A WEIGHTED TRUDINGER–MOSER TYPE INEQUALITY
AND ITS APPLICATIONS
TO QUASILINEAR ELLIPTIC PROBLEMS
WITH CRITICAL GROWTH
IN THE WHOLE EUCLIDEAN SPACE

FRANCISCO S.B. ALBUQUERQUE — SAMI AOUAOU1

ABSTRACT. We establish a version of the Trudinger-Moser inequality involving unbounded or decaying radial weights in weighted Sobolev spaces. In the light of this inequality and using a minimax procedure we also study existence of solutions for a class of quasilinear elliptic problems involving exponential critical growth.

1. Introduction and main results

We recall that if Ω is a bounded domain in \mathbb{R}^n ($n \geq 2$), the classical Trudinger–Moser inequality (cf. [31], [38]) asserts that $e^{\alpha |u|^n} \in L^1(\Omega)$, for all $u \in W^{1,n}_0(\Omega)$ and $\alpha > 0$ and there exists a constant $C(n) > 0$ such that

$$\sup_{\|u\|_{n'} \leq 1} \int_{\Omega} e^{\alpha |u|^n} \, dx \leq C(n)|\Omega|, \quad \text{if } \alpha \leq \alpha_n,$$

where $n' = n/(n-1)$, $\alpha_n = n\omega_{n-1}^{1/(n-1)}$, $\|u\|_n := (\int_{\Omega} |\nabla u|^n \, dx)^{1/n}$ and ω_{n-1} is the surface area of the unit sphere in \mathbb{R}^n. Moreover, the inequality (1.1)

2010 Mathematics Subject Classification. Primary: 35A23; Secondary: 35B33, 35J50, 35J92.

Key words and phrases. Trudinger–Moser inequality; quasilinear elliptic problems; weight functions; Exponential critical growth; Mountain pass theorem.

The first author was supported by Programa de Incentivo à Pós-Graduação e Pesquisa (PROPESQ) Edital 2015, UEPB.