CLASSIFICATION OF RADIAL SOLUTIONS
TO HÉNON TYPE EQUATION
ON THE HYPERBOLIC SPACE

SHOICHI HASEGAWA

ABSTRACT. We devote this paper to classifying radial solutions of a weighted semilinear elliptic equation on the hyperbolic space. More precisely, for a weighted Lane–Emden equation on the hyperbolic space, we shall study the sign and asymptotic behavior of the radial solutions. We shall also show the existence of fast-decay sign-changing solutions to the Lane–Emden equation on the hyperbolic space.

1. Introduction

In this paper, we shall investigate the structure of radial solutions to the following weighted semilinear elliptic equation:

\[-\Delta_g u = (\sinh r)^\alpha |u|^{p-1} u \quad \text{in } \mathbb{H}^N, \]

where \(N \geq 2, \ p > 1, \) and \(\alpha > -2. \) Here, \(\mathbb{H}^N \) denotes the \(N \)-dimensional hyperbolic space in terms of the spherical coordinates, \(r > 0 \) represents the geodesic distance on \(\mathbb{H}^N, \) and \(\Delta_g \) denotes the Laplace–Beltrami operator on \(\mathbb{H}^N. \)

The structure of radial solutions to semilinear elliptic equations has attracted a great interest. In particular, the following Hénon type equation has been well

\[\begin{align*}
2010 \text{ Mathematics Subject Classification.} \quad & \text{Primary: 58J05;} \quad \text{Secondary: 35B05,58K55.} \\
\text{Key words and phrases.} \quad & \text{Semilinear elliptic equation; decay rate; sign-changing solutions.} \\
& \text{The author was supported by Research Fellow of Japan Society for the Promotion of Science (No. 16J01320).}
\end{align*} \]

Please cite this article as: Shoichi Hasegawa, Classification of radial solutions to Hénon type equation on the hyperbolic space, Topol. Methods Nonlinear Anal. (2019).

DOI: 10.12775/TMNA.2019.026