If y = px0 for some p ∈ M then for α ∈ G(Y, y0) we have
π(pαx0) = π(px0) = py0 = y. Thus pG(Y, y0)x0 ⊂ π−1(y). On the other hand
if π(x) = y then x = qx0 for some q ∈ M and since π(qx0) = y = π(px0) we
conclude as in (b), that α = up−1q ∈ G(Y, y0). If v ∈ J is such that vq = q

then q = vpα. Now y = π(x) = π(qx0) and y = py0 = vαy0 = π(vαx0). Thus
qx0 = v(pαx0) and pαx0 are both distal and proximal. Hence they are equal and
x = qx0 = pαx0 ∈ pG(Y, y0)x0. �

Proposition 1.8.7. Let φ: (X,x0)→ (Y, y0) and ψ: (Z, z0)→ (Y, y0) be two
distal homomorphisms of compact Hausdorff minimal pointed flows. There exists
a homomorphism θ: (Z, z0)→ (X,x0) if and only if G(X,x0) ⊃ G(Z, z0).

Proof. Suppose first that θ exists. Then, by Proposition 1.8.6(a), G(X,x0) ⊃
G(Z, z0).

Suppose that G(X,x0) ⊃ G(Z, z0). For p ∈ M define θ(pz0) = px0. If z =
pz0 = qz0 for p, q ∈M then up−1q ∈ G(Z, z0) and by assumption, up−1qx0 = x0



Chapter 1. Preliminaries 39

and pp−1qx0 = vqx0 = px0, where v = pp−1 is an idempotent inM . Thus qx0 and
px0 are proximal. Now pz0 = qz0 implies py0 = qy0 and hence φ(px0) = φ(qx0).
This implies that px0 and qx0 are also distal i.e. px0 = qx0 and θ is well defined.
Clearly θ is a continuous homomorphism and the proof is complete. �

Let (X,Γ) be a compact Hausdorff T -flow and let 2X be the family of all
closed nonempty subsets of X. Recall that the Vietoris topology on 2X is defined
by a basis consisting of sets of the form

〈U1, . . . , Un〉 =
{
A ∈ 2X : A ⊂

n⋃
i=1

Ui, A ∩ Ui 6= ∅, i = 1, . . . , n
}
,

where U1, . . . , Un are open subsets of X. In this topology, if a net (Ai)i∈I co-
nverges to A, limAi = A, then

A = {limxi : xi ∈ Ai, i ∈ I ′ and (Ai)i∈I′ is a subnet of (Ai)i∈I}.

Because X is assumed to be compact Hausdorff, so is 2X with Vietoris topology.
This topology is metrizable if and only if X is metrizable.

There is a natural T -flow structure on 2X induced by (X,Γ), namely (t, A) 7→
γt(A). The map T 3 t 7→ γt(A) ∈ 2X can be extended to a map

βT 3 p 7→ p ◦A ∈ 2X .

The following lemma is clear.

Lemma 1.8.8. Suppose A ∈ 2X , p, q ∈ βT . The following statements hold:

(a) p ◦ A is the set of all points x ∈ X such that there exist nets (xi)i∈I
of elements of A and (ti)i∈I of elements of T for which lim ti = p and
lim γti(xi) = x,

(b) pA ⊂ p ◦A,
(c) p ◦ (q ◦A) = (pq) ◦A.

For an arbitrary A ⊂ X (not necessarily closed) define

(1.20) p ◦A = p ◦A.

Recall that G = uM ⊂M , where M is a fixed minimal ideal in βT and u a fixed
idempotent in M ; G is a group with the unit element u. One can easily verify
the following.

Proposition 1.8.9. The operation

G ⊃ A 7→ (u ◦A) ∩G

defines a closure operation on G.

The operation G ⊃ A 7→ (u ◦ A) ∩ G will be denoted by G ⊃ A 7→ A
τ
. The

topology induced on G by this operation we will call the τ -topology.
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Lemma 1.8.10. A
τ

= u(u ◦A).

Proof. We have u(u ◦ A) ⊂ G, u(u ◦ A) ⊂ u ◦ (u ◦ A) = u2 ◦ A = u ◦ A. On
the other hand if p ∈ (u ◦A) ∩G then up = p so p ∈ u(u ◦A). �

The following proposition collects facts proved in [27, IX.1].

Proposition 1.8.11.

(a) In τ -topology G is a T1 compact space.
(b) τ -topology is weaker than the original topology induced from M .
(c) For each β ∈ G the maps

G 3 α 7→ αβ ∈ G and G 3 α 7→ βα ∈ G

are homeomorphisms in the τ -topology.
(d) All the groups of the form G(X,x0), where ux0 = x0, are closed in

τ -topology.

Definition 1.8.12. For every τ -closed subgroup F of G we let

F ′ :=
⋂
{V τ

: V is τ -open neighbourhood of u in F}.

Proposition 1.8.13 ([27, Theorem IX.1.9]). Let F be a τ -closed subgroup
of the group G.

(a) F ′ is a τ -closed normal subgroup of F . Moreover, F ′ is invariant under
all topological automorphisms of the group F .

(b) F/F ′ with the quotient topology is a compact Hausdorff topological group.
(c) If K is a τ -closed subgroup of F then F/K is a Hausdorff space if and

only if F ′ ⊂ K.

Definition 1.8.14. We say that a compact Hausdorff minimal pointed T -flow
(X,Γ, x0) is incontractible if u◦Gx0 = X. We say that an extension φ: (X,x0)→
(Y, y0) is relatively incontractible (RIC), if for every p ∈M ,

φ−1(py0) = p ◦ G(Y, y0)x0.

RIC-extensions are open and have a dense set of almost periodic points in the
relation Rπ. Every distal extension is RIC. Every homomorphism from a minimal
flow to the one-point flow is RIC.

Theorem 1.8.15 ([27, Proposition X.3.2]). Let φ:X → Y be a homomor-
phism of compact Hausdorff minimal flows. Then there exists a commutative
diagram of minimal flows homomorphisms

X

φ

��

X∗
θ∗oo

φ∗

��

Y Y ∗
θ

oo
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where θ, θ∗ are proximal and φ∗ is RIC. The extensions θ and θ∗ are isomorphi-
sms if and only if φ is already RIC. We may also assume that X∗ = X∨Y ∗, and
θ∗ and φ∗ are projections onto the first and the second coordinate respectively.

Definition 1.8.16. The diagram in Theorem 1.8.15 is called the shadow
diagram of φ:X → Y .

The main reason that RIC-extensions are so useful is the following theorem
(see [18]).

Theorem 1.8.17. Let (X,T ) π−→ (Y, T ) be a RIC-extension of minimal
flows. Then there exists a commutative diagram

X
σ //

π

��

Z

ρ
~~~~
~~
~~
~~

Y

where ρ is an isometric extension with B = F ′A (B = G(Z, z0), F = G(Y, y0),
and A = G(X,x0)). The flow Z is the largest isometric extension of Y within X,
and ρ is an isomorphism if and only if π is a weakly mixing extension if and
only if B = F .

Definition 1.8.18. We say that a minimal flow X is strictly PI, if there is
an ordinal ν and flows {Wα : α ≤ ν} such that

(a) W0 is the trivial flow.
(b) For every α < ν there exists a homomorphism φα:Wα+1 → Wα which

is either proximal or almost periodic.
(c) For a limit ordinal α ≤ ν, Wα =

∨
β<αWβ .

(d) Wν = X.

We say that X is a PI-flow if there exist a strictly PI flow X ′ and proximal
homomorphism φ:X ′ → X.

Using the shadow construction and Theorem 1.8.17 repeatedly one obtains
the following structure theorem.

Theorem 1.8.19 ([18]). Given a RIC homomorphism π = π0: (X,T ) →
(Y, T ) of metric minimal flows, there exist a countable ordinal η and a canonically
defined commutative diagram (the canonical PI-tower):

X = X0

π0

��

σ1

##H
HH

HH
HH

HH
X1

θ̃1oo

π1

��

Y = Y0 Z1ρ1
oo Y1

θ1

oo

· · ·

· · ·

Xν

πν

��

σν+1

""E
EE

EE
EE

E Xν+1
θ̃ν+1

oo

πnu+1

��

Yν Zν+1ρν+1
oo Yν+1

θν+1

oo

· · ·

· · ·

Xη = X∞

π∞

��

Yη = Y∞
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where for each ν ≤ η, πν is RIC, ρν is isometric, θν , θ̃ν are proximal and π∞ is
RIC and weakly mixing. For a limit ordinal ν,Xν , Yν , πν are the inverse limits
of Xι, Yι, πι for ι < ν. In terms of Ellis groups: B = AF∞ and AB′ = B, where
A = G(X), B = G(Y∞), and F = G(Y ). The extension π is PI if and only if
X∞ = Y∞.



CHAPTER 2

SEMISIMPLE AUTOMORPHISMS

2.1. Group and isometric extensions, joinings

Let T : (X,B0)→ (X,B0) be an automorphism of a standard Borel space. Let
µ be a probability T -invariant measure on (X,B0), B the T -invariant σ-algebra
of all µ-measurable subsets of X. Then (X,B, µ) is a probability Lebesgue space
with T being an automorphism of it. Let S: (Y,C, ν) → (Y,C, ν) be a factor
of T : (X,B, µ) → (X,B, µ). If no confusion can arise, we will often use the
following abbreviations: T → S or B → C or even X → Y . In terms of joinings
we can express the fact that the extension X → Y is a group extension (see
Theorem 1.4.1 – the Veech’s Theorem).

Suppose now that B1 ⊂ B is a T−invariant sub-σ-algebra (factor), hence
giving rise to a factor T : (X,B1, µ) → (X,B1, µ) of T . Note that if we take the
family of all factors of T , say Bκ, κ ∈ Λ, containing B1 with the property that
each λ ∈ Je(Bκ,Bκ) that projects onto the diagonal measure on B1 ⊗ B1 is
a graph joining, then the smallest factor of T containing all Bκ, κ ∈ Λ enjoys the
same property. Hence there exists the maximal factor B̃ ⊂ B such that B̃→ B1

is a group extension. Note also that if B1,B2 ⊂ B are factors then the smallest
factor of B containing B1 and B2 can naturally be identified with an ergodic
joining of B1 and B2.

Suppose (X,B, µ, T ) → (X,B1, µ, T ) is an extension of ergodic systems.
Denote

µ =
∫
X

µx dµ(x)

to be the disintegration of µ over µ. We have T = T θ, where

T θ(x, z) = (Tx, θx(z))

with X = X × Z, µ = µ× ν (see [23]). Then µx can be viewed as a measure on
B just concentrated on the fibers of the natural map π:X → X, i.e. µx = δx×ν.

43
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Definition 2.1.1. Denote H = L2(X,µ). We say that a function f ∈ H is
almost periodic (AP) if for each ε > 0 there exist g1, . . . , gk ∈ H such that for
each p ∈ Z

(2.1) min
1≤j≤k

‖fT p − gj‖L2(µx) < ε

for a.a. x ∈ X.

Definition 2.1.2. If B1 is a factor of B then we say that the extension
B → B1 is compact if the set of AP functions is dense in the Hilbert space
H = L2(X,µ).

Theorem 2.1.3 ([99]). An extension (X,B, µ, T ) → (X,B1, µ, T ) is com-
pact if and only if there exists a compact group G and its closed subgroup H

such that Z = G/H and θx = ϕ(x)H for a measurable map ϕ:X → G, i.e. the
extension X → X is an isometric extension.

Proposition 2.1.4. Suppose that (X,B, T ) → (X,B, T ) is an ergodic iso-
metric extension. Then there exists an ergodic extension (Y,C, S) of X such that
Y → X is a group extension and moreover for each ergodic extension (Y ′,B′, S′)
of X with Y ′ → X a group extension we have

Y ′ //

  
AA

AA
AA

AA
X // X

Y

OO

Proof. Let S̃: (Ỹ , C̃, ν̃) → (Ỹ , C̃, ν̃) be any ergodic extension of X that is
a group extension of X. Take the family of all factors C̃κ ⊂ C̃, κ ∈ Λ, that are
group extensions of B and set

C =
⋂
κ∈Λ

C̃κ.

Note that if λ ∈ Je(C,C) projects onto the diagonal measure on B⊗B then for
any ergodic extension λ̂ of λ on C̃⊗ C̃ we have that λ̂ is a graph measure. Hence
if A ∈ C then there exists a set B̃ ∈ C̃ such that

λ̂(A× Ỹ4Ỹ × B̃) = 0.

Thus, it is clear that B̃ ∈ C̃κ for each κ ∈ Λ and consequently B̃ ∈ C. By Veech’s
Theorem, C→ B is a group extension.

Take any ergodic joining of Y ′ and Y which is diagonal on X; we get a sys-
tem Z. Now, Y and Y ′ are represented in Z by some invariant σ-algebras, say A

and A′. Let C1 = A∩A′ ⊂ C⊗C. Take any ergodic self-joinings λ on C1⊗C1 that
is diagonal on X ×X. Then this joining has an ergodic extension λ̃ to Z × Z.
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Take any set C ∈ C. Because A and A′ are group extensions of X, there exist
A ∈ A and A′ ∈ A′ such that

λ̃(C × Z4Z ×A) = 0, λ̃(C × Z4Z ×A′) = 0.

Therefore A = A′ ∈ A∩A′ = C. Hence λ is a graph joining and consequently C1

is a group extension of X. �

Definition 2.1.5. The extension Y of X, defined (up to an isomorphism)
by Proposition 2.1.4, will be called the minimal group cover of X.

Definition 2.1.6 ([23]). An extension X → X is called distal if for a certain
ordinal η we have a family of factors Bκ, κ ≤ η, such that Bκ+1 → Bκ is compact,
and if κ is a limit ordinal then Bκ =

⋃
κ′<κBκ′ .

H. Furstenberg in [23] proved for each factor B1 ⊂ B the existence of the
maximal B̂ ⊂ B such that B̂ → B1 is distal. Actually this follows from the
following lemma:

Lemma 2.1.7. If B1 ⊃ B and B2 ⊃ B are ergodic distal extensions and
λ ∈ Je(B1,B2) satisfies λ|B⊗B = ∆, then (B1⊗B2, λ) is a distal extension of B.

Proof. Let λ ∈ Je(B1,B2) and λ|B⊗B = ∆. By Theorem 1.4.5, if B1 and B2

are group extensions of B then λ is a group extension of µ because (B⊗B,∆) is
isomorphic to (B, µ). Consequently, if B1 and B2 are isometric extensions of B,
then, by Theorem 1.4.2, λ is also isometric extension of B.

Now we will use transfinite induction. Assume that B̃1 and B̃2 are ergodic
extensions of B such that each ergodic joining of B̃1 and B̃2 which projects onto
B ⊗ B as the diagonal measure, is a distal extension of B. Let B1 ⊂ B̃1 and
B2 ⊂ B̃2 be ergodic isometric extensions. Extend λ to an ergodic joining λ̂ of
some ergodic group covers of B1 and B2. Then λ̂ is a group extension of B. Again
by the Theorem 1.4.2, λ is an isometric extension of B.

If B1 and B2 are inverse limits of consecutive isometric extensions, then
by the considerations above λ is a distal extension of B as an inverse limit of
isometric extensions of B. �

Now, let us consider λ ∈ J(T, S), where T : (X,B, µ)→ (X,B, µ), S: (Y,C, ν)
→ (Y,C, ν). Then there exist the biggest σ-algebras B1(λ) ⊂ B, B2(λ) ⊂ C such
that λ identifies B1(λ)× Y with X ×B2(λ). Indeed, take the family of all pairs
(B1,B2), B1 ⊂ B, B2 ⊂ C, where λ identifies B1 × Y with X × B2. Then the
smallest factor containing all of B1, say B̃1, and the smallest one containing all
of B2, say B̃2, has the property, that B̃1 × Y

λ= X × B̃2. In fact, consider B× Y
and X × C as two sub-σ-algebras of B × C, where the equality between sets is
understood modλ. Then B×Y ∩X×C is on one hand a sub-σ-algebra of B×Y ,
so of the form B′ × Y , and on the other hand, a sub-σ-algebra of X × C, so of
the form X × C′. We have B1(λ) = B′ and B2(λ) = C′.
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2.2. Furstenberg decomposition

Definition 2.2.1. Let T : (X,B, µ)→ (X,B, µ) be an ergodic automorphism
and A ⊂ B be its T -invariant σ-algebra. We call T relatively weakly mixing
(rel. w. m.) with respect to A, if the relatively independent extension of the
diagonal measure on A, say λ = µ×Aµ, is ergodic. For short this will be denoted
by B→ A rel. w. m.

Note that if T2 is weakly mixing and T1 is ergodic then clearly T1×T2 → T1

rel. w. m.
Suppose that B → A2 rel. w. m. and we have B ⊃ A1 ⊃ A2. Then we can

consider the relatively independent extension of the diagonal measure on A2 in
B ⊗ B as well as in A1 ⊗ A1. The latter is a factor of the former, so obviously
A1 → A2 rel. w. m.

Definition 2.2.2. Let T : (X,B, µ)→ (X,B, µ) be ergodic and A be a factor
of it. Assume that A ⊂ A1 ⊂ B is another factor. The decomposition B →
A1 → A is called a Furstenberg decomposition of B → A, if B → A1 rel. w. m.
and A1 → A is distal.

By the method presented in [23] we know that for each A ⊂ B there exists
a Furstenberg decomposition of B→ A.

Proposition 2.2.3. For any A ⊂ B there exists only one Furstenberg de-
composition of B→ A.

Proof. Let C be the maximal distal extension of A such that B → C → A.
Take any Furstenberg decomposition B → Ã → A of B → A. Then, by Lem-
ma 2.1.7, each ergodic joining of C and Ã that projects onto A⊗A as the diagonal
measure is a distal extension of A. Therefore Ã ⊂ C. Conversely, since B→ Ã is
rel. w. m., so is C→ Ã. Hence C = Ã. �

Proposition 2.2.4. Let T : (X,B, µ)→ (X,B, µ) be ergodic and

T ′: (X ′,B′, µ′)→ (X ′,B′, µ′), T1: (X1,B1, µ1)→ (X1,B1, µ1)

be its two ergodic extensions. Suppose that λ ∈ Je(T ′, T1) is such that λ|X×X =
∆X . Assume moreover, that (X1, µ1) → (X,µ) is distal and (X ′ × X1, λ) →
(X ′, µ′) rel. w. m. Then in (X ′ ×X1, λ) we have B′ ×X1 → X ′ ×B1.

Proof. Let us assume that

(X ′ ×X1, λ)→ (X̂1, µ̂1)→ (X1, µ1) and (X ′, µ′)→ (X̂, µ̂)→ (X,µ)

are Furstenberg decompositions. It is then clear that the extension (X̂1, µ̂1) →
(X,µ) is distal. By Lemma 2.1.7, the maximality of X̂1 and the fact that the
extension X̃ → X, where X̃ is the smallest factor of (X ′ × X̂1, λ) containing
X̂1 and X̂, is distal, we must have X̂ ⊂ X̂1. Therefore, (X ′, µ′) and (X̂1, µ̂1)
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are relatively disjoint over X̂. Thus, no harm arises if we assume that λ is the
relative product of X ′ and X̂1 over X̂. To be more precise, let

X ′ = X̂ × Z ′, T ′(x̂, z′) = (T̂ x̂, θ′x̂(z′)),

X̂1 = X̂ × Z1, T1(x̂, z1) = (T̂ x̂, θ1
x̂(z1)).

Therefore, the relative product X ′ ×
X̂
X̂1 of X ′ and X̂1 over X̂, denote it by

T̃ : (X̂ × Z ′ × Z1)→ (X̂ × Z ′ × Z1), is defined by the formula

T̃ (x̂, z′, z1) = (T̂ x̂, θ′x̂(z′), θ1
x̂(z1)).

By our assumption, the relative product ˜̃T = T̃ ×X′ T̃ : X̂ × Z ′ × Z1 × Z1 →
X̂ × Z ′ × Z1 × Z1 is ergodic. It is clear that

˜̃
T (x̂, z′, z1, z2) = (T̂ x̂, θ′x̂, θ

1
(x̂,z′)(z1), θ1

(x̂,z′)(z2)),

where θ1
(x̂,z′)(zi) = θ1

x̂(zi), i = 1, 2. Therefore the relative product X̂1 ×X̂ X̂1

which is defined on X̂ × Z1 × Z1 by the formula

(x̂, z1, z2) 7→ (T̂ x̂, θ1
x̂(z1), θ1

x̂(z2))

is a factor of ˜̃T , hence is ergodic. This means however that X̂1 = X̂ that com-
pletes the proof. �

As a consequence we have

Proposition 2.2.5. Let T : (X,B, µ)→ (X,B, µ) be ergodic and {Ai : i ∈ I}
a family of its factors such that B→ Ai rel. w. m. for each i ∈ I. Then

B→ A =
⋂
i∈I

Ai rel. w. m.

Proof. Let A′ ⊃ A be the maximal distal extension of A in B. Then B→ A′

rel. w. m. By virtue of Proposition 2.2.4, A′ ⊂ Ai and consequently A′ ⊂ A,
hence A′ = A. �

Proposition 2.2.6. Suppose that B ⊃ A1 ⊃ A2, and that both extensions
B→ A1 and A1 → A2 are relatively weakly mixing. Then the extension B→ A2

is relatively weakly mixing as well.

Proof. Let Â2 be the maximal distal extension of A2 in B. We have Â1 → A2

is distal while A1 → A2 rel. w. m. Therefore Â2 and A1 are disjoint relatively
to A2, so Â2 ∩ A1 = A2. It follows from Proposition 2.2.5 that B → Â2 ∩ A1

rel. w. m. �
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2.3. Semisimplicity

Definition 2.3.1. Let T : (X,B, µ) → (X,B, µ) be ergodic. We say that T
is semisimple if for every self-joining λ ∈ Je(T, T ) we have

(X ×X,λ) πi−→ (X,µ) rel. w. m.,

where πi:X ×X → X, π(x1, x2) = xi, i = 1, 2.

Below we present some examples.

Example 2.3.2. Suppose that the automorphism T has discrete spectrum.
In such a case each joining λ ∈ Je(T, T ) is a graph joining, so T is semisimple.

Example 2.3.3. Assume that T has 2-fold simplicity property, i.e. if λ ∈
Je(T, T ) then either λ is a graph joining or λ = µ × µ. So, immediately from
Definition 2.3.1 we get that T is semisimple.

Example 2.3.4. T1, . . . , Tk, 1 ≤ k ≤ ∞, with MSJ (for definition see Sec-
tion 1.3). Then clearly T1 × . . .× Tk is semisimple.

All the examples above are in some sense pure; they are either weakly mixing
or discrete spectrum. Semisimple maps can however have mixed spectrum.

Example 2.3.5. T = T1 × T2, where T1 has discrete spectrum and T2 has
MSJ. Then each λ ∈ Je(T, T ) is either a graph joining (T can be viewed as a
group extension with a constant cocycle of T2) or appears in the ergodic decom-
position of µ×µ, where µ = µ1×µ2. Any such a λ is isomorphic to T1×T2×T2,
so T is semisimple.

Proposition 2.3.6. Let T : (X,B, µ) → (X,B, µ) be semisimple and let
A1,A2 ⊂ B be factors. Suppose that B → Aj rel. w. m., j = 1, 2. Then, for
each λ ∈ Je(A1,A2), we have

(A1 ⊗A2, λ)→ (Aj , µ) rel. w. m., j = 1, 2.

Proof. Extend λ to λ ∈ Je(T, T ) whose projection on A1⊗A2 is λ. We have
that both extensions (X ×X,λ) → (X,µ) → (A1, µ) are rel. w. m. By Propo-
sition 2.2.6, (X ×X,λ)→ (A1, µ) rel. w. m. But obviously, we have a sequence
of factors

(X ×X,λ)→ (A1 ⊗A2, λ)→ (A1, µ),

so we must have (A1 ⊗A2, λ)→ (A1, µ) rel. w. m. �

Substituting in Proposition 2.3.6, A1 = A2 = A we obtain the following

Corollary 2.3.7. Suppose that T : (X,B, µ) → (X,B, µ) is semisimple and
let A ⊂ B be a factor. If B → A rel. w. m., then also T : (X,A, µ) → (X,A, µ)
is semisimple.
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2.4. Natural factors and the structure
of factors for semisimple automorphisms

Definition 2.4.1. Let T : (X,B, µ)→ (X,B, µ) be ergodic. Suppose that N

is a class of factors satisfying

(2.2) N is closed under taking intersections and containing B and the trivial
σ-algebra N.

We will call N natural if

(N-1) Bi(λ) ∈ N for all λ ∈ Je(T, T ), i = 1, 2.
(N-2) If A1,A2 ∈ N and S:A1 → A2 establishes an isomorphism then S sends

natural factors contained in A1 into natural factors contained in A2.

Since N is closed under intersections, for each factor A ⊂ B we have a smallest
natural factor Â ∈ N with Â ⊃ A.

Definition 2.4.2. Let A ⊂ B be a factor. The smallest natural factor Â ∈ N

such that Â ⊃ A will be called the natural cover of A.

Remark 2.4.3. Suppose that T is an ergodic automorphism. Then directly
from the definition it follows that there exists the smallest family N0 of natural
factors. Note also that if B→ A rel. w. m. then A ∈ N0. Indeed, in such a case
we have µ×A µ ∈ Je(B,B) and obviously Bi(µ×A µ) = A, i = 1, 2.

Proposition 2.4.4. A family N satisfying (2.2) is natural if and only if
whenever λ ∈ Je(T, T ) and λ restricted to factors A1 ⊗ A2 establishes their
isomorphism then λ is an isomorphism on the natural covers.

Proof. Suppose that a family N of factors satisfies (2.2).
First assume that N is natural. Let λ ∈ Je(T, T ) and λ|A1⊗A2 is an isomor-

phism. By (N-1) we have that Âj ⊂ Bj(λ), j = 1, 2, and (N-2) completes this
part of the proof.

To prove the converse take λ ∈ Je(T, T ), then λ establishes an isomorphism
between B1(λ) and B2(λ). Since these two are the biggest with this property we

must have B̂j(λ) = Bj(λ), j = 1, 2 and (N-1) follows. Now, let A1,A2 ∈ N and
S be an isomorphism between them. Lift this isomorphism to a λ ∈ Je(T, T ).
Take A ∈ N with A ⊂ A1. Then λ is an isomorphism of A = Â with SA but
also with ŜA. Hence SA = ŜA so SA ∈ N which completes the proof. �

Corollary 2.4.5. Let N be a natural family of factors for T . Then for each
factor A of T the extension Â→ A is a group extension.

Proof. Take any ergodic self-joining λ on Â⊗ Â that is diagonal on A⊗ A.
Hence λ establishes an isomorphism of A with itself (by the identity). From
Proposition 2.4.4, λ is an isomorphism of Â with itself, so λ is a graph joining on
Â⊗ Â. By Veech’s Theorem (see Theorem 1.4.1), Â→ A is a group extension.�
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Lemma 2.4.6. Let T̂i: (X̂i, B̂i, µ̂i)→ (X̂i, B̂i, µ̂i), i = 1, 2, be ergodic distal
extensions of Ti: (Xi,Bi, µi)→ (Xi,Bi, µi), i = 1, 2. Assume that λ̂ ∈ Je(T̂1, T̂2)
has the property that its restriction λ to B1⊗B2 is a graph joining and moreover
for i = 1, 2 the extension (B̂1 ⊗ B̂2, λ̂) → (B̂i, µ̂i) is rel. w. m. Then λ̂ is also
a graph joining.

Proof. Note that in (B̂1⊗B̂2, λ̂) the σ-algebras B1 = B2 (mod λ̂). Therefore

B̂1 ⊗ B̂2 → B̂1 → B1 and B̂2 ⊗ B̂2 → B̂2 → B2

are, by assumption, two Furstenberg decompositions of B1 = B2. By Proposi-
tion 2.2.3 we have B̂1 = B̂2 (mod λ̂), so λ̂ is an isomorphism of B̂1 and B̂2. �

Below, we will consider a family of natural factors for semisimple maps.

Proposition 2.4.7. Let T : (X,B, µ)→ (X,B, µ) be ergodic and semisimple.
Put

N = {A ⊂ B:B→ A rel. w. m.} ∪ {N}.
Then the family N is natural.

Proof. By Proposition 2.2.5, N is closed under intersections. We will prove
that if λ ∈ Je(T, T ) establishes an isomorphism of A1 and A2 then λ is also an iso-
morphism of natural covers Â1 and Â2. Now, Â1 and Â2 can be described as the
maximal distal extensions of A1 and A2 respectively. By Proposition 2.3.6, if by λ̂
we denote the restriction of λ to Â1⊗Â2 then (Â1⊗Â2, λ̂)→ (Âi, µ) rel. w. m.,
j = 1, 2. Lemma 2.4.6 finishes the proof. �

By applying Proposition 2.4.7 and Corollary 2.4.5 we obtain the following

Theorem 2.4.8 (Structure Theorem). Assume that the automorphism T :
(X,B, µ) → (X,B, µ) is ergodic and semisimple. Then for each factor A there
exists an Â with B→ Â rel. w. m. such that Â is a group extension of A.

Remark 2.4.9. If T is 2-fold simple then the only factors with respect to
which T is rel. w. m. are the trivial ones, so applying Theorem 2.4.8 we obtain
the well known Veech’s Theorem on factors of 2-fold simple maps (see [95], [45]).

Reamrk 2.4.10. Applying Theorem 2.4.8 it is very easy to give examples
of T that are not semisimple. Indeed, if there are B2 ⊂ B1 ⊂ B such that
B → B1 isometric, B1 → B2 isometric but B → B2 is not isometric, then B

is not semisimple. Since B → B2 is distal, we must have B̂2 = B. If B were
semisimple, then, by Theorem 2.4.8, B→ B2 would be a group extension.

Corollary 2.4.11. If T : (X,B, µ) → (X,B, µ) is ergodic and semisimple
then its entropy h(T ) is equal to zero.

Proof. First, note that no Bernoulli T : (X,B, µ) → (X,B, µ) is semisimple.
Indeed, take any nontrivial weakly mixing compact group extension Tϕ: (X ×
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G, B̃, µ̃) → (X × G, B̃, µ̃) of T . By [87], Tϕ is again Bernoulli with the same
entropy as T . Now, in B̃ we have two factors, namely, B̃ and B isomorphic to
T . If T were semisimple, then the smallest factor containing these two factors
(equal to B̃) would have to be rel. w. m. with respect to B; a contradiction.

Suppose that h(T ) > 0. Then there exists a Bernoulli factor A with the
same entropy. Take the natural cover Â of A. Then Â→ A is a compact group
extension. If Â is weakly mixing then Â is Bernoulli, so Â is semisimple. In
general, Â can be represented as Â = Ã ⊗ K, where Ã is Bernoulli and K is
the maximal Kronecker factor of Â (see [87]). Moreover, Ã can be represented
as a nontrivial group extension of a Bernoulli factor, say of Ã1. Hence Ã ⊗ K

is a nontrivial group extension of Ã1 ⊗ K. But these two automorphisms are
isomorphic so the former is not semisimple. �

Remark 2.4.12. Suppose that T is ergodic and distal. Then T is semisimple
if and only if T has discrete spectrum. Indeed, if T is semisimple and K is its
maximal Kronecker factor then B → K rel. w. m. (K̂ is a group extension of
K that is a group extension of one point dynamical system; since K̂ must be
semisimple, we have K̂ = K).

2.5. Joinings of ergodic group extensions
of semisimple automorphisms

Assume that T : (X,B, µ)→ (X,B, µ) and S: (Y,C,m)→ (Y,C,m) are ergo-
dic automorphisms. Let G1, G2 be compact metric groups with Haar measures
ν1, ν2 respectively. Let ϕ1:X → G1, ϕ2:Y → G2 be such that Tϕ1 and Sϕ2 are
ergodic.

Suppose that λ ∈ Je(T, S) has the property that the two extensions

(T × S, λ)→ (T, µ) and (T × S, λ)→ (S,m)

are rel. w. m. The following theorem describes any λ̃ ∈ Je(Tϕ1 , Sϕ2) whose
projections on B⊗ C is λ.

Theorem 2.5.1. There are normal closed subgroups H1 ⊂ G1, H2 ⊂ G2,
a continuous group isomorphism v:G1/H1 → G2/H2 and a Borel map f :X ×
Y → G2/H2 such that for any Borel sets A ⊂ X, C1 ⊂ G1, B ⊂ Y , C2 ⊂ G2 we
have

λ̃(A× C1 ×B × C2) =
∫
X×Y×G1/H1

E(χA×Y×C1 |H1)(x, y, g1H1)

· E(χX×B×C2 |H2)(x, y, f(x, y)v(g1H1)) d(λ× ν1)(x, y, g1H1).

The proof of Theorem 2.5.1 is long and is divided into several lemmas.
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Let π:X×G1×Y ×G2 → X×Y , π(x, g1, y, g2) = (x, y). Then π∗λ̃ = λ. Let
us decompose λ̃ over the factor (X × Y, λ, T × S):

λ̃ =
∫
X×Y

λ̃(x,y) dλ(x, y).

Let H = {(h1, h2) ∈ G1 × G2 : λ̃(h1, h2) = λ̃ }, be the stabilizer of λ̃. By
Lemma 1.4.4,

λ̃ =
∫
X×Y

δ(x,y) × (g1, g2)νH dλ(x, y),

where (g1, g2)H = τ(x, y).
Let H1 ⊂ G1, H2 ⊂ G2 be given by

H1 = {g1 ∈ G1 : (g1, e2) ∈ H}, H2 = {g2 ∈ G2 : (e1, g2) ∈ H}

where ei denotes the unit element of the group G1, i = 1, 2. Put πi:G1×G2 → Gi,
πi(g1, g2) = gi, i = 1, 2.

Lemma 2.5.2. πi(H) = Gi, i = 1, 2.

Proof. First, we note that Tϕ1×Sϕ2 , X×G1×Y ×G2, λ̃) is a group extension
of T × S, where the group we extend by is H (see Theorem 1.4.5). If we take
the projection onto the first three coordinates, then we get a group extension
of (T × S,X × Y, λ) by π1(H). This group extension is ergodic. On the other
hand, (Tϕ1 , X×G1, µ̃)→ (T,X, µ) is a group extension and (T ×S,X×Y, λ)→
(T,X, µ) rel. w. m., so the relative product Tϕ1 ×(X,µ,T ) (T × S, λ) is ergodic.
This relative product is equal to ((T × S)ϕ2 , λ̂)ϕ1 , i.e. it is a group extension of
(T × S, λ) via G1. Since the latter is ergodic, π1(H) = G1.

The proof of the equality π2(H) = G2 is similar. �

The next lemma immediately follows from Lemma 2.5.2.

Lemma 2.5.3. The subgroups H1 and H2 are normal in G1 and G2 respec-
tively.

Lemma 2.5.4.

(a) If (g1, g2), (g1, g̃2) ∈ H then g̃−1
2 g2 ∈ H2.

(b) If (g1, g2) ∈ H, (g̃1, g2) ∈ H then g̃−1
1 g1 ∈ H1.

(c) (g1, g2) ∈ H if and only if g1H1 × g2H2 ⊂ H.

Proof. (a) Let us assume that (g1, g2) ∈ H, (g1, g̃2) ∈ H. Then (g−1
1 , g−1

2 ) ∈
H and H 3 (g−1

1 , g̃−1
2 )(g1, g2) = (e1, g̃

−1
2 g2). Therefore g̃−1

2 g2 ∈ H2. The proof of
(b) is similar.

(c) Assume that (g1, g2) ∈ H. Take h1 ∈ H1 and h2 ∈ H2. Then (h1, e2) ∈ H
and (e1, h2) ∈ H. Therefore (h1, h2) ∈ H and, by assumption,

H 3 (g1, g2)(h1, h2) = (g1h1, g2h2).
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Because h1, h2 were arbitrary, g1H1 × g2H2 ⊂ H. �

We define a map v:G1/H1 → G2/H2 by the following formula

(2.3) v(g1H1) = π2((g1H1 ×G2) ∩H).

Lemma 2.5.5. The map v defined by (2.3) is a continuous group isomor-
phism.

Proof. By Lemma 2.5.4, v is well defined. The continuity of v is evident.
Obviously v is bijective. Because H1×H2 ⊂ H, v(H1) = H2. We now prove that
v is a group homomorphism.

Take gH1, gH1 ∈ G1/H1. Set v(gH1gH1) = g̃H2, v(gH1) = g1H2, v(gH1) =
g1H2. Then ggH1 × g̃H2 ⊂ H, gH1 × g1H2 ⊂ H, gH1 × g1H2 ⊂ H. This im-
plies ggH1 × g1g1H2 ⊂ H. By Lemma 2.5.4, g̃H2 = g1g1H2, i.e. v(gH1gH1) =
v(gH1)v(gH1).

Obviously v(g−1H1) = v(gH1)−1. �

As an immediate consequence of Lemma 2.5.4 and Lemma 2.5.5 we have

Lemma 2.5.6. H =
⋃
g∈G1 gH1 × v(gH1).

Let

(T × S)ϕi,Hi :X × Y ×Gi/Hi → X × Y ×Gi/Hi,

(T × S)ϕi,Hi(x1, x2, gHi) = (Tx1, Sx2, ϕi(xi)gHi), i = 1, 2.

Then (X × Y × Gi/Hi, λ × νi, (T × S)ϕi,Hi), i = 1, 2, is an ergodic dynamical
system.

Our next aim is to define an isomorphism I of (T ×S)ϕ1,H1 and (T ×S)ϕ2,H2 .
It will have the form

I = If,v:X × Y ×G1/H1 → X × Y ×G2/H2,

If,v(x, y, gH1) = (x, y, f(x, y)v(gH1)),

for some measurable map f :X × Y → G2/H2.
Let α: (G1 ×G2)/H → G2/H2 be the (open) map given by

(2.4) α((g1, g2)H) = g2v(g−1
1 H1).

We have to prove that α is well defined. Assume that (g1, g2)H = (g̃1, g̃2)H.
Then (g−1

1 g̃1, g
−1
2 g̃2) ∈ H and therefore

(2.5) v(g−1
1 g̃1H1) = g−1

2 g̃2H2.

We will show that (g2v(g−1
1 H1))−1g̃2v(g̃1H1) = H2.

Indeed, by (2.5),

(g2v(g−1
1 H1))−1g̃2v(g̃−1

1 H1) = v(g1H1)g−1
2 g̃2H2v(g̃−1

1 H1)

= v(g1H1)v(g−1
1 g̃1H1)v(g̃−1

1 H1) = H2.
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Thus α is well defined.
Having α we can define the desired function f :X × Y → G2/H2, by setting

(2.6) f(x, y) = α(τ(x, y)),

where τ is defined by (1.10) and it satisfies (1.11) for ϕ = ϕ1 × ϕ2.
Now, one easily checks that

(T × S)ϕ2,H2 ◦ I = I ◦ (T × S)ϕ1,H1 .

We will also use the following

Lemma 2.5.7.

(a) τ(x, y) =
⋃
g∈G1

gH1 × f(x, y)v(gH1) λ-a.s.

(b) λ̃

( ⋃
(x,y)∈X×Y

g∈G1

{(x, y)} × gH1 × f(x, y)v(gH1)
)

= 1.

Proof. (a) Fix (x, y) ∈ X × Y . Set τ(x, y) = (a, b)H. Then by (2.4), (2.6)
and Lemma 2.5.6,⋃

g∈G1

gH1 × f(x, y)v(gH1) =
⋃
g∈G1

gH1 × bv(a−1H1)v(gH1)

=
⋃
g∈G1

gH1 × bv(a−1gH1) =
⋃
g∈G1

agH1 × bv(gH1)

= (a, b)
⋃
g∈G1

gH1 × v(gH1) = (a, b)H = τ(x, y).

(b) Using (a) we have

1 = λ̃

( ⋃
(x,y)∈X×Y

{(x, y)} × τ(x, y)
)

= λ̃

( ⋃
(x,y)∈X×Y

(
{(x, y)} ×

⋃
g∈G1

gH1 × f(x, y)v(gH1)
))

= λ̃

( ⋃
(x,y)∈X×Y

g∈G1

{(x, y)} × gH1 × f(x, y)v(gH1)
)
. �

Proof of Theorem 2.5.1. By Lemma 2.5.7 we can define an isomorphism

U : (X × Y ×G1/H1 ×G2/H2, λ̃, (T × S)ϕ1×ϕ2,H1×H2)→
((X ×Y ×G1/H1)× (X ×Y ×G2/H2), (λ× ν1)I , (T×S)ϕ1,H1 × (T×S)ϕ2,H2)

by
U(x, y, gH1, f(x, y)v(gH1)) = (x, y, gH1, x, y, f(x, y)v(gH1)).
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Then U sends the measure λ̃ to (λ× ν1)I and we have

λ̃(A×B × C) =
∫
X×Y×G1/H1

χA×B(x, y, gH1)

· χA×C(x, y, f(x, y)v(gH1)) d(λ× ν1)(x, y, gH1)

for A ⊂ X × Y , B ⊂ G1/H1, C ⊂ G2/H2.
Therefore, for A ⊂ X ×G1, B ⊂ Y ×G2,

λ̃(A×B)

=
∫
X×Y×G1/H1

E(χA | H1)(x, y, gH1) · E(χ
B
|H2)(x, y, f(x, y)v(gH1)) dλ dν1

which finishes the proof of Theorem 2.5.1. �

Corollary 2.5.8. Assume T : (X,B, µ)→ (X,B, µ) is an ergodic semisimple
automorphism. Let G be a compact metric group equipped with the normalized
Haar measure ν, let ϕ:X → G be such that Tϕ is ergodic, and suppose λ̃ ∈
Je(Tϕ, Tϕ) is an extension of some λ ∈ Je(T, T ). Then there are normal closed
subgroups H1, H2 ⊂ G, a continuous group isomorphism v:G/H1 → G/H2 and
a Borel map f :X × X → G/H2 such that for any Borel sets A,B ⊂ X and
C1, C2 ⊂ G we have

λ̃(A× C1 ×B × C2) =
∫
X×X×G/H1

E(χA×X×C1 |H1)(x, y, gH1)

· E(χX×B×C2 |H2)(x, y, f(x, y)v(gH1))d(λ× ν)(x, y, gH1). �

Assume that T : (X,B, µ)→(X,B, µ) is an ergodic automorphism and ϕ:X→
G a cocycle such that Tϕ is ergodic. Suppose that S ∈ C(T ) has an extension to
S̃ ∈ C(Tϕ). If we assume that additionally S is invertible then it is well known
that

(2.7) S̃(x, g) = Sf,v(x, g) = (Sx, f(x)v(g)),

where f :X → G is measurable and v:G→ G is a continuous group epimorphism
(this result can be directly deduced from Theorem 2.5.1). In general we obtain
the following:

Proposition 2.5.9. If S̃ ∈ C(Tϕ) is an extension of some S ∈ C(T ) then S̃

is of the form (2.7), where v:G→ G is a continuous group homomorphism (not
necessarily onto).

Proof. Write S̃(x, g) = (Sx, ψ(x, g)). Since S̃Tϕ = TϕS̃ we get

ψ(Tϕ(x, g)) = ϕ(Sx)ψ(x, g).

Writing σg(x, h) = (x, hg) we have σg ∈ C(Tϕ). Set

Fg(x, h) = ψ(x, h)−1ψσg(x, h) = ψ(x, h)−1ψ(x, hg).
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We have

FgTϕ(x, h) = (ψTϕ(x, h)−1ψσgTϕ(x, h) = (ψTϕ(x, h))−1ψTϕ(x, hg)

= (ϕ(Sx)ψ(x, h))−1ϕ(Sx)ψ(x, hg) = Fg(x, h).

Thus Fg is a constant function. Set

v(g) = Fg( · , · ).

Clearly v:G→ G is measurable. We now show that v is a group homomorphism.
We have v(e) = e and

v(g1g2) = ψ(x, h)−1ψ(x, hg1g2)

= ψ(x, h)−1ψ(x, hg1)ψ(x, hg1)−1ψ(x, (hg1)g2) = v(g1)v(g2).

In particular, v is continuous.
Put

f(x, h) = ψ(x, h)v(h)−1 a.s.

Take any g ∈ G. Then for a.e. (x, h) we have

fσg(x, h) = f(x, hg) = ψ(x, hg)v(hg)−1

= ψ(x, h)ψ(x, h)−1ψ(x, hg)v(g)−1v(h)−1 = ψ(x, h)v(h) = f(x, h).

Therefore f depends only on x �

Definition 2.5.10 ([79]). Assume that A ⊂ B is a factor of T . We call it
a canonical (resp. weakly canonical) factor of T if for each isomorphic copy A′ of
A we have A′ = A (resp. A′ ⊂ A).

Proposition 2.5.11. Suppose that T : (X,B, µ) → (X,B, µ) is semisimple.
Let T̂ : (X̂, B̂, µ̂)→ (X̂, B̂, µ̂) be an arbitrary ergodic distal extension of T . Then
T is a weakly canonical factor of T̂ .

Proof. Suppose that B′ is a factor of B̂ isomorphic to B. Let A be the smallest
factor containing B and B′. Since T is semisimple, A → B rel. w. m. However,
B̂ → A → B, and B̂ → B is a distal extension. Hence A and B̂ are relatively
(over B) disjoint, and consequently B = A. �

Remark 2.5.12. Notice that the centralizer of a semisimple automorphism
need not be a group; for instance, take T = T1 × T1 × . . . , where T1 has MSJ.

Remark 2.5.13. D. Newton in [79] asked about canonicality of automor-
phisms, i.e. whether there are automorphisms which are canonical factors in an
arbitrary ergodic extension. As shown in [61], the only ones with this property
are those with discrete spectrum. Let us ask what is the class of automorphisms
which are canonical factors in an arbitrary ergodic distal extension. The above
proposition says that semisimple coalescent automorphisms enjoy this property.
The question arises whether they are the only ones.
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It follows from Proposition 2.5.11 that a semisimple automorphism sits weak-
ly canonically in any of its ergodic group extensions. In particular, if S̃ ∈ C(Tϕ),
then S̃−1(B) ⊂ B and we can apply Proposition 2.5.9. Hence we obtain the
following generalization of the results from [4], [79], [71]:

Corollary 2.5.14. If Tϕ: (X × G, µ̃) → (X × G, µ̃) is an ergodic group
extension of a semisimple automorphism and S̃ ∈ C(Tϕ) then there are S ∈
C(T ), a Borel map f :X → G and a continuous group homomorphism v:G→ G

such that
S̃(x, g) = (Sx, f(x)v(g)).

If, additionally, T is coalescent, then v is onto.

2.6. Applications of natural families

Lemma 2.6.1. Assume that T : (X,B, µ)→ (X,B, µ) is a 2-fold simple we-
akly mixing automorphism, ϕ:X → G a cocycle such that Tϕ is weakly mi-
xing. Let λ̃ ∈ Je(Tϕ, Tϕ) with λ̃|B⊗B an isomorphism. Then B1(λ̃) = B̃H1 and
B2(λ̃) = B̃H2 for some H1 and H2 which are normal.

Proof. Let H ⊂ G × G be the stabilizer of λ̃. By Lemma 2.5.2, πi(H) = G,
i = 1, 2. Since B1(λ̃) and B2(λ̃) are two factors between B and B̃ (λ̃ is an
isomorphism on the base), it follows that B1(λ̃) = B̃H1 and B2(λ̃) = B̃H2 , where
H1, H2 are closed subgroups of G (this easily follows from the relative version of
Veech’s Theorem). We will prove that for each g ∈ G

(2.8) B̃g−1H1g ⊂ B1(λ̃).

Fix g ∈ G. Since πi(H) = G, i = 1, 2, there exists g2 ∈ G such that (g, g2) ∈ H.
We have

σg(B̃H1) = B̃g−1H1g, σg2(B̃H2) = B̃g−12 H2g2
,

so (by the definition of B1(λ̃) it is enough to show that

σgB̃H1 = σg2B̃H2 mod λ̃.

This is however obvious, because if A ∈ B̃H1 , B ∈ B̃H2 and

λ̃(A× (X ×G)4(X ×G)×B) = 0

then

λ̃(σgA× (X ×G)4(X ×G)× σg2B) = λ̃(A× (X ×G)4(X ×G)×B) = 0.

Therefore (2.8) follows. The proof is complete by the symmetry of the argu-
ment. �



58 Mieczys law K. Mentzen

Lemma 2.6.2. Let T be semisimple and coalescent, ϕ:X → G ergodic,
H ⊂ G a closed subgroup and Ŝ ∈ C(Tϕ). Assume that B̃H is Ŝ-invariant. If Ŝ
is invertible on B̃ then Ŝ so is on B̃H .

Proof. By Corollary 2.5.14 we have

Ŝ(x, g) = Sf,v(x, g) = (Sx, f(x)v(g)),

where v:G → G is a group automorphism. We have assumed that Ŝ−1B̃H ⊂
B̃H which means that Sf,v(x, gH) ∈ X × G/H for all (x, g) ∈ X × G. But
Sf,v(x, gH) = (Sx, f(x)v(gH)) so f(x)v(g)v(H) ∈ G/H for all (x, g) ∈ X × G,
hence v(H) = (f(x)v(g))−1

g(x,g)H and v(H) = g0H. But v(H) is a subgroup,
so g0 = e and hence v(H) = H. We have achieved that on X ×G/H

Ŝ(x, gH) = Sf,v,H(x, gH) = (Sx, f(x)v(g)H)

and one directly checks that Sf,v,H is invertible. �

Corollary 2.6.3. If T → T is an isometric ergodic extension, T is semi-
simple and the group cover of T is coalescent then T is also coalescent.

Proposition 2.6.4. If Tϕ: (X × G, µ̃) → (X × G, µ̃) is a weakly mixing
group extension of a weakly mixing 2-fold simple map T , N is the natural family
of factors for T defined in Proposition 2.4.7 then the family

NG = {B̃H : H is a normal closed subgroup of G} ∪ {N}

is a natural family of factors for Tϕ.

Proof. Since obviously N is closed under taking intersections (the smallest
closed subgroup generated by a family of closed normal subgroups is normal)
and Lemma 2.6.2 holds true, it remains to show that if S̃: B̃H1 → B̃H2 is an
isomorphism of two natural factors then S̃ sends natural factors contained in
B̃H1 to natural factors contained in B̃H2 . By Proposition 2.5.9, S̃(x, gH1) =
(Sx, f(x)v(gH1)), where v:G/H1 → G/H2 is a continuous group isomorphism,
S ∈ C(T ) and f :X → G/H is measurable. If H ′ is a closed normal subgroup
containing H1 then by the form of S̃ we have S̃B̃H′ = B̃v(H′/H1) and it is clear
that v(H ′/H1) is a normal subgroup of G/H2. �

Remark 2.6.5. From Proposition 2.6.4 and Structure Theorem we get im-
mediately the result on the structure of factors for group extensions of rotations
proved in [71].

Remark 2.6.6. If we assume that a 2-fold simple map is not weakly mixing,
then in fact it has discrete spectrum (see [45]) and then both Lemma 2.6.1 and
Proposition 2.6.4 are valid for each ergodic cocycle ϕ:X → G.

The question whether or not each factor of a coalescent automorphism is
again coalescent was stated by D. Newton in 1970, [80], and the negative answer
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is contained in [61] (see also a recent paper by A. Fieldsteel and D. Rudolph [19]).
An ergodic group extension of a rotation need not be coalescent, but we will
assume, that this is the case and ask about the coalescence of all factors. Our
goal is to prove the following theorem (which is a generalization of a result from
[61] for the Abelian case).

Theorem 2.6.7. If Tϕ: (X ×G, µ̃)→ (X ×G, µ̃) is an ergodic group exten-
sion of a discrete spectrum T and N denotes the natural family of factors defined
in Proposition 2.6.4, then all factors of Tϕ are coalescent whenever all natural
factors so are.

Proof. Let E be such a factor of Tϕ that is isomorphic to its proper factor
E′ $ E. To simplify the notation we assume that Ê = B̃. Now, E′ ⊂ E and they
are isomorphic, so by coalescence property of natural factors we have Ê′ = Ê = B.

Let H(E) be the compact subgroup contained in C(Tϕ) that determines E.
Let S be this (noninvertible) element of the centralizer of E that gives rise to an
isomorphism of E and E′. Denote by Ŝ an extension of S to C(Tϕ). By assumption

of this theorem, Ŝ is invertible. Moreover the factor E′ = S
−1

E is determined by
Ŝ−1H(E)Ŝ. Consequently

Ŝ−1H(E)Ŝ ⊂ H(E)

and the inclusion is strict. Denote

H = {g ∈ G : σg ∈ H(E)},

where σg(x, h) = (x, hg). Note that each σg ∈ C(Tϕ) and it can be written
as Idg,τg , where τg(h) = g−1hg. Now, each element Û ∈ H(E) is of the form

Û = Uf,v (Proposition 2.5.9) and if two elements Û , ̂̂U ∈ H(E) have the same
projections on the first coordinate (i.e. they are liftings of the same U ∈ C(T ))

then Û = ̂̂
U ◦ σg for certain g ∈ H. Suppose that Ŝ = Sf,w, where w:G→ G is

an automorphism. Then we have

Ŝ−1 = (S−1)w−1[(fS−1)−1],w−1 ,

where w−1 denotes the inverse in the sense of composition of maps, and

(Sf,w)−1 ◦ σg ◦ Sf,w = σw−1(g).

Take under consideration the factor B̃H , which is determined by the group H(E)∩
{σg: g ∈ G} ⊂ C(Tϕ), and consider Ŝ−1B̃H . The latter factor is determined by

Ŝ−1H(B̃H)Ŝ = {σw−1(g) : g ∈ H}.

Denoting H ′ = {g ∈ G : σw−1(g) ∈ Ŝ−1H(E)Ŝ} we have H is a proper subgroup

of H ′ because Ŝ−1H(E)Ŝ determines S
−1

E = E′ and E′ is a proper factor of E.
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Thus BH′ is a proper factor of BH . Moreover, Ŝ−1(BH) = BH′ , and therefore

{σw−1(g) : g ∈ H} = Ŝ−1H(BH)Ŝ = H(Ŝ−1(BH)) = H(BH′).

It implies that B̃H has a proper factor B̃w−1(H) isomorphic to it. The result
follows from Lemma 2.6.2. �

2.7. Final remarks

In 1997 P. Gabriel, M. Lemańczyk and K. Schmidt showed [26] that for
Bernoulli transformations the smallest natural family of factors consists of all
factors (later, E. Glasner, [33], gave an alternative proof of this theorem). On
the other hand for all 2-fold simple maps the smallest natural family consists
only of one element (see Remark 2.4.9). From this point of view Bernoulli shifts
are an opposition of 2-simple systems.

For semisimple maps on the set Je(T, T ) there is a natural structure of a mo-
noid (see [35]). Suppose that λ1, λ2 ∈ Je(T, T ). We have

(X ×X,λ1) rel. w. m.−−−−−−→ X
rel. w. m.←−−−−−− (X ×X,λ2)

so the relative product over X is rel. w. m. Since λ1×X λ2 is ergodic, hence the
projections on the first and on the third coordinate give us an ergodic self-joining
obtained by λ1 ◦ λ2 ∈ Je(T, T ). This multiplication is associative and has a unit
– the diagonal measure on X. If T is weakly mixing then µ× µ ∈ Je(T, T ) and
(µ × µ) ◦ λ = µ × µ for each λ ∈ Je(T, T ). More generally, if A is a factor
and λ ∈ Je(T, T ) is diagonal on A then (µ ×A µ) ◦ λ = µ ×A µ. In particular,
the relatively independent extensions of diagonal measures gives us idempotents.
The only invertible elements are graph joinings µS with S ∈ C(T ) necessarily
invertible. In 2003 Y. H. Ahn and M. Lemańczyk proved a much more general
theorem ([3, Theorem 1]) saying that an automorphism is semisimple if and only
if the set of all ergodic self-joinings forms a semigroup with the circle ◦ operation.
This theorem suggests that semisimplicity is a quite natural notion.


