SECTIONAL CATEGORY
OF MAPS RELATED TO FINITE SPACES

KOHEI TANAKA

ABSTRACT. In this study, we compute some examples of sectional category $\text{secat}(f)$ and sectional number $\text{sec}(f)$ for continuous maps f related to finite spaces. Moreover, we introduce an invariant $\text{secat}_k(f)$ for a map f between finite spaces using the k-th barycentric subdivision and show the equality $\text{secat}_k(f) = \text{sec}(B(f))$ for sufficiently large k, where $B(f)$ is the induced map on the associated polyhedra.

1. Introduction

The sectional category $\text{secat}(f)$ of a continuous map $f : X \to Y$ between topological spaces X and Y is a numerical invariant originally introduced in [16]. This is defined as the smallest number n such that there exist $n + 1$ open sets covering Y, where each open set admits a homotopy section of f. Several numerical invariants of topological spaces are expressed as the sectional category of special maps.

The Lusternik–Schnirelmann (LS) category $\text{cat}(X)$ of a space X is the smallest number n such that there exist $n + 1$ categorical open sets covering X (see [11]). Here, a subset $U \subset X$ is categorical if U is contractible in X; that is, the inclusion $U \hookrightarrow X$ is null-homotopic. The LS category $\text{cat}(X)$ agrees with the sectional category $\text{secat}(f)$ of a null-homotopic map to X. Furthermore, the

2020 Mathematics Subject Classification. Primary: 55M30; Secondary: 06A07.
Key words and phrases. Sectional category; Lusternik–Schnirelmann category; poset; finite space; fixed point.

This work was partially supported by JSPS KAKENHI Grant Number JP20K03607.