THE CONTINUITY
OF ADDITIVE AND CONVEX FUNCTIONS
WHICH ARE UPPER BOUNDED
ON NON-FLAT CONTINUA IN \mathbb{R}^n

TARAS BANAKH — ELIZA JABŁOŃSKA — WOJIECH JABŁOŃSKI

ABSTRACT. We prove that for a continuum $K \subset \mathbb{R}^n$ the sum K^{+n} of n copies of K has non-empty interior in \mathbb{R}^n if and only if K is not flat in the sense that the affine hull of K coincides with \mathbb{R}^n. Moreover, if K is locally connected and each non-empty open subset of K is not flat, then for any (analytic) non-meager subset $A \subset K$ the sum A^{+n} of n copies of A is not meager in \mathbb{R}^n (and then the sum A^{+2n} of $2n$ copies of the analytic set A has non-empty interior in \mathbb{R}^n and the set $(A - A)^{+n}$ is a neighbourhood of zero in \mathbb{R}^n). This implies that a mid-convex function $f : D \to \mathbb{R}$ defined on an open convex subset $D \subset \mathbb{R}^n$ is continuous if it is upper bounded on some non-flat continuum in D or on a non-meager analytic subset of a locally connected nowhere flat subset of D.

1. Introduction

Let X be a linear topological space over the field of real numbers. A function $f : X \to \mathbb{R}$ is called additive if $f(x + y) = f(x) + f(y)$ for all $x, y \in X$.

A function $f : D \to \mathbb{R}$ defined on a convex subset $D \subset X$ is called mid-convex if $f((x + y)/2) \leq (f(x) + f(y))/2$ for all $x, y \in D$.

2010 Mathematics Subject Classification. Primary: 26B05, 54D05; Secondary: 26B25, 54C05, 54C30.

Key words and phrases. Euclidean space; additive function; mid-convex function; continuity; continuum; analytic set; Ger–Kuczma classes.

Please cite this article as: Taras Banakh, Eliza Jabłońska, Wojciech Jabłoński, The continuity of additive and convex functions which are upper bounded on non-flat continua in \mathbb{R}^n, Topol. Methods Nonlinear Anal. (2019). DOI: 10.12775/TMNA.2019.040