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Preface

Non-Archimedean functional analysis was started by dutch mathe-
matician Antoine Monna (1909-1995) in the 40s and 50s of the last
century. In his pioneering papers, published in Indagationes Mathe-
maticae, Monna developed fundamentals for the theory of Banach
spaces over non-Archimedean valued fields. Over the years, the state
of knowledge of this discipline was determined by monographs of
Monna [38], Bachman, Beckenstein and Narici [6], van Rooij [57], Pro-
Ila [50], Bosch, Guintzer and Remmert [7], Robert [55], Schneider [68],
Schikhof and Perez-Garcia [60] and [47].

The study of this topic is partially motivated by the Ostrowski’s
theorem, which asserts that every complete valued field which is
not isomorphic (algebraically and topologically) to either R or C is
non-Archimedean.

Some application of non-Archimedean analysis in mathematical
physics and quantum mechanics may be another motivation. Accord-
ing to the Archimedean axiom any given large segment on a straight
line can be surpassed by successive addition of small segments along
the same line. So, we can measure distances as small as we want. How-
ever in quantum mechanics measurements of distances smaller than
the Planck constant are impossible. This leads to the search for such
geometries that do not satisfy the Archimedean axiom at very small
distances. The non-Archimedean geometry is a one of the possible
alternatives (see [1], [11], [26] and [70]).

This work collects some recent results concerning a few selected
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6 Preface

topics. Chapter 1 has an introductory character, it gathers some basic
notions and concepts related to the theory of non-Archimedean Banach
spaces. Chapter 2, the most extensive, covers several aspects of the ex-
istence of orthocomplemented linear subspaces in non-Archimedean
Banach spaces. It presents results obtained mainly by A. Kubzdela,
C. Perez-Garcia, A. van Rooij and W. Schikhof. Chapter 3 deals with
applications, due to J. Kagkol and A. Kubzdela, of measures of noncom-
pactness to study non-Archimedean Banach spaces equipped with the
weak topology. Chapter 4 contains some results of W. Schikhof and
A. Kubzdela concerning isometric maps and the distance preserving
mappings defined on finite-dimensional non-Archimedean normed
spaces.

I would like to express my heartfelt thanks to Cristina Perez-Garcia
and Jerzy Kakol. Collaboration with Them has lead to many inter-
esting results, partially presented in Section 2.3 and Chapter 3. I
am extremely grateful to Wim Schikhof (1937-2014), having in mind
numerous discussions with Wim about non-Archimedean analysis,
thanks to which getting some of the results presented in Chapter 2
was possible.

Also, I would like to thank the Reviewers for thorough reading
and valuable remarks and comments which improved the text.



Preliminaries

This chapter, essential to the sequel, presents some basic classical
notions and properties related to the theory of non-Archimedean
Banach spaces. It is not a comprehensive treatment of the subject, but
it shows only these concepts that will be used in next chapters. For
more background on normed spaces over non-Archimedean valued
fields we refer the reader to the magnificent books [47] and [57], among
some others.

1.1 Basics

Let K be a field. A valuation defined on Kisamap |- [: K — [0, c0)
satisfying the following conditions:

Al=0 ifandonlyif A =0,
AR = [A - [,
A+l <A+l

forall A, u € K. The pair (K, |-|) is said to be a valued field. The valuation
| - | is called non-Archimedean, and K is called a non-Archimedean valued
field if, additionally, the valuation satisfies the strong triangle inequality:

A+ u <max{A|, |} forallA, ueK.

Let |K| :={A| : A € K} and |K*| := |K| N (0, c0). The set |K*|, called
the value group of K, is a subgroup of the multiplicative group of the
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8 Preliminaries

positive real numbers. K is said to be trivially valued if [K*| = {1}.
A non-trivial valuation is called discrete if 0 is the only accumulation
point of [K*|; otherwise, |[K*| is a dense subset of (0, c0) and the
valuation is called dense. If K is discretely valued, then there exists an
uniformizing element p € K, |p| < 1 such that |[K*| = {[p|™ : n € Z}.

Let Bk :={A € K:|A|] < 1}and B :={A € K: [A] < 1}. Then
By is a commutative ring with identity and By is a maximal ideal of
Bgk. Therefore, k := B /By is a field, called the residue class field of
K. A non-Archimedean complete valued field K is locally compact if
and only if it is discretely valued and its residue class field is finite
([47, Theorem 1.2.8]).

By Bk r,(An) = {p € K: |p—An| < 7} we will denote a closed
ball in K. We say that a sequence of closed balls (Bxk r, (An))n in K
is centered if Bx . ,(Any1) C Bgyr,(An) for every n € N. A non-
Archimedean valued field K is called spherically complete if every
centered sequence of closed balls (Bk r, (An))n in K has a nonempty
intersection. Every complete, non-Archimedean discretely valued
field K (in particular, every locally compact field) is spherically com-
plete, but the converse is not true.

Among all non-Archimedean valued fields, it is worth mention-
ing two examples. The first one is the field of p-adic numbers Q, (for
a given prime number p), which is a completion of the field of rational
numbers Q under the metric generated by the p-adic valuation. Q,, is
locally compact, thus, discretely valued and spherically complete. The
other one is the field C,,, the completion of the algebraic closure of Qp,
which is algebraically closed and non-spherically complete; thus, it is
not locally compact. Both valued fields, Q, and C,, are separable (see
[47, Examples 1.2.5 and 1.2.11, Definition 1.2.7 and Theorem 1.2.12]).

Let (X, d) be a metric space. Then, X is called an ultrametric space,
and d is called an ultrametric if d satisfies the strong triangle inequality,
ie. d(x,z) < max{d(x,y),d(y,z)} forall x,y,z € X.

A normed linear space E over a non-Archimedean valued field K
is called a non-Archimedean space if its norm satisfies the strong triangle
inequality, i.e. ||x +y|| < max{|x||, ||y||} forall x,y € E.

Let ||E|| :={||x]| : x € E}and ||[EX|| := ||E||N(0, 00). Let X be a subset
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of a linear space E. Then, [X] means a linear span of X in E. For X =
{x1,...,xm} we will write shortly [x1,...,xm] instead of [{xq,...,xm]}].

Throughout, K will denote a non-Archimedean valued field which
is complete with the metric induced by a non-trivial valuation and
E will denote a non-Archimedean linear space (over K). In addition,
unless otherwise declared, we will assume [K*| C ||E*| (i.e. there
exists x € E such that [[x|| = 1).

Note that, there exist normed linear spaces over K which are not
non-Archimedean, even those that have no equivalent non-Archime-
dean norm, e.g. 1P (K), p > 1, the linear space of sequences (xn ) in
K such that }_[xn[P < oo equipped with the norm

n

1/p
el = (X o)
n

The set Bg »(x) :={y € E: | x —y|| <7} (r >0, x € E) is called a closed
ball in E and the set B¢ (x) :={y € E:[[x —y[| <1} (r > 0,x € E) is
called an open ball in E, respectively. Note that both balls are closed
and open (clopen). The topology induced on E by a non-Archimedean
norm is always zero-dimensional. It follows directly from the strong
triangle inequality that every point of any ball is its center and any
two balls in E are either disjoint, or one is contained in the other. We
will write shortly Be » (Bg ;) instead of Be ;- (0) (Bg ,(0)) and Be (Bg)
instead of B 1 (B o).

Simple consequences of the strong triangle inequality are the fol-
lowing lemmas.

1.1.1. Lemma. Let x,y € E. Then,

X[ 7 Iyl == [l +yll = max{{[x], lly[}-

Proof. If ||x|| < [ly]| then |[yll = ||x+y—x]|| < max{||x +y]|, lIx|/}. Hence,
Ily[l < [[x +yl[. On the other hand, [|x + y| < max{[|x|, [ly[l} = [yl
and we are done. O

1.1.2. Lemma. Bg ;, + Bg,+, = Bg max{r,r,) for each 1,12 > 0.
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Proof. Letx € By, and y € Bg r,. Then, ||x + y|| < max{||x||, [y} <
max{ry, 12}. If z € Bg maxfr,,r,) then, assuming r1 < 1, we imply that
zE BE,rz- O

The concept of orthogonal sets is the one of the most important
tools to study structural properties of non-Archimedean normed spa-
ces. Let t € (0,1]. For any nonempty set (not necessary countable) I,
the set {xi};c; C E, xi # 0, is called t-orthogonal (orthogonal for t = 1) if

PRNLS

j€]

> t'l’]nEaIX{H)\ijH}

for every finite subset ] C Iand all A; C K (j € J). If, additionally
[{xi}ic1] = E (i.e. the closure of the linear space [{xi};c] spanned by
{xi}ic1 is equal to E), then {x{};; is said to be a t-orthogonal base of E.
Then, every x € E has an unequivocal expansion

x=) Axi (MeK iel.
iel

We will say that a sequence (xn ) is t-orthogonal if the set {x1, x2, .. .} is
a t-orthogonal set. An orthogonal subset X of E is said to be maximal,
if for every z € E, z # 0, the set {z} U X is not orthogonal. Every
orthogonal set can be extended to a maximal orthogonal set. Clearly,
every orthogonal base is a maximal orthogonal set, but the converse
is not true, see [57, 5.B]. Any two maximal orthogonal sets in a given
E have the same cardinality ([57, Theorem 5.2]).

It is worthwhile to remark that perturbing the elements of an
orthogonal set a little does not disturb orthogonality.

1.1.3. Theorem (see [47, Theorem 2.2.9]). Let {x; : i € I} be an orthogonal
set in E. If Yo ={yi : 1 € I} is a subset of E such that ||xi —yil| < |[xi| for
each i € 1, then Yy is an orthogonal set, either.

1.1.4. Theorem (Gruson, see [57, Theorem 5.9]). Let E be a non-Archime-
dean Banach space with an orthogonal base. Then every closed linear subspace
of E has an orthogonal base, either.
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We say that E is of countable type if it contains a countable set whose
linear span is dense in E. If K is separable, then E is of countable type
if and only if it is separable.

Recall that a sequence of closed balls (B¢ +, (xn))n in E is called
centered if Be v, (xn4+1) C Bgr, (xn) for eachn € N. A normed lin-
ear space E is called spherically complete if every centered sequence of
closed balls in E has a nonempty intersection. Every spherically com-
plete normed linear space E is complete, but the converse is not true.
If K is spherically complete, then every finite-dimensional normed
linear space over such K is spherically complete, either (see [57, Corol-
lary 4.6]).

1.1.5. Theorem ([47, Theorems 2.3.7 and 2.3.25]). Every non-Archime-
dean normed space of countable type has a t-orthogonal base for each t €
(0,1). If K is spherically complete, then every non-Archimedean normed
space of countable type has an orthogonal base. Every non-Archimedean
normed space contains a t-orthogonal sequence for each t € (0,1).

Proof. Let E be an infinite-dimensional non-Archimedean normed
space of countable type (for finite-dimensional E the inductive con-
struction below breaks off). Find X = {x1, x», ...}, a subset of E consist-
ing of linearly independent nonzero elements such that [X] is dense
inE. Set Fy := [xq,...,xn), n € N. Let t € (0,1). Then, set e; := x1
and select 1y, t3,... € (0,1) such that ]O_o[ tn > t. For every n € N,

n=2
dist(xn 1, Fn) > 0 since F;, is closed and x,,11 ¢ F,. Hence, we can

find z,, € F,, for which
thtt1 [PXnt1 — znll < dist(xny1,Fn)-

Now, we set en4+1 := Xn4+1 — zn. Then, clearly F,, = [e,...,enl, so
le1,...,en,...]isdensein E, and

diSt(en—O—l/ Fn) = diSt(Xn—o—lr Fn) = J[n+1 : ||Xn+l _ZnH = J('rt—o—l : ||en+1 ||

So, by [47, Theorem 2.2.16], {e1, ey, ...} is t-orthogonal and by [47,
Theorem 2.3.6] it is a t-orthogonal base of E.
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If K is spherically complete then, since F, is spherically complete
for each n € N by [57, Corollary 4.6], we can find z,, € F,, for which

[Xn+1 — zn|| = dist(xni1,Fn). Indeed, fix n € N. For every r >
dist(xny1,Fn), Vo = Br(xny1) N Fnis a ball in F,. Thus, W, =
N V; is nonempty. Hence, there exists z, € W;, C Fn

r>dist(xni1,Fn)
such that ||xy+1—2zn || < inf{r > dist(xn41, Fn). Clearly, [|[xn11—2zn || >

dist(xn41, Fn). Thus, ||xn41 — zn|| = dist(xny1, Fn)-

If E is a non-Archimedean normed space, then it contains a linear
subspace of countable type, hence, by above, it contains a t-orthogonal
sequence for each t € (0,1). O

1.1.6. Remark. If K is non-spherically complete, then there are exam-
ples of non-Archimedean normed spaces of countable type without
an orthogonal base, see Remark 1.2.13 and [47, Example 2.3.26 and
Remark 2.3.27].

Let D1, D3 be closed linear subspaces of E. D1 and D; are called
t-orthogonal (relative to each other) if

[P +yll = t - max{llx[|, |[y[[}

for all x € Dy and y € D,. If the above inequality holds for t =1, we
will say that Dy and D, are orthogonal; then, we will write D L Ds.
In particular, if D1 = [x] for some nonzero x € E we will write x L Dy.

D; is said to be a t-orthocomplement (an orthocomplement for t = 1)
of D, (D; and D, are t-orthocomplemented in E ) if Dy and D, are
t-orthogonal and E = D; + Djy. Observe that if D; and D; are t-
orthocomplemented, the sum D; + Dj is direct.

An operator T of E to a normed linear space Fis alinearmap T: E —
F. If F is a Banach space, the set L(E, F) of all bounded operators E — F
is a non-Archimedean Banach space with the norm

|T|| :=1inf{M > 0: ||Tx|| < M - ||x]| for all x € E}.

We will say that E is isomorphic to F if there exists a bijective linear
homeomorphism T: E — F. If, additionally T is isometric (i.e. | Tx| =
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||x|| for every x € E), we will write E ~ F. A bounded operator
P: E — Eis called a projection if P? = P.

We can easily deduce that a linear subspace D of E is orthocomple-
mented in E if and only if there exists a surjective projection P: E — D
with [|P|| < 1 (called an orthoprojection).

1.1.7. Proposition (see [47, Lemma 2.3.20] and [57, Lemma 4.35]). If
every one-dimensional linear subspace of E is orthocomplemented in E, then,
every finite-dimensional linear subspace of E is orthocomplemented in E.

Proof. Let D, Dy be linear subspaces of E such that Dy C D, Dy has
the codimension 1 in D and Dy is orthocomplemented in E. The proof
will be complete if we show that D is orthocomplemented in E. Since
Dy is orthocomplemented, there is an orthoprojection Py: E — Dy.
Choose x € D, x # 0, such that Py(x) = 0 (then D = Dy + [x]). Then,
by assumption, there is an orthoprojection Py: E — [x]. But then
P = Py + Px — Px o Py is a required orthoprojection E — D. O

Let E* := L(E,K) and E** := L(E*, K) be the topological dual and
bidual of E, respectively. Forx € Eand z* € E* the formulajg (x)(z*) :=
z*(x) defines the evaluation map jg: E — E**. In general, ||je (x)|
|Ix||e; thus jg is continuous linear map and, in fact, ||jg|| < 1. But jg
need not be isometric (for non-spherically complete K we can construct

B S

an infinite-dimensional Banach space E for which E** = {0}; then,
clearly jg cannot be isometric). Considering the case when jg is an
isometric embedding, using the natural identification, we will usually
identify E with jg(E) C E** and for x € E we will write x € E**
instead of jg (x) € E**. Recall that a non-Archimedean Banach space
E is reflexive if jg is a surjective isometry.

As usual, we define the weak topology and the weak star topology.
The weak topology o(E, E*) on E is defined to be the weakest topology
(that is, the topology with the fewest open sets) under which each
element of E* remains continuous on (E, o(E,E*)). A base of zero-
neigborhoods for the weak topology o(E, E*) consists of sets of the
form {x:|[x*(x)| < ¢, x* € S}, where ¢ > 0 and S is a finite subset
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of E*. The weak star topology o(E*, E) on E* is the weak topology on
E* induced by the image of je(E) C E**. We say that E is weakly
sequentially complete if every weakly Cauchy sequence in E is weakly
convergent in E.

Let T € L(E,F). Recall that the adjoint of T is the linear map
T:F - E*, fi>foT.

Let A C Ebeaset. We define the polar of A as theset A := {f € E* :
[f(x)] < 1 forall x € A}and the bipolar of A as A% :={x € E: [f(x)| < 1
for all f € A%. The set A is called polar set if A = A%.

We say that E is normpolar if jg is a homeomorphism of E onto
its image; then, for every finite-dimensional linear subspace F C E,
every ¢ > 0 and every f € F* there is an extension fy, € E* for which
Ifoll < (1 + ¢€)]/f||. Eis normpolar if and only if B is a polar set, see
[47, Corollary 4.4.11]. In this context, we recall the following facts.

1.1.8. Proposition ([57, Exercise 3.Q]). All finite dimensional non-Archi-
medean normed spaces over any K are reflexive.

1.1.9. Proposition ([57, Theorem 4.16]). If K is spherically complete, then
no infinite-dimensional normed space over K is reflexive.

1.1.10. Proposition ([57, Corollary 4.18 ]). If K is non-spherically com-
plete, then every non-Archimedean Banach space of countable type over K is
reflexive.

We say that a non-Archimedean Banach space F is injective if, for
any E, every bounded operator from a linear subspace D of E into F
has a preserving norm, linear extension on the whole of E. Ingleton’s
theorem (see [18, Theorem 4.2] or [57, Theorem 4.10]) characterizes
injective spaces as follows.

1.1.11. Theorem (Ingleton). A non-Archimedean Banach space F is injec-
tive if and only if it is spherically complete.

Proof. («) Assume that F is spherically complete. Applying Zorn’s
Lemma, it is enough to prove that if D C E is a linear subspace of E,
To: D — Fis any bounded operator with the norm || Ty ||, then for every
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y € E\ D we can find a linear, preserving norm, extension of Ty on
D + [yl.

Takey € E\ D. Consider the collection F of all closed balls of the
form {Bf r, (To(x))}, cp, Where 1« = || To|| - [[y —x||. Let Bg,+, (To(x1)),
BF r,(To(x2)) be any two elements of . Then

[To(x1) = ToO2) || < ([ Toll - X1 —x2l| = [ Toll - [[x1 =y +y —x2]

< |
< [ Toll - max{[lx1 —yl|, [[x2 — y|I} = max{ry, m2}.

Thus, To(x1) € Bgr,(To(x2)) or To(x2) € Bfr, (To(x1)). Consequently,
the collection / has the binary intersection property. But F is spheri-
cally complete, thus, there exists

up € [ B (To(x)).
xeD

Now, define the operator T: D + [y] — F, setting T(x + Ay) := Top(x) +
Aug, where x € D, A € K. Clearly, T extends Ty. Let A # 0. Then, since

U € Br(—To(x)/A), where r = || To|| - || — x/A —y||, we get
1 1
[T(x+Ay) | = Al 3 To(x)+uo|| < IAl-{[ Tol|- —yXY| = [ Tol[-[[x—+Ayl.
Hence, H I
T(x + Ay)
7)\ < HTOH
[x + Ayl

for all x + Ay € D + [y, x + Ay # 0. This shows || T|| = || To||-

(=) Assume for a contradiction that there exists a centered se-
quence of closed balls (Bf +, (un))n with an empty intersection. Then,
for every u € F there exists ng € N such that u ¢ B]:,rno (un,). Hence,
for any m > ng one gets

=t = [t = Uy + g — e[| = [ = [

thus, for every u € F, lim |ju — uy|| exists. Therefore, one can define
n—oo

unequivocally the function ¢: F — (0, o) by setting

o(u) == lim |Ju—un|.
n—oo
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Let E := F x K be a normed space with the norm defined by

(%, Wl =

Let us check the norm conditions:

(@) [|[Az]| = Al ||zl forall A € K, z € E: If A =0 then ||Az|| = [A| =0
and we are done. Take A # 0. Let z = (x, 1) € E. Then Az = (Ax, Au).
If Au=0,then p=0and ||[Az]| = [|Ax|| = Al - [|[x|| = Al - ||zll. If Ap # 0
then 1 # 0, and

1 1
[Az]| = A - ¢()\?\X> = Al |yl - ¢(X> =[Al-llz|;
18 i

(b) ||z1 + z2|| < max{||z1||, ||z2]|} for all z1, z; € E: Take z; = (x1, A1)
and z; = (x2,A2), elements of E. Since the sequence (B, (un))n has
an empty intersection, there exists u,, for which

[z1]] = [Ix1 = Aumll, [[z2]] = [[x2 = Agum ||
and
121 + 22| = [|(x1 + x2) — (A1 + A2)um ||
(if A =0, then ||(x,A)|| = ||x]| = |[|x — Aun|| for all n € N). Thus,
|21 + 22|l = [| (%1 + x2) — (A1 + A2 )um|
< max{[|x1 — Arumll, [[x2 — Aoumll} = max{[|z1]], [|z2][}-

Now, let D :=F x {0} be a linear subspace of E. Consider the operator
i: D — F defined as i(x, 0) := x. Clearly, ||i|| = 1. Suppose, by a way

of contradiction, that i can be extended to a preserving norm linear
operator j: E — F. Let j(0, —1) = x¢. Then, for any nonzero x € F,

j(x,1) =j((x,0) = (0,—1)) = x — xo.
Hence,
[ = xoll < I3[l - |, DI = [, DI = d(x).
In particular, for every n € N, we obtain |[un, —xo|| = $(un) = rn and

(0.0}
conclude that xg € () B, (un), a contradiction. O
n=1
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As a simple consequence of Theorem 1.1.11 we obtain the following
Hahn-Banach type theorem for linear functionals.

1.1.12. Theorem. If K is spherically complete, then for every linear subspace
D of E and every f € D* there exists an extension fy € E* such that
111 = 1Ifoll-

Next result, due to van Rooij (see [56, Theorem 5.1 ]) extends
Theorem 1.1.12.

1.1.13. Theorem (van Rooij). Suppose there exists an infinite-dimensional
Banach space E with the following property: for every closed linear subspace
D of E which is of countable type and every f € D* there is an extension
fo € E* with ||f|| = ||fo||. Then, K is spherically complete.

Proof. Assume the contrary and suppose that K is non-spherically
complete. Then, there exists a centered sequence of closed balls
(Bk,r, (¢n))n with an empty intersection. We can assume that r; >
ri+1 foreachi € N. Take a € E, a # 0, and define the linear functional
f: [a] = Kby f(Aa) :=A, A e K.

Next, extend f to f € E* with ||f|| = ||f|| = 1/]|a|. Letj: K — [a] be
the isomorphism defined by j(A) := A- a. Then, P =jof: E — [a] isan
orthoprojection. Thus, we deduce that every one-dimensional linear
subspace of E is orthocomplemented in E. Thus, by Proposition 1.1.7,
every finite-dimensional linear subspace of E is orthocomplemented in
E. Applying this fact, we can choose inductively an infinite sequence
(en)n of non-zero elements of E such thate,, L ) [ei] foreveryn € N.
K, as non-spherically complete, is densely Vah;;gll; thus, without loss
of generality we can assume that 11 < ||en41]] < Tn (n € N). Now,
we form a sequence (dn)n setting dn := en — eny1, 1 € N. For every
n € N we obtain

ldnll = llen — en 1]l = max{[lenl], [len+allt = [[enl]-

Let us check that {d;, d, ...} is orthogonal. To do it, take ng € N and
?\1,...,)\n0 e K.
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Then
no o
D (Midi —Aces) Z Aieit1 S max [Aieiqall
i=1 i=1
< r?ax INieill = Z?\ e
i=1
Hence,
o o o
D Adif =) (Aidi —Me) + ) Aes
i=1 i=1 i=1

Z?\ ei

Let D := [dy, dp, ...] be a linear subspace of E. There exists an unique
linear functional f: D — K with f(dn) = &, — xn41, 1 € N. Having
in mind that {dj, dy, ...} is orthogonal, applying inequalities

= max H?\ eil = . r?ax IALd4]].

/////

lotn, — O‘n+1| <t < ||en|| = Hdn”/

we imply ||f||, < 1. Then, by assumption, there exists an extension
f € E* of f with ||f|| < 1. Set o := o1 — f(e1). For each n € N we have
—eni1=—e1+dy+dy+... 4+ dn. Thus,

—f(en+1) =—fler) + (g — o) + ... 4 (0tn — Xnj1) = X — App1.
Therefore, |6 — ot 11| < [lent1]] < ™ and
o — o | < max{lo — a1, loen 11 — onl} < ™

for every n € N. Hence, « € (| Bk, (xn), a contradiction. O
n

Let us recall one more fact related to this topic (note that we will
not assume that every f € D* has a preserving norm linear extension).

1.1.14. Theorem (see [56, Theorem 5.2]). Let E be an infinite-dimensional
Banach space with the following property: for every closed linear subspace of
countable type D C E, every f € D* has an extension f € E*. Then,
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(1) every closed linear subspace of E which is of countable type is weakly
closed, i.e. closed with respect to the weak topology o(E, E*);

(2) E has the Schur property, i.e. every weakly convergent sequence in E
is convergent;

(3) every weakly compact set in E is compact;

(4) E is weakly sequentially complete.

Proof. (1) Let Dy C E be a closed linear subspace of countable type.
Take any xg € E\ Dy. Then, there exists a continuous linear functional
f: Do + [xo] = K such that Dy C ker f and f(xg) = 1. By assumption,
f can be extended to f € E*. Hence, Dy C ker fbut xo & ker f and we
conclude that Dy is weakly closed.

(2) Assume for a contradiction that there exists a sequence (xn )n C
E weakly convergent to zero, which contains a subsequence (xn, )k
such that infy ||xn, || > € for some ¢ > 0. Let Dg := [x1, X2, ...]. Since,
by assumption, o(E, E*)|p, = o(Dy, D), applying [47, Corollary 2.3.9],
without loss of generality, we can assume that E = ¢o. Write x,, =
(x}i,xi,...) n € N. For each k € N the set Jy = {m x| > s} is
nonempty and finite. Since (x,)n, as weakly convergent, tends to0
coordinatewise, we can find a subsequence (kn ) for which the sets
Jx,, (n € N) are pairwise disjoint. Now, select a sequence (mn)n C N
such that m,, € Ji, for each n € N and define f € E* setting

(2!, 22, ... sz“ (z!,2%,...) € E.

But then [f(xn, )| > € for every k € N, a contradiction.

(3) Let M be a weakly compact subset of E and let (x, ) be any
sequence contained in M. By p-adic Eberlein-Smulian theorem, which
works in this context (see [27, Corollary 2.2 and Theorem 2.3]), (xn )n
contains a subsequence (xn, )x which is weakly convergent to some
Xp € M. But, by (2), (xn, )x converges to x in norm as well. Therefore
M is compact for the norm topology.

(4) Let (xn)n be a weakly Cauchy sequence in E. Then, the se-
quence (zn)n, Where z,, := X —xn41 (n € N) tends weakly to zero.
Thus, by (2) it tends to 0 in the norm topology. Hence, (xn )n, is norm-
Cauchy, thus, norm-convergent, therefore, weakly convergent. O
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Theorems 1.1.12 and 1.1.14 imply the following conclusion.

1.1.15. Corollary. Every non-Archimedean normed space over spherically
complete K has the Schur property.

1.2 Immediate extensions

Let D be a closed linear subspace of E and let x € E\ D. We say
that the distance dist(x, D) = dinlfj ||lx — d|| is attained if there exists
€

dp € D such that dist(x, D) = ||x — dy||; otherwise, we will say that the
distance dist(x, D) is not attained. Let D and E, be linear subspaces
of E. We will say that Eg is an immediate extension of D if D ¢ Eg
and there is no nonzero element of E, that is orthogonal to D. An
immediate extension Eqy of D is said to be maximal in E, if there is
no linear subspace G C E such that Ey & G and G is an immediate
extension of D.

It turns out that immediate extensions of linear subspaces and
their properties are powerful tools to solve problems considered in
Chapter 2. Therefore we pay more attention to them.

We start this section with a few simple observations.

1.2.1. Lemma. Let x,y be nonzero elements of E. Then, a two-dimensional
linear subspace [x,y] of E has an orthogonal base if and only if dist(x, [y])
is attained.

Proof. Assume that dist(x, [y]) is attained. Then there exists a A € K
such that dist(x, [y]) = ||x — Ay||. But then, we can easily check that
{x, x — Ay} is an orthogonal base of [x, y]. The converse is obvious. [

1.2.2. Lemma. Let D be a linear subspace of E. Then E is an immediate
extension of D if and only if dist(x, D) is not attained for every x in
E\D.

Proof. Assume that there is xg € E\ D such that [|xo+dp|| = dist(x, D)
for some dy € D. Then, ||xo + dol| < [[(xo + dg) + d|l for all d € D;
hence, (xg + do) LD, a contradiction. Conversely, if dist(x, D) is not
attained, then for every x € E \ D, there is no nonzero element of E
that is orthogonal to D. O
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1.2.3. Proposition. If D is a spherically complete linear subspace of E, then
forevery x € E\D, dist(x, D) is attained. Thus, D has no proper immediate
extension in E.

Proof. Fix x € E\ D. Then, for every r > dist(x, D) we can find
Yr € Bg+(x) N D. Thus, as D is a spherically complete,

Vi= () Bosly) #0.

r>dist(x,D)

Let yp € V. Then, |lyo — x|| < inf{r:r > dist(x,D)}and |lyo — x|| >
dist(x, D). Thus, we finally conclude ||y — x|| = dist(x, D). O

If K is non-spherically complete, then we can construct a two-
dimensional normed space without two non-zero orthogonal elements,
thus, being an immediate extension of its every one-dimensional lin-
ear subspace. The construction relies heavily on the existence in K,
a centered sequence of closed balls with an empty intersection.

1.2.4. Example. (see [57, p. 68] and [47, Example 2.3.26]) Let K be non-
spherically complete an let (Bk r, (cn))n be a centered sequence of
closed balls with an empty intersection such that 1,1 <, (n € N).
Then, for any A € K there exists ng € N such that A € Bk, (cn,) \
BKMO+1 (Cny+1). Hence, if n > ny + 1 then

|)\ - Cn| = ‘)\ — Cny+1 + Cno+1 — Cn‘ =|A— Cn0+1|-

Thus, lim |A —cn| = [A — cny41l. Therefore, the formula
n—oo
[(x1,%2)|lv = lim |xq —xacnl,  (x1,%2) € K?,
n—oo

defines a non-Archimedean norm on the linear space K2. The normed
space K2 = (K?, || - ||v) is an immediate extension of the one-dimensio-
nal linear subspace L := Kx {0} ~ K. Indeed, assume for a contradic-
tion that there is x € K% \ L, say x = Are; + Azen, Ay # O, such that
x L L. For every u € K one gets

I + weally > max{[x]|v, I} (1)
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Since the sequence (Bk r,, (cn))n has an empty intersection, there is
m € N such that Ay /A € Bk r,, (cm ). Then

. . 1
Ix[[v = [|A1e1 + Azez|ly = Lim [A; — Apcn| = lim [Ap]|—— —cn .
n—oo n—oo Ao
Set W :=Axcmi1 — A1- Then,
M
luerllv = Pocme1 — Al = A N Cm+1| > P2l - Tm

and

X + uer|lv = [[Arer +Azex + ueqlly = Hm [A; + @ — Axcy|
n—oo
= lim |}\1 =+ }\ZCm+1 — M — }\ch|
n—oo

= ‘7\2‘ - lim |Cm+1 - Cn| < |?\2| Tm+1 < ‘?\2‘ *Tm,
n—oo

a contradiction with (1.1). By Lemma 1.2.1, K2 has no two nonzero
orthogonal elements (has no orthogonal base).

Let I be an index set and for every i € I let E; be a normed linear

space. Then, the product [ [ E; is in a natural way a linear space. By
i€l
x_Ei we denote the normed product of Ei, i.e. the set of all elements
i€l
of [] Ei for which the set {||xi|| : i € I} is bounded, equipped with the
i€l

norm ||x|| :=sup{||xi| : 1 € I}, x € x Ej. The normed direct sum € E;
iel icl
of E; is the (normed) linear subspace of all x € x E; such that for
i€l

every € > 0, the set {i € I : [|x{]| > ¢} is finite.

Let us note that themap E — x E,x — (x,X,...) induces a linear
neN

isometry of E into the spherically complete Banachspace x E/ € E
neN neN
(see [57,4.G and Theorem 4.1]). Hence, every E can be linearly isomet-

rically embedded into a spherically complete Banach space.

A non-Archimedean Banach space Eis called a spherical completion
of Eif E is spherically complete and there exists a linear isometry
j: E — E such that E has no spherically complete proper linear sub-
space containing j(E).
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1.2.5. Theorem ([57, Theorem 4.43]). Every E has a spherical completion
E and any two spherical completions of E are isometrically isomorphic. The
spherical completion E of € is a maximal immediate extension of E. Con-
versely, every spherically complete immediate extension of E is a spherical
completion of E.

1.2.6. Corollary. If E is not spherically complete, then there exists an over-
space, i.e. a normed space Eg containing (an isometric image of) E as a proper
linear subspace such that € is an immediate extension of E.

1.2.7. Corollary ([57, Corollary 4.45]). Let i: E — F be an isometric
embedding of E into a spherically complete Banach space F. Then, F contains
a spherical completion E of i(E) and every immediate extension of i(E) is
contained in E.

1.2.8. Corollary. Let D bea linear subspace of E. If E is spherically complete,
then E contains a spherical completion of D.

1.2.9. Proposition ([33, Proposition 2.1]). Let Dy, Dy be closed linear
subspaces of E with D1 C Dy.
(1) If Eisanimmediate extension of Do and D, is an immediate extension
of Dy then E is an immediate extension of Dy
(2) If Eisan immediate extension of D1 then E is an immediate extension

Of DZ-

Proof. (1) Suppose for a contradiction that there is xg € E which is
orthogonal to D;. Since, by assumption, D, is an immediate extension
of Dy, thus xg € E \ Dy and we can choose y € D; \ D; satisfying
Ixoll = llyll > |Ixo —y||. Similarly, we can select z € D; for which
llyll = ||z|]| > Iy — z||. But then

X0 = zl| = lIxo =y +y — 2| < max{[[xo —yl|, [y = 2ll} < [Ixol = [zl,

a contradiction with xg L D1.
(2) Assume that there is xy € E, orthogonal to D,. But D; C D5,
thus xo L D4, a contradiction. O

Proofs of two next propositions are straightforward.
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1.2.10. Proposition ([33, Proposition 2.2]). Let (xi)ie1 be an orthogonal
set in E. If

dist(z, [(xi)ie1]) < llz|| foreveryz € E\ [(xi)ie1l,

then (xi)ier is a maximal orthogonal set in E. If (xi)ie1 is maximal in E,
then E is an immediate extension of [(xi)ie1l-

1.2.11. Proposition ([33, Proposition 2.4]). Let D be a closed hyperplane
(i.e. a linear subspace of E with dim(E/D) = 1) in E. The following
conditions are equivalent:

(1) there exists xg € E\ D such that dist(xg, D) is not attained;

(2) dist(x, D) is not attained for all x € E\ D;

(3) there is no element x € E\ D orthogonal to D.

1.2.12. Proposition ([33, Proposition 2.5]). Let D be a linear closed sub-
space of E and (xn)n C D be a sequence for which the sequence of closed
balls (B jjx,—xn .|| (Xn))n is centered. Let V := (B |jx, —x, 4l (Xn)- If

n
VN D = (), then the subspace D + [x] is an immediate extension of D for
everyx € V.

Proof. Assume the contrary and suppose that there is xg € V such that
D + [xo] is not an immediate extension of D. Then, by Proposition 1.2.2,
we can find dy € D such that dist(xg,D) = ||[xo — dg||. But then
IIXo —Xn|| = ||xo — dol| for alln € N; hence dg € V, a contradiction. [

In particular, K as a one-dimensional normed space has a spherical
completion K. K is an infinite-dimensional (even not of countable type)
Banach space over K. In K one can introduce a multiplication that
extends the given multiplication of K, such that K becomes a valued
field ([57, Theorem 4.49]). K and K (as fields) have the same value
group and the same residue class field.

1.2.13. Remark. dist(A, K) is not attained for every A € K \ K and
every linear subspace of K has no orthogonal base.
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1.3 The spaces co(I) and 1°°(I)

The spaces cy(I) and 1*°(I) play fundamental role in the theory of non-
Archimedean Banach spaces. All Banach spaces over discretely val-
ued K are isomorphic with cy(I) for some I and all non-Archimedean
Banach spaces of countable type are isomorphic with cy. Every norm-
polar space E can be linearly and isometrically embedded into some
1°°(I) (if E is not normpolar, then E can be linearly and isometrically
embedded into some 1%°(1I, ]K)), see [56, Lemma 2.2] and [47, Theo-
rem 4.4.9].

Let I be a nonempty set. Let s: I — (0,00) and h: I — K be maps.
Set ||hlls :=sup{|h(i)|- s(i) : 1 € I}. Themaps h: I — K for which ||h||s
is finite form a linear space 1*°(I : s, K), which is a non-Archimedean
polar Banach space under the norm || - |[s.

co(I : s,K) will denote the closed linear subspace of 1°°(I : s, K),
which consists of all h € 1°°(1 : 5, KK) such that for every ¢ > 0 the set
{iel:|h{i)|-s(i) > e}is finite. If s(1) = 1 for all i € I, we will write
1%°(I,K) and ¢o(I, K), respectively.

In most places, when there is no risk of confusion, the ground field
will be omitted; then we will write 1°°(I : s) and cg(I : s) instead of
1°(I:s,K) and cg(I: s, K) (or 1°°(I) and cy(I) instead of 1°°(I, K) and
co(I, K)). Note that 1°(I) = .>€<IK and ¢o(I) = P K.

i .

In particular, we will write 1°° := [*°(N, K)ﬁrlld co = ¢p(N, K).

According to this convention, 1°(N, K) denotes the linear space
over K of all bounded maps N — K equipped with the supremum
norm. Then, 1°(N,K) is a spherically complete Banach space (see
[57,4.A]); co(N, K) is a closed linear subspace of 1*°(N, ]K) consisting
of all sequences (aj, ay,...), such that a, € K for each n € N and

lim a, = 0. Clearly, cg C co(N, ]IAQ C 1*(N, HA{) and cg C 1*®° C

n—oo

co(N,K).

1.3.1. Theorem. If K is discretely valued then for every infinite-dimensional
non-Archimedean Banach space E there exists an isomorphism T: E — co(I)
such that

ol - [Tl < [x[| < [ITx]]
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for some infinite 1, where p is an uniformizing element of K. Each maximal
orthogonal system in E is an orthogonal base of E and every closed linear
subspace of E has an orthogonal complement. Additionally, if ||E| = K|,
then, T can be defined as an isometric isomorphism.

Proof. Follows from [47, Theorems 2.1.9 and 2.5.4] and [60, Theo-
rem 20.5]. O

1.3.2. Theorem ([47, Theorems 2.3.7 and 2.3.11, Corollary 2.3.9] ).
labelisom-ct-cO Every infinite-dimensional non-Archimedean Banach space
of countable type is isomorphic with co; hence, it has a Schauder basis.

1.3.3. Theorem ([47, Theorems 2.5.4 and 2.5.15]). The space 1*° is not of
countable type. For any set 1, the space 1°°(1) has an orthogonal base if and
only if K is discretely valued.

The bilinear form B: co(I) x 1°°(I) — K given by

Blx,y) =) x'y', forx=(x"ier € co(l), y = (y')ier € 1°(I),
iel

*

induces an isometric isomorphismy — B(-,y): 1°°(I) — [co(I)]".

Recall that a set I is small if it has non-measurable cardinality
(the sets we meet in daily mathematical life are small), see also [57,
p- 31-33].

1.3.4. Proposition (see [47, Theorem 7.4.3] and [57, Theorem 4.21]). Let
K be non-spherically complete and 1 be a small set. Then, (1°°(1))* = co(I)
and co(1) and 1°°(1) are reflexive.

From now we will assume that I will always be a small set.

1.3.5. Theorem ([44, Theorem 3.6], [65, Theorem 2.3]). Let D be a closed
linear subspace of 1°°. The following assertions are equivalent
(1) D is weakly closed in 1°°;
(2) 1°/D ~1® or 1°/D ~ K" for somen € N;
(3) 1%°/D is reflexive;
(4) for every (for some) closed subspace L of D with dimD/L =1, Lis
weakly closed in 1°°.
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Proof. The implications (2) = (3) and (3) = (1) are obvious.

(1) = (2). Let G be a closed linear subspace of cpand leti: G — ¢
be the inclusion map. Then, i*: (cp)* — G*, the adjoint of i, is a
quotient map, thus G* =~ (cg)*/G". Applying this observation for
G = DY and using D = D we get

(DY)* ~ (cp)*/D? ~ 1%°/D.

Since DY is a closed linear subspace of c(, we have DY ~ K™ for some
n € N (and so 1°/D ~ K™) or D? ~ ¢ (and so 1°°/D ~ 1),

(1) = (4). If Lis a closed linear subspace of D withdimD/L =1,
then L is weakly closed in D. By [65, Theorem 2.3, (c) = (h)] it
follows that L is also weakly closed in 1°°.

(4) = (1). Let L be a closed linear subspace of D as in (4). Since,
by assumption, L is weakly closed in 1°°, 1°°/L has a separating dual
and we imply that (1°°/L)/(D/L) has a separating dual, either. But
(1*°/L)/(D/L) is isometrically isomorphic to 1°° /D, hence, D is weakly
closed in 1*°. O

By a standard application of the Open Mapping Theorem (see
[57, Theorem 3.11]) we get the following result (note that D is weakly
closed if and only if jg /p is injective).

1.3.6. Lemma ([65, Lemmas 2.1 and 2.2]). Let D be a closed linear subspace
of a Banach space €, i: D — E be the inclusion map and 7t: E — E/D be
the quotient map. Assume that every f € D* can be extended to a linear
continuous functional defined on E. Then, in the commutative diagram

D—" 3FE— " LE/D

o e e

we have Imi** = ker m** and i** is injective. If, additionally, E is polar
then:
(1) if D is reflexive then D is weakly closed,;
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(2) if Eis reflexive and D is weakly closed then D is reflexive.

If K is densely valued field, then every non-Archimedean Banach
space of countable type can be isometrically embedded in 1*° as the
next theorem shows.

1.3.7. Theorem (see [47, Theorem 2.5.13] ). Let K be densely valued and
E be a non-Archimedean Banach space of countable type. Then, E can be
isometrically embedded into 1°°.

Proof. At the beginning, for each n € N we construct a linear injection
Th: E = cp — 1%°. By [47, Theorem 2.3.7], Ehasan (1 —1/(n+1))-
orthogonal base (X )m. Since K is densely valued, we can assume
that

LSl >
= m =
(1-%) (

1— L)
for all m € N (for n = 1 the first inequality is skipped).

n+1

Next, for each n € N, define the map T,,: E — ¢y setting

o0 o0
Tn< S amxm) =Y amemecs,

where (en)m is the canonical base of cg. For every x € E, written as

o0
X= ) QamXm am € K(m € N) we get

m=1

1 1
<1 - )HX\ < (1 - ) - max [[amxm|
n n meN

1
< (1——) max|am| - max|x
< (1- 1) - maglan! - max

1 1
< (1= ) |Tux] - —— =||T,
< n) [ Trx| A=) [ Trx|

n
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and

- 1
= > _—_— .
1]l H Z ameH 2 <1 n—|—1> max | amXxm|
m=1
= 1—71 max (|am] - [|[xm]|)
N n+1 meN m m
1 1
>(1-—=)- T
( n+1) nr?eaﬁlaml (1_ 1 ) [T
Thus, for every n € N we finally obtain
1
(1 1)l < Tl < I
n

Hence, the linear map T: E — x 1*° =~ 1%, defined as T(x) :=
neN

(Ti(x), Ta(x), ... ) is a required isometric embedding. O



30 Preliminaries




Orthocomplemented
subspaces

in non-Archimedean
Banach spaces

This Chapter contains results related to the properties of orthocomple-
mented linear subspaces in certain specific non-Archimedean Banach
spaces. Section 2.1 is motivated by the question if every weakly closed,
strict HB-subspace of a non-Archimedean Banach space over a non-
spherically complete valued field K is orthocomplemented. We char-
acterize in detail orthocomplemented linear subspaces of cy(I) and
1°°(I). Also, we construct a non-Archimedean space over C, having
a strict, weakly closed HB-subspace which is not orthocomplemented,
solving negatively the problem stated above. Section 2.2 deals with
the class of Hilbertian spaces, i.e. non-Archimedean spaces for which
every finite-dimensional linear subspace is orthocomplemented. We
prove, assuming that K is non-spherically complete, that all immedi-
ate extensions of ¢y which are contained in 1°° have such property and
among them are those which have no orthogonal base. Section 2.3
refers to the problem if the finite-dimensional orthogonal decomposi-
tion of non-Archimedean Banach space is hereditary for closed linear
subspaces. We determine the classes of non-Archimedean spaces hav-
ing this property and show that the problem has a negative answer
in general. We start with a simple observation.

2.0.1. Lemma ([47, Lemma 2.3.19]). Assume that E has an orthogonal base.
Then, every one-dimensional linear subspace of E is orthocomplemented in E.

31
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Proof. Let {xi};c be an orthogonal base of E and let z € E \ {0}; then,

we can write z = ) Aix; for some A; € K (1 € I). We show that
i€l

[z] is orthocomplemented in E. Since {x;};.; is orthogonal, there is

ip € I such that ||z|| = [[Ai,Xi,]|. Define D = [{Xi}iel\{ig}]' Clearly,

[z] + D =E. If d € D then

lz—d|| = ’ AigXiy + Z Aixi — dH
ieI\{io}
—max { sl | X ox—a b= Il = el
ieI\{io}
hence, [z] L D. O

From Proposition 1.1.7 and Lemma 2.0.1 follows immediately the
following conclusion.

2.0.2. Corollary. If E is a non-Archimedean Banach space with an orthogo-
nal base, then every finite-dimensional linear subspace of E is orthocomple-
mented.

As a direct consequence of Ingleton’s theorem we imply that every
spherically complete linear subspace D of E is orthocomplemented
in E. Hence, if K is spherically complete, then every finite-dimensional
linear subspace of a non-Archimedean Banach space over such K
is orthocomplemented (see [57, Corollary 4.6]). However, the class
of non-Archimedean Banach spaces for which every closed linear
subspaces is orthocomplemented is much smaller. It is characterized
by the following two results.

2.0.3. Proposition ([57, Theorem 5.15]). Let E be finite-dimensional. Then,
every linear subspace of E is orthocomplemented if and only if E has an
orthogonal base.

2.0.4. Proposition (see [57, Theorems 5.13 and 5.16]). Let E be an infinite-
dimensional non-Archimedean Banach space. Then, every closed linear sub-
space of E is orthocomplemented if and only if one of the following equivalent
conditions is satisfied:



Characterization of orthocomplemented subspaces 33

(1) every closed linear subspace of countable type of E is orthocomplemen-
ted;

(2) every closed linear subspace of E is spherically complete;

(38) K is discretely valued and there is a nonempty set 1 and a function
s: I — (Ipl, 1], where p € K is an uniformizing element, such that
E =~ co(I: s) while the set of values of s is well-ordered.

2.0.5. Remark. Note that the condition (3) cannot be restricted only
to the assumption that K is discretely valued. Indeed, assume that K
is discretely valued, I = QN (|pl, 1] and s: r — 1 for each r € 1. Select
a strictly decreasing sequence (pr,) C I. Then, the linear subspace
D = [(xn)nl of co(I : s), where x,, := ep, +... +ep, (n € N), is
non-spherically complete, since the sequence of balls (Bp p, (xn))n
has an empty intersection. Hence, the considered space co(I: s) does
not fulfill the conditions of Proposition 2.0.4.

2.1 Characterization of orthocomplemented sub-
spaces in some concrete non-Archimedean Ba-
nach spaces

In non-Archimedean analysis some properties of non-Archimedean
spaces strictly depend on the valued field K, in particular, on whether it
is spherically complete or not. The Ingleton’s theorem (Theorem 1.1.11)
is the one of the most important example. van Rooij’s result (Theo-
rem 1.1.13) implies that if K is non-spherically complete, every infinite-
dimensional, non-Archimedean Banach space E over such K has a clo-
sed linear subspace D and f € D* without preserving norm lin-
ear extension on E. Also, there exist numerous examples of non-
Archimedean Banach spaces with closed, non-weakly closed linear
subspaces (see for instance [10]). However, if in every dual separating
non-Archimedean Banach space over K each closed linear subspace is
weakly closed, then K is spherically complete (see [20]).

Let D be a closed linear subspace of a non-Archimedean Banach
space E. Consider the following properties of D:

(1) D is orthocomplemented in E;
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(2) D is a HB-subspace (has the HB-property), if each fy € D* has a
norm preserving extension f € E¥;

(3) Disstrict, if for every x € E/D thereis z € E with t(z) = x and
||lz|| = ||x]|, where 7t: E — E/D is the quotient map (equivalently,
see Lemma 2.1.5, if D is orthocomplemented in [x] 4+ D for every
x € E\ D);

(4) D is weakly closed if it is closed in the weak topology o(E, E*).

The property (1) always implies (2) and (3) and if E has a sepa-
rating dual also (4). If K is spherically complete, then every closed
linear subspace of E is a weakly closed HB-subspace. However, in this
case, we can construct an example (see Proposition 2.1.1) of a non-
Archimedean Banach space having a strict, non-orthocomplemented,
HB-subspace.

2.1.1. Proposition ([44]). Let K be spherically complete such that |[K*| =
(0,00). Then there exists a strict, weakly closed HB-subspace of co(I) for
suitable 1 which is not orthocomplemented in co(I).

Proof. By [47, Theorem 2.5.6] there exists a strict quotient map :

co(I) — 1™ for a suitable set I. Now, since K is spherically complete,
we imply from Ingleton’s theorem that D := ker 7t is a weakly closed
and strict HB-subspace of cy(I). Assume that D is orthocomplemented
in cg(I). Then 1 is isometrically isomorphic to a closed subspace of
co(I) and by Theorem 1.1.4 it has an orthogonal base, a contradiction
with Theorem 1.3.3. O

The situation differs substantially if K is non-spherically com-
plete. Every infinite-dimensional non-Archimedean Banach space
has a closed linear subspace without HB-property. The following
problem, formulated in 1993 by Perez-Garcia and Schikhof (see [44]
and [45]), is natural in this context.

2.1.2. Problem. Is every weakly closed, strict HB-subspace of a non-
Archimedean Banach space over a non-spherically complete K ortho-
complemented?

In the sequel we show that the answer for this question is affir-
mative for the spaces ¢y and 1*°. On the other hand, we provide
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a counterexample, demonstrating that in general Problem 2.1.2 has
a negative solution.

The case of cy(I) and 1*°(I)

Further consideration of this chapter, unless otherwise stated, we will
assume that K is non-spherically complete.

This line of research was started by Perez-Garcia and Schikhof
who proved that every one-dimensional, strict linear subspace of 1
is orthocomplemented in 1*° and that every one-codimensional HB-
subspace of c( is orthocomplemented in c( (see [45, Theorem 2.1]
and [44, Theorems 3.4 and 4.3]). Theorems 2.1.13, 2.1.21 and Corol-
lary 2.1.24 extend these results, showing among others that every
HB-subspace of ¢ is orthocomplemented in ¢y and that every weakly
closed, strict linear subspace of 1*° is orthocomplemented in 1°°.

2.1.3. Proposition ([44, Remark 2.3 and Proposition 2.5]). Let E be
a Banach space and f € E* \ {0}. Then ker f, a closed hyperplane of E, is
orthocomplemented in E if and only if there exists a nonzero x € E with
IIf]] = [f(x)I/||x]l. If D is an orthocomplemented linear subspace of E, then
DY is orthocomplemented in E*.

Proof. Assume that ker f is orthocomplemented in E. Then E = [x1] ®
ker f for some x; € E \ {0}. For every x € E we have x = A - x; + X,
where xg € ker f and A € K. Thus, if x # 0 we obtain

FOl _ AL (xa)l ()l
Il = [[Axall [l -

Now, suppose that there exists x € E with |[f|| = [f(x)|/|x||. Then
x ¢ ker f. Taking x € ker f, we get

][+ [1x + xol| = [f(x +x0)[ = [£(x)[ = Il [[x][-

Hence, ||x + xo|| = max{||x||, [|xo||} and we conclude that [x] L ker f.
Let D be an orthocomplemented linear subspace in E and G be an

orthogonal complement of D in E. Then, we can easily check that G°

is an orthogonal complement of D? in E*. O
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Next fact, extending the result of Perez-Garcia and Schikhof (see
[44, Remark 2.3 and Theorem 3.3]) obtained for 1*°, characterizes or-
thocomplemented, finite-dimensional linear subspaces of 1%°(I).

2.1.4. Proposition ([31, Proposition 3.1]). Let D be a finite-dimensional
linear subspace of 1°°(1). Then, the following conditions are equivalent:
(1) D is orthocomplemented in 1°°(I).
(2) Ewvery one-dimensional subspace of D is orthocomplemented in 1%°(I).
(3) Foreachx = (xi)ic1 € D, r{lgf( [xi| exists.

Proof. (1) = (2). Assume that D is orthocomplemented in 1°°(I).
Then, by Proposition 2.1.3, there exists an orthogonal complement H
of D in [1°°(I)]*. But, by Proposition 1.3.4, [1°°(I)]* =~ co(I); hence,
we can write cg(I) = D° + H, where H is a finite-dimensional linear
subspace of cy(I). By Theorem 1.1.4, H has an orthogonal base. Thus,
H* has an orthogonal base, either. But D is reflexive (see Proposi-
tion 1.1.8); hence, H* ~ D** ~ D. Thus, D has an orthogonal base and
every one-dimensional subspace L of D is orthocomplemented in D.
But D is orthocomplemented in 1°°(I), thus, L is orthocomplemented
in 1°°(1).

(2) = (1). It suffices to prove that if G is a linear subspace of D of
codimension 1 which is orthocomplemented in 1°°(I), then D is ortho-
complemented in 1*°(I). So, assume that there is an orthoprojection

t
P: 1°(I) 2% G. Since G C D and G has a codimension 1 in D. there
exists a nonzero d € D for which P(d) = 0. By assumption, there is

an orthoprojection
onto

Q: 1%°(I) —— [d].
Since (I — P)(d) = d and ker(I — P) = D we get that Qo (I — P) is an
orthoprojection of 1°°(I) onto [d]. Hence, P o Qo (I —P) =0 and Qo
(I—P)oP =0. Thus, P+ Qo (I — P) is an orthoprojection of 1°°(I)
onto G + [d] = D.
(2) & (3). Let f € 1°°(I) ~ [co(I)]*. Then, if [f] is orthocomple-
mented in 1*°(I), by Proposition 2.1.3,

[f1° ={x € I*°(D]* ~ co(I) : f(x) =0} ~ ker f
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is orthocomplemented in [1°°(I)]*. Hence, using Proposition 2.1.3, we
get the equivalence: [f] is orthocomplemented in 1°°(I) if and only
if ker f is orthocomplemented in cy(I). But, by Proposition 2.1.3, it is
equivalent with

] = max{(f(x)!: ] < 1} = max]f(e,),

where (ej)ic1 is the canonical base of cy(I). O

The key tool for the proofs of the main results of this section is the
characterizations of the strictness in terms of immediate extensions of
linear subspaces provided in Theorem 2.1.6. First, a lemma.

2.1.5. Lemma (see [44, Proposition 1.2] and [32, Lemma 1]). Let D be
a closed linear subspace of a non-Archimedean Banach space E.
(1) Disstrictin Eifand only if for each x € E\D, D is orthocomplemented
in D + [x].
(2) Let x € E\ D. Then D is orthocomplemented in D + [x] if and only
if there exists dg € D for which dist(x, D) = ||x — dg|].

Proof. (1) (=) Take x € E\ D and assume that D is strict in E. Let
m: E — E/D be the quotient map. Then, there exists u € E with
n(u) = 7mt(x) and |[u|| =[|7t(uw)]|. Thus (uw—x) € ker 7t and we can find
do € D such that u = x + dy. We get

do|| = = = inf —d|| = inf dg) — d||-
I+ doll = ) = I(w)ll = inf [u—d] = inf [[(x-+ do) <l

Hence, taking a nonzero A € K and d € D we obtain

d
MG+ do) + ]| = A« || (e + do) + H > -+ dol

A

and conclude that [x 4 do], the one-dimensional linear subspace gen-
erated by x + dy € E, is an orthocomplement of D in D + [x].

(<) If for each x € E, D is orthocomplemented in D + [x] then for
each x € E, there exists dy € D such that (x + dy) L D.Hence

I7(x)]| = dist(x, D) = [|x + do.
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Since 7t is surjective, we conclude that for every y € E/D there exists
x € E such thaty = 7t(x) and ||7t(x)|| = ||x]|.

(2) Let D be orthocomplemented in D + [x]. Then there exists
dp € D such that [(x — do)] L D. For every d € D we have

X — do + d|| = max{|[x — do, [|d[|};

thus, ||x — do + d|| > ||x — do|| and finally dist(x,D) =[x — do].
To prove the converse, assume that there exists dg € D for which
dist(x, D) = ||[x—dp||. Suppose D is not orthocomplemented in D + [x].
Thus, for each d € D there exists d; € D and A € K with

[A(x = d) — da|| < max{[|]A(x — d)|, [|d1]]}-

If d = dy, then

d
X—d()—f1

Ax —do) — dq|| = Al -
AGx o) — ]| = A 2

< Al |lx — do]l-

Thus, we conclude that || x— (dg+ %) || < |lx—dol|| but (dg+di/A) € D,
a contradiction. Since, for each d € D,

[IA(x = do) — d|| = max{[[A(x — do)||, [[d]l},
we imply that (x —dp) L D. O

2.1.6. Theorem ([32, Theorem 2.4]). Let E be a non-Archimedean Banach
space, and let G be a closed linear subspace of . Then, G is strict in E if
and only if for each linear subspace L of G, every immediate extension of L
in E is contained in G.

Proof. (<) Let G C E be a closed linear subspace which is not strict.
It means, applying Lemma 2.1.5, there exists x € E such that G is not
orthocomplemented in G + [x] and dist(x, G) is not attained. Hence,
dist(x, G) < ||x|| and G + [x] is an immediate extension of G, which
is not contained in G.

(=) Now, assume that there exists a linear subspace L of G and
a linear subspace L of E, which is an immediate extension of L but it
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is not contained in G. We show that G + L is an immediate extension
of G. Let Ebe a spherical completion of E and i: E — E be a suitable
isometric embedding. Since i(G) C E, E contains a spherical comple-
tion of i(G) which we denote as G. Clearly, i(L) C i(G) and G contains
a spherical completion of i(L), denoted as L. Observe that i(Ly) is
an immediate extension of i(L). Thus, i(Ly) C f; indeed, otherwise,
assuming that there is xg € i(Lg) \ L we imply that [xo] + L is an im-
mediate extension of i(L), a contradiction with maximality of L (see
Corollary 1.2.7). Hence, we obtain

i(G) Ci(G+Lo) =i(G) +i(Ly) ¢ G

and conclude that (G + L) is an immediate extension of i(G). There-
fore, G + L is an immediate extension of G. Take z € L \ G. Then,
dist(z, G) is not attained; thus, applying Lemma 2.1.5, we conclude
that G is not strict in E. O

2.1.7. Proposition ([44, Proposition 2.1]). Let D be a closed linear sub-
space of E.
(1) If D is strict in E and E/D =~ co(I : s) for some set I and s: I —
(0, 00), then D is orthocomplemented in E;
(2) If D is a HB-subspace of E and D ~ 1°°(1 : s) for some set 1 and
s: I — (0, 00), then D is orthocomplemented in E.

Proof. (1) Let mg: E — E/D be the quotient map and {ui};c; be an
orthogonal base of E/D. Since, by assumption, D is strict, there exists

{zi}ic1 C Esuch that 7g (z;) = u; and ||zi|| = [[ui| for all i € I. Then,
themap T: E/D — E givenby > Ajuy — ) Aqz; is a linear isometry
i€l iel

for which g o T is the identity on E/D. Hence, D is orthocomple-
mented in E.

(2) For each i € I the coordinate functional e} € D* given by
ef(x) = xq, where x = (x;); € 1°°(I : s) has the norm equal to 1/s(i).
Since D is a HB-subspace of E, there exists a preserving norm extension
fi € E* of ef. Then, the map P: E — D given by x — (f}(x))ie1 is
a required orthoprojection from E onto D. O
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There is a duality between the HB-property and strictness which
is shown by the following result.

2.1.8. Proposition ([44, Proposition 2.5]). Let D be a closed linear sub-
space of a non-Archimedean Banach space E. Then, the following assertions
are satisfied:
(1) If D isa HB-subspace of E, then D° is strict in E*.
(2) If D is strict in E and E/D is reflexive, then D° is a HB-subspace
of E*.
(3) If D is orthocomplemented in E, then D° is orthocomplemented in E*.

Proof. (1) If D is a HB-subspace of E and i: D — E is the inclusion
map, then its adjoint i*: E* — D* is a strict map. But then, ker i* = DY
is strict in E.

(2) Let mg : E — E/D be the quotient map. Then its adjoint 7y :
(E/D)* — E* is an isometric embedding for which 7tf ((E/D)*) = DO,
Hence, to show that D is a HB-subspace of E* it suffices to prove that
for any ¢ € (E/D)** there exists ¢g € E** such that ||¢|| = ||doll and
o o g = . Since, by assumption, E/D is reflexive, there is z € E/D
such that ¢ = jg,p(z) (jg/p: E/D — (E/D)** is the natural map)
and ||z|| = ||$||. Also, by strictness of D, there is x € E with g (x) =z
and [|x|| =||z||. Then, &¢ := je (x) satisfies the required conditions.

(3) Note that if S is an orthogonal complement of D in E, then S°
is an orthogonal complement of D? in E*. O

Let D be a closed linear subspace of E and S be a closed linear
subspace of D. Consider the following commutative diagram, where
i1, g, mp are natural maps and i, makes the diagram commute

Di—1>E

iy

2.1.9. Proposition ([44, Proposition 2.7]). Let D be a closed linear sub-
space of E and let S be a closed linear subspace of D. If D is strict (resp. has



Characterization of orthocomplemented subspaces 41

the HB-property, is orthocomplemented) in E, then i,(D/S) is strict (resp.
has the HB-property, is orthocomplemented) in E/S.

Proof. (1) Assume that D is strict. Let x € E. Then we can find d € D
such that [|[x —i1(d)|| < ||[x —11(d’)]| for all d’ € D. Now, for all s’ € S
and d’ € D, we have

[7e (x) —imp (d)|| = [[7e (x) — me (11 (d)) |
< x=t(d)] < fx —ix(d") = sl
Hence, ||7te (x) — iamp (d)]] < ||7e(x) — amip (d')]] for all d” € D and

we see that dist(mg(x),1,(D/S)) is attained. Thus, 1,(D/S) is strict
in E/S.

(2) Assume that D is a HB-subspace. Let f € (D/S)*. Then, f o
np € D*, so by assumption there is g € E* such that ||g|| = ||[fonp || =
|If|| and g o iy = f o mtp. Since S C ker g, there is a unique f' € (E/S)*
such that f' o mg = g. One verifies that then also ' o i, = f and that
11 = IIf]]-

(3) Suppose that D is orthocomplemented and let P: E — D be an
orthoprojection. Since S C ker(7tp o P), there is a unique continuous
linear map Q: E/S — D/Ssuchthat Qomg =7mp oPand ||Q| <1
Also, Q oipmp (x) = mp (x) for all x € D. So, since mp is surjective, we
conclude that D/S, which implies that i,(D/S) is orthocomplemented
in E/S. O

2.1.10. Proposition ([44, Proposition 2.8]). Let D be a closed subspace
of E. If for each closed linear subspace S of D with dim D/S = 1 we have
that i,(D/S) has the HB-property in E/S, then D has the HB-property in E.

Proof. Let f € D* \ {0} and let S = ker f. Take h; € (D/S)*, then
f = hy o tp and there exists ¢ > 0 such that [hy(z)| =c - ||z|| forall z €
D/S. By assumption and Proposition 2.1.7 there is an orthoprojection
hy : E/S — D/S such that h; o 1, is the identity on D/S. Now, set
f":=hy o hy omg. Then, ||f'|| = [If||, f' o i; = f and we are done. O

2.1.11. Proposition ([32, Proposition 3]). Let x,y € E be non-zero ele-
ments for which ||x|| = ||y|| and y ¢ [x]. If the dist(y, [x]) is not attained
then there exists a centered sequence of closed balls (B v, (Am))m such that:
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(1) Tm+1 < Tm, |7\m| =1 and Hy - }\mXH = |7\m - }\m+1| ' ”XHfOi’ Elll
m e N,
(2) Am € Brrpyy(Amgt1) forallm e N,
(3) r=infry, = lim vy, =dist(y, x])/|lyll <1, v >0,
m

m—o00

4) N Bir,(Am) =0,

m=1

(5) ly—Mx| = nllinoo Am — Al - ||x|| for every A € K.

Proof. (1) Since dist(y, [x]) is not attained, there exists a sequence
(Am)m C K such that ‘rrngnoo Ily — Amx|| = dist(y, [x]) and Ay, =1 for
all m € N. Without loss of generality, we may assume that [[y—Amx|| >
Ily — Amr1x]|| for each m € N. Then, we obtain

Y = Amx[ = lly = Amx = (Y = Ams1X)l| = Am = Al - (Il
and similarly
Y = Amrax]| = Pms1 = Amaal - 1]

Thus, we conclude that Ay — A1 1] > [Am1—Am2|- Now, we choose
a sequence of real numbers (1, )m for which

Tm > Am — }\m+1| > Tm41 > |}\m+1 - Am+2‘

and form a sequence of closed balls (Bk r,, (Am))m-

Since Am—Amii1l < Tmand rm41 < T, wegetAmi1 € Brr, (Am)
and By r, ., (Am+1) C B r,, (Am)-

(2) From the inequality Ay, — A1l > Tim41 One gets

Am & Brr, . (Am41) forallm e N.
(3) We have r = infr,, = lim rm,, = lim [A;y — A41]. Since
m m—o00 m—o00
[y = Amx|| = Am = Ameal - Ix]],

by (1), we get [y — Amx|| — dist(y, [x]) for m — oo and

dist(y, [x]) _ dist(y, [x])
(Il [yl
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Sincey ¢ [x], r > 0.
(4) Assume that there exists Ay € K such that A\g € [\ Bk, (Am).

m=1
Then, foreachm € N, we have [Ag—Am 1| < Tmi1. Since Ay —Am 1| >
Tm.1, We obtain
Am = Aol = Am —Ami1 + Amg1 — Aol = [Am — Al
Thus, by (1)

1y=Amx) = U=20%)[| = [[Am=20)x[| = [|An—Ams1)x[| = [ly—Amxl]

and
ly —Amx|| = |ly —Aox|| forallm € N.

Hence, we conclude that dist(y, [x]) = ||y — Apx||, a contradiction.
(5) Fix A € K. Since dist(y, [x]) = liin ly — Amx]|, by (1), we can
m—00
choose m, € N such that

Y = Ax([ > [y = Amy x| = Py = Ayl - 1]

Hence,
Iy = Axl] = 110y = 20) = (§ = Amy )| = A=Ay |- ]

and [Am, —Am, 41l < A —Am,|. Thus, we imply A ¢ BK,Tmﬁl(?\mﬁl)
and
|)\*)\m| = P‘f)\m;\ +)\m;\ *}\m| = |}\*7\m)\‘

for all m > m,. Finally we get ||y — Ax|| = liin Am — Al %] O
m—00

2.1.12. Proposition ([31, Proposition 3.3]). Let x = (x')ic1, Yy = (y')ier
in 1°°(1) be such that ||y|| = ||x|| and [x,y] has no orthogonal bases. Denote
N :={k € I:|x¥| > dist(y, [x])}. Then

(1) max Ix!| does not exist and [x*| = [y*| for all k € Ny;

(2) set c; == yb/x" for i € Ny, then |ci| = 1 for every i € Ny. If
(x™)y is any sequence of elements of the set {x* : i € N} such that
Ix™k| = ||x]| for k — oo, then ||y — cn, x| — dist(y, [x]) if k — oo
and |ly — Ax|| = klgigo len, — Al - ||x]| for every A € K.
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Proof. (1) Since [x, y] hasno orthogonal base, dist(y, [x]) is not attained
by Lemma 1.2.1. Hence, dist(y, [x]) < ||x|| and the set N is not empty.
By Proposition 2.1.4, if x € l°°( ) and maxicg [x!| exists, then the
one-dimensional subspace [x] C 1°°(I) is orthocomplemented in 1*°(I).
Then, we can write y = Ayx + yo, where Ay € K, yo € 1°°(I) and
yo L [x]. We get

dist(y, [x]) = dist(Ayx + yo, [x]) = dist(yo, [x]) = [lyol|

and conclude that dist(y, [x]) is attained, a contradiction.

Let k € Np. Hence, we can choose A € K for which ||y — Ax|| <
Ix¥| < ||x||. Since [y* —Ax¥| < ||y —Ax|| < [x¥| we obtain [x*| = Ax¥| =
Ix¥| and |A| = 1.

(2) Let (x™)c C {x; : 1 € Ng} be a sequence of scalars, such that
x| — ||x|| if k — oo. Since maxicr [x!| does not exist, (x™*)y is
infinite and [x™*| < ||x|| for all indices ny. By Proposition 2.1.11 we
may choose a sequence (A )m C K, [Ajy| =1 for all m € N, such that
ly — Amx|| — dist(y, [x]) if m — oo, and the sequence of closed balls
(Bk r,,, (Am))m which satisfies the conditions of Proposition 2.1.11. Fix
m; € N. We shall prove that there exists 1y () € {n,n2,...}such
thatcy, € BK,rml (Am,) if e > Ny (). Then, by Proposition 2.1.11 (5),
we obtain

y—emoxll = lm_ Am—en el < P 1= Aol = [y ~Am, 1]

and prove that ||y — cn, x| — ||y — [x]|| for k — oco.
Since [x™| — ||x|| we can choose an index n,, with

x| Tm,
x|

Tm1+1

for all ny > ny. From Proposition 2.1.11, we get
Y = Ay 1Xll = A2 = Ayl - Il < vy - [

Next, taking cy,, such that ny > n,,, we obtain

|an - }\m1+1| : |Xnk| = |ynk - )\m1+1xnk| < Hy - )\m1+1XH

Tm

ST+t X< T " xR = Ty - TR

m1+1
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Hence, [cn, — Am,+1| < Tm, and we finally conclude

Crye € Brrpn, (Amy41) = Brry, (Amy)

for all ny > ny,. By Proposition 2.1.11, the sequence of closed balls
(Bk,r,, (Am))m has an empty intersection; thus, there is p € N with

Cnm € B, (Ap) \ Br g (Api1).

We see that Bk r, (cn,) = Bk r, (Ap). Taking in the next step my := p+1

we can find ny (,) with ¢, | € B(Am,, Tm,) and q € N such that

(my
an(mz) S BK,rq (Aq) \ BK,rq+1 (Aqul)'

This way we form inductively a subsequence (Bx,r,, (c¢m,))x of the
sequence (Bk . (Am))m, which also satisfies the conditions of Propo-
sition 2.1.11. Now, by Proposition 2.1.11 (5), we conclude

Iy =Nl = Jim lem, — A+ [ = lim [en, Al [ O

2.1.13. Theorem ([32, Theorem 3.4]). Let D C 1°°(I) be a finite dimen-
sional linear subspace. Then, D is strict in 1°°(1) if and only if D is ortho-
complemented in 1°°(1).

Proof. Suppose that D is not orthocomplemented in 1°°(I). By Propo-

sition 2.1.4, there is x = (x!)ic1 € D for which maIx Ix!| does not exist.
i€

We shall prove that there is an infinite-dimensional subspace F C 1%°(I)
which is an immediate extension of the one-dimensional subspace
[x]. Then, applying Theorem 2.1.6, we conclude that D is not strict
in 1°°(1).

Let Eg C Kbean arbitrary closed linear subspace of countable type;
then, £y has no two nonzero mutually orthogonal elements as an im-
mediate extension of one-dimensional linear space. By Theorem 1.3.7,
there exists a linear isometry T: Eg — T(Eq) C 1°°(I). Thus, T(Ep) has
no two nonzero, orthogonal elements, either. In the next part of the
proof we will construct an isomorphism S: T(Ep) — S(T(Ep)) C 1°°(I)
such that x € S(T(Ep)). This way, we construct a required infinite-
dimensional immediate extension of [x].
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Note that, since T(Ey) has no two nonzero mutually orthogonal
elements, we can choose a basis (vi )k (vik = (Vbiel) of T(Ep) such
that ||vk|| = ||[vk41]| forall k € Kand forj =3,4,...

diSt(\)j, vi,... /ijl]) > dist(\)jfl, vi,... ,ijz]).

Denote v := (v')ie1 = v1 and Tj == dist(vj, [V]) - v| 7! forj =2,3,...
Set Ng := {i € I: w!| > 0}. For each i € Ny we construct an infinite
sequence of scalars (AL)y, (possible A, = 0) such that Al = 1 and
vi =AL-vifork=23,...

Now, define a map h: I — Ny which satisfies

. . X i
It < A2 for everyiel
v

(recall that max;c [vi| does not exist by Proposition 2.1.4). Next, form
an infinite sequence (xx )x C 1%°(I), settingxq = x, xx = (x}()ie 1 Where
Xi _ }\h(i)xi

k = Mk .

We shall prove that the linear map S: [(vi)x] — [(xi)k], defined by

o0 oo
n=1 n=1

where a, € K (n € N) is a similarity, i.e. there exists k(= ||x/|/|[v]|) > 0
with [[S(uw)[| =k - [[u]| forall w e [(vic)il.
It is easy to see that ||xk|| = ||x|| for every k € N. We prove that

mo myo
I ol = .
aixi|| = aivi
[l ]| 4 ;
i=1 i=1

forall my € N and a; € K, (i=1,...,myp). First, suppose that there
exists ip € N with
laj,| > max |ail.
myg,

Then

= lai| - [lviy | = las,| - [}Vl

myo
E aivi
i=1
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and
mo
D aixt| =laggl - [Ixi, | = lagol - 1]l
i=1
Thus, we are done.
Now, assume that there are indices iy # i; with |a;,| = [ay,| =
max |ai]. We can write
izl,...,mo
myo myo
Z AiVvi|| = ||QiyVig + Z aivill-.
i=1 i=1, iz
my .
Setw =} ajvi € 1°(I) and take a sequence (x™*), C {x':
i=1, il

i € I} with [x™| — ||x|| if k — oo. Then, WM™ — |v| for
k — oo. Without loss of generality, we may assume that hine)] >
max{ry, ..., Tm,} - [[V|| for all k € N. Then, by Proposition 2.1.12, we
have Iv?(nk}l = ()| forall k € Nand i € {1,..., my). Since W, vi,]
has no orthogonal base, by Proposition 2.1.12, we conclude that there

is a subsequence (my )y such that

h
Wh(mk) — gh(mk)vio(mk)/
where (gy (m,))x is a sequence of scalars for which gy, (1, )| = |aj,| for
allk € N and

h—(mk)|

lagyvip + Wil = lim fag, + gyl - v,

On the other hand,
my my
whimd) — 3~ a (™) — yhimi) Y A ™)
i=1,1£1ig i=1,1£ig
h(my) Mo
— h(mk) v h(mk)
RGN h(my) Z al}‘l
i i=1,izig
Hence,
h(my) Mo
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Thus, we obtain

mo
. h
2 awi| = lim |ag, + gnmy)|- (e
i=1
my
. h(my) h h(my)
= lim jajovi T 4V ) - ;ﬁ aidg
=1, 0
mo
Cm | 5wl s
k—o0 | . -
i=1, 17610
vl lim Zal ™| g
RS
my
” ” hm'Za <M Zoa- i
i X iXi||-
LS Il &
Assume that there exists kg € Ny such that
- Idl -
Z aixfo e > Z aivi
o el 1=
Then,
m my
ZO aixlfo . M — ’Za ai)\h(ko | k0| HVH
1 1
2 Il = & || [
mo
< Z(li_?\1 (ko) h(ko) |—
i=1

a contradiction.

Now, setting F := [(xk)x] we provide a promised immediate ex-
tension of [x]. Clearly F, as an infinite dimensional subspace is not
contained in D; thus, applying Theorem 2.1.6, we conclude that D is
not strict in 1°°(I).

For the converse, observe that if P: 1°°(I) — D is an orthoprojec-
tion, then the map (I —P): 1°°(I) — 1°°(I)/D is the strict quotient. [

The following conclusions are almost straightforward
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2.1.14. Corollary. Every strict, finite-dimensional subspace of 1%°(I) is
a HB-subspace in 1°°(1).

2.1.15. Theorem. Every finite dimensional linear subspace of 1°°(1) which
is strict has an orthonormal base.

Proof. Let D be a finite dimensional linear subspace of 1°°(I) which
is strict in 1°°(I). Then, by Theorem 2.1.13, D is orthocomplemented
in 1°°(I). By Proposition 2.1.8, D° is orthocomplemented in co(I) ~
[1°(I)]*. But D* =~ ¢¢(I)/D°, hence D* is isometrically isomorphic
to a closed subspace of cy(I). By Gruson’s theorem (Theorem 1.1.4)
it follows that D* ~ K™ for some n € N. Thus D** ~ D ~ K™ as
a reflexive Banach space by Proposition 1.1.8. O

Recall the following fact.

2.1.16. Proposition ([44, Corollary 3.7]). If D is a weakly closed linear
subspace of 1°° and D is strict in 1°°, then D has the HB-property in 1°°.

Proof. Let S be a closed linear subspace of D with dimD/S = 1. Ac-
cording to Proposition 2.1.10 it suffices to prove that i,(D/S) (where i,
is the map in the diagram presented above Proposition 2.1.9) is a HB-
subspace in 1°°/S. Applying Proposition 2.1.9, since, by assumption,
D is strict, i,(D/S) is a one-dimensional and strict subspace of 1°°/8S.
But, by Theorem 1.3.5, 1°°/S ~ K™ for some n € N or 1°°/S ~ 1*°. In
the first case the conclusion is obvious, in the second, follows form
Theorem 2.1.13. [

Note that the converse is not true as the following example shows.

2.1.17. Example (see [44, Remark 2.3]). Let E = K2 (see Example 1.2.4).
Then E has no orthogonal base. Since ||E|| = [K|, by [47, Theorem 2.5.6]
there is a strict quotient map 7: ¢¢ — E and kerm is a strict two-
codimensional subspace of cy. Thus, ker 7 cannot be orthocomple-
mented in ¢y, since E has no orthogonal base. Let D := (ker 71)°. Then
D is a two-dimensional linear subspace of 1°°(~ c{). Since ker 7 is
strict in cy, it follows from Theorem 2.1.8 that D is a HB-subspace
of 1°. Assume that D is strict in 1*°. Then, by Theorem 2.1.13, D is
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orthocomplemented in 1°° and by Theorem 2.1.15, it has an orthogonal
base, a contradiction.

In the sequel, we need the following lemma, which was originally
proved for 1 by Perez-Garcia and Schikhof (see [44, Theorem 5.1
i) & iv)]). With cosmetic changes it works also in this context.

2.1.18. Lemma. Let D be a closed linear subspace of 1°°(1) such that D* is
of countable type. Then, D is orthocomplemented in 1°°(1) if and only if D
is weakly closed and for every closed subspace F of D with dim D/F < oo,
D/F is orthocomplemented in 1°°(I)/F.

Proof. (=) Assume that D is orthocomplemented in 1°°(I). Then, since
1%°(I) has a separating dual, D is weakly closed in 1°°(I). The rest of
this part of the proof follows from Proposition 2.1.9.

(<) First we show that D* has an orthogonal base. By Proposi-
tion 2.1.10, D is a HB-subspace of 1*°(I). Hence, the adjoint of the
inclusion map i*: [1°°(I)]* — D* is a strict quotient, ker i* ~ D° and
we imply D* ~ ¢y(I)/D°. Since, by assumption, D* is of countable
type, it is enough to prove that every finite-dimensional subspace
G of ¢(I)/D° has an orthogonal base. So, assume that G is a finite-
dimensional linear subspace of ¢y (I)/D®° and mp: co(I) — co(I)/D® is
the canonical surjection. Let M be a subspace of c(I) with tp(M) = G.
Note that

co(I)/(D? +M) = (¢co(1)/D°)/((D? + M)/D?).

Thus, the space co(I)/(D° + M) is of countable type as a quotient of a
space of countable type. Therefore, co(I)/(D° + M) has a separating
dual and we imply that D® + M is weakly closed in co(I) as well as it is
polar by [61, Corollary 4.8]. Let S := (D° 4+ M)° be a linear subspace
of 1°°(I). Then,

S° = (D° +M)°° =D° + M.

Since D/S is a finite-dimensional subspace of 1>°(I)/S, thus, by as-
sumption, D/S is orthocomplemented in 1*°(I)/S and, by Proposi-
tion 2.1.8, (D/S)° is orthocomplemented in (1>°(I)/S)*. Observe that
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(1°°(I)/S)* is isometrically isomorphic to S°; indeed, if q: 1*°(I) —
1°°(1)/S is the natural quotient map, then the required isometry T:
[1°(1)/S]* — S° is defined by T(f) := fo q. But then, T((D/S)°) = D°
and we imply that D° is orthocomplemented in S°. Hence, there exists
a closed linear subspace M of S® which is an orthogonal complement
of D in S°. Clearly, D®+M = D° +M;. So, mp(M1) = G. But My, be-
ing a linear subspace of cy(I), has an orthogonal base by Theorem 1.1.4.
Hence, so has G and we conclude that D* has an orthogonal base.
As D is weakly closed HB-subspace of 1°°(I), by 1.3.6 D is reflexive.
Thus, since D* has an orthogonal base, D** ~ D ~ 1°°(] : s) for some
set ] and a maps s: ] — (0, 00). Applying Proposition 2.1.7, we finally
conclude that D is orthocomplemented in 1%°(I). O

2.1.19. Lemma ([32, Lemma 3.6]). Let D be a closed linear subspace of a
Banach space E. Let t € (0,1). If D is t-orthocomplemented in E then D°
is t-orthocomplemented in E*.

Proof. Let P: E — D be a linear projection with ||P|| < 1/t. Define the
map q: E* — D° by q(f) := f — f,p o P. Then, q is a projection. We
get

|f—f,p oP|| =sup

x£0 [Ix]]
f P
< sup max { If(x)ll I(f/p o )(X)|}
X A0 1] [

f P
w0 Xl

f “|IPI - lIx 1
< s /ol 171 ||} <o
X0 ] t

Thus, D° is t-orthocomplemented in E*. ]

2.1.20. Lemma ([31, Lemma 3.7]). Let D be a closed linear subspace of
a Banach space E, such that the quotient space £/D is of countable type.
Then, for every t € (0,1), there exists a t-orthocomplement of D.
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Proof. Lett € (0,1). The quotient space E/D is of countable type, so
ithasa ﬁ—orthogonal base {e1, ey,...}. Now let q: E — E/D be the
quotient map, so we can choose x1,x2,... € E such that q(xn) = en
and [[xn|| < ||en ]|/t for each n € N. The formula

T< > ?\nen> =) Axn, M€K
n=1

n=1

defines a linear map T: E/D — E for which ||T|| < 1/t and q o T is the
identity on E/D. O

Using argumentation of Perez-Garcia and Schikhof (see [44, Prob-
lem 4]), we obtain.

2.1.21. Theorem ([32, Corollary 3.5]). Let D be a weakly closed linear
subspace of 1%° such that D is strict in 1°°. Then D is orthocomplemented
in 1.

Proof. Let D be a weakly closed subspace of 1> such that D is strict
in 1°°. By Proposition 2.1.16, D is a HB-subspace. Let F be a finite-
codimensional closed subspace of D. We prove that D /F is orthocom-
plemented in 1°°/F. Using Lemma 2.1.20 we conclude that F is weakly
closed in 1*°. From Proposition 2.1.9, since D is strict in 1*°, we imply
that D/F is a finite-dimensional and strict subspace of 1°°/F. But F is
weakly closed in 1*° and by Theorem 1.3.5 and Theorem 1.3.7 either
1%°/F ~ K" for some n (then D/F is orthocomplemented in 1°°/F), or
1°/F ~ 1. If 1*°/F ~ 1%, it follows from Theorem 2.1.13 that D/F
is orthocomplemented in 1°°/F. In this case, by Theorem 1.3.5, D is
isomorphic with 1°°; hence, D* is of countable type. Applying Lemma
2.1.18 one gets that D is orthocomplemented in 1°°. O

However, it is unknown if the following question has an affirmative
answer.

2.1.22. Problem. Let D be a weakly closed, strict HB-subspace of 1°°(1).
Is D orthocomplemented in 1°°(I)?
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Applying the duality between strictness and HB-property, estab-
lished in Proposition 2.1.8, we can characterize certain class of HB-
subspaces of co(I).

2.1.23. Theorem ([32, Theorem 7], [31, Theorem 3.8]). Let H C co(I)
be a closed linear subspace such that cy(I1)/H is of countable type. Then H is
a HB-subspace of co(I) if and only if H is orthocomplemented in co(I).

Proof. Assume that H is a HB-subspace of c((I) such that the quotient
space Ey := co(I)/H is of countable type. By [61, Theorem 4.4], Ey
is polar, thus it has a separating dual (Ey)*. Hence, H is weakly
closed in co(I). By [61, Corollary 4.8], H, as a weakly closed subspace
of co(I), is polar. Hence, H® = (H°°)° = (H°)°° and the subspace
H® C co(I)* is polar, either. But co(I)* ~ 1°°(I) and 1°°(I)* ~ co(I).
Thus, we can consider H® as a subspace of 1°°(I). From Proposition
2.1.8 we imply that H® is strict in 1°°(I).

Let F C H° be a finite-codimensional linear subspace of H°. Then
H°/F is a finite-dimensional subspace of 1°°(I)/F and by Proposi-
tion 2.1.9, (since H° is strict in 1°°(I)) strict in 1°°(I)/F. Let t € (0,1).
Applying Lemma 2.1.20 we imply that H is v/t-orthocomplemented
in co(I). But then, by Lemma 2.1.19, H® is v/t-orthocomplemented in
1°°(I). Using Lemma 2.1.20 again, we get that F is v/t-orthocomple-
mented in H° and finally conclude that F is t-orthocomplemented in
1°°(I). By Lemma 2.1.19, F° is t-orthocomplemented in (1°°(I))*. Let
j: FO — (1°°(I))* be the inclusion map. Using [66, Proposition 6.1], we
conclude that the adjoint

U ()T = (F2)" = (1°(D) ™ /F°°

is a quotient map.
Since F, as a complemented linear subspace of 1*°(I), is weakly
closed in 1%°(I), by [61, Corollary 4.8], it is polar. Thus, F = F°° and

12(I)/F >~ (1(1)*/F°° ~ (F°)*.

F° is a closed subspace of co(I) ~ (1*°(I))*, hence, it is isometrically
isomorphic to cg(]) for some set ], or to K™. It follows that (F°)* ~
1°(J) or (F°)* ~ K™ and 1°°(I)/F ~ 1°°(]) or 1°(I)/F ~ K™.
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By Proposition 2.0.3, every linear subspace of K™ is orthocom-
plemented in K™. If 1%°(I)/F ~ 1°°(]J), we can apply Theorem 2.1.13,
and conclude that H°/F is orthocomplemented in 1°°(I)/F. By Lem-
ma 2.1.18, H® is orthocomplemented in 1°°(I). Finally, using Proposi-
tion 2.1.8, we deduce that (H°)° = H is orthocomplemented in c((I).

O]

2.1.24. Corollary. Let H C cg be a closed, linear subspace. Then H is
a HB-subspace of c if and only if H is orthocomplemented in cy.

2.1.25. Corollary. Let H C co(I) be a closed, linear subspace of countable
type. Then H isa HB-subspace of co(1) ifand only if H is orthocomplemented
in co(1).

Proof. Clearly, H is a HB-subspace if H is orthocomplemented in c¢(I)
(then every f € H* has a linear, preserving norm extension on cy(I)
defined by foP, where P: ¢o(I) — His an orthoprojection). So, assume
that H is a HB-subspace of cy(I). Let (e;)ie1 be standard base of cq(I).
By Gruson’s theorem (Theorem 1.1.4) H has an orthonormal base,
say (xn)n. Then xn = ) al'e; (n € N), where al* € K and for
every n € N the set {i el EII : al* # 0} is countable. Hence, the set
I[p ={i e I:al # 0,n € N}is also countable. Let D := [(ei)ier,l-
Then H C D and D is a linear subspace of countable type which is
orthocomplemented in cy(I). Obviously, H is a HB-subspace of D.
From Corollary 2.1.24, we conclude that H is orthocomplemented
in D, hence in ¢y (I). O

We left as open the following question.

2.1.26. Problem. Let H be any closed linear HB-subspace of cy(I)
which is not of countable type. Is H orthocomplemented in cq(I)?

The solution of Problem 2.1.2

Theorem 2.1.21 and Corollary 2.1.24 show that the question formulated
in Problem 2.1.2 has an affirmative answer for the spaces ¢y and 1*°.
However, in general the answer is negative. Theorem 2.1.30 presents an
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example of the 4-dimensional normed space E4 over Cp,, and its strict,
weakly closed HB-subspace which is not orthocomplemented. The
construction of such space requires to select a sequence of elements of
Cg, with very special properties. To prove the main result we need to
prepare.

If K is non-spherically complete, we can select a centered sequence
of closed balls (Bk,r, (cn))n with an empty intersection. Then, we
can define the non-Archimedean norm on the linear space K? (see
Example 1.2.4), setting

[(x1,%2)|]v := lim |x; —xacnl, (x1,%2) € K%
n—oo

The normed space (K2, || - ||,) has no orthogonal base. It is quite nat-
ural to ask whether we can find a centered sequence of closed balls
in the finite-dimensional space (K™, ||.||) for n > 2 (with the norm
I(x1,...,%n)| = max; [xi|) which has not only an empty intersection,
but it has some other special properties, crucial for defining specific
norms on K™*!, The answer to this question, which was given for
n = 3 by van Rooij (see [56, Theorem 1.14]), is contained in Theo-
rem 2.1.28.

Recall that a subset L C E is a linear submanifold in E if there exist
a linear subspace D C E and x € E such that L =x + D.

The following lemma results almost directly from Proposition 2.0.3.

2.1.27. Lemma. Let E be a finite-dimensional normed space with an orthog-
onal base. Then for any x € E and for any linear submanifold L in E there
existsy € L such that dist(x,L) =[x —y].

Proof. Let L =z + F, for some z € E and linear subspace F, C E. By
Proposition 2.0.3, there is an orthocomplement Fy, of F in E. Then,
X =Xq+Xb,Z=2a +Zb, Xa,Za € Fa, Xb,zp € Fp and

dist(x,L) = inf ||x —(z+u)| = inf |xqa +Xxb — (za + zb + U]
uekF, u€ek,

= inf max{|[xqa —za —ull, [[xb —zb|l} = [[x6 — zb||-
uekq

Setting y := z + (xq — zq) We are done. O
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2.1.28. Theorem ([31, Theorem 2.10]). Let K be separable and densely
valued. For every n € N there exists a centered sequence of closed balls
(Bkn r, (ck))x such that for every submanifold L in K™ (where K™ is equip-
ped with the standard maximum norm) there exists kg € N for which

LN BK“,rkO (Cko) = 0.

Proof. Denote by

S=={(abl,...,b" ) eK" x...x K":
%,—/
n

la| <1, b =1forj=1,...,n—1}.

Since K is separable, thus K™ (equipped with the standard maxi-
mum norm) and S are separable. Let (ay, b%(, e, bL‘fl)k be a dense
sequence in S. Denote by Ly := ay + [b,lu ... ,bi‘*l] (k € N), the linear
submanifold in K™. Let (v )k be a decreasing sequence of elements
of [K*|such that 1 > r; > r... > 1/2. First, we select inductively
a sequence of balls Bgn 1(0) D Bgnr,(c1) D Bgnr,(c2)... such that
Ly N Bgny (ck) =0 forall k € N.

Let k € N. Assume that Ly N Bgn r, ,(cx—1) # 0 (taking 1o :=1,
co := (1,...,1)). We proceed to choose such cxy € K™ that L\ N

AR

BKn,Tk(ck)n: (0. If dist(cx—_1,Lk) > Tk, then it is nothing to prove, we
take ¢y = cx_1.

Suppose that dist(cx_1,Lx) < m¢ and consider two cases:

(a) Assume |c—1 — ak|| < rk. Using [57, Lemma 3.14], we choose
x € K™ such that 1.1 > dist(x, [bi,...,b{zfl]) > 1 and T >
||| > rk. Taking cy := cx_1 + x we obtain

lex —cx—ll = IIx[| < Ti—1;
hence, cx € By, ,(ck—1) and

llex — (ax + 7\1b]1< + ...+ An_1bE*1)H
= flex1 — ax +x = (Mby + ...+ An1bp 1)
= lx = (MbL 4.+ A 1B D) > 7
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for all 7\1/ ey 7\1171 S K, since
ek — axll < I = (Arbk + ...+ An 1 bR .

(b) Now, assume ||cx_1 — axl|| > 7. First, we select A{,..., A1 €
K such that

lek—1 — (ar +A1bg 4+ ...+ An b || < 7. 2.1)

Recall that by Lemma 2.1.27, there exist Ay, ..., An—1 € K for which

lek—1 — (ax + A1y + ...+ An b))
= dist(c_1 — ay, [b]lg ... ,bEil]).
Applying [57, Lemma 3.14], we choose w € K™ satisfying r_1 >

lw|| > r¢ and rc_1 > dist(w, [b]l(,...,bE_l]) > 71k. Using Lem-
ma 2.1.27 again, we can find py, ..., utn—1 € Ksuch that

To1 > [w+ (mbk + .o pa b > (2.2)
Taking
k=@ —w— by 4+ ...+ a1bp ) + (b + ..+ An bR,
we verify

lew — cx—1ll =llax — cx—1 — (wabi + ... + pn_1bp )
— W4 (AbE + .+ A
< max{|cx—1 — (ak + Ak + ...+ An_1b2 Y],
W+ (bl + ...+ b D[ < Ties

by (2.1) and (2.2). Consequently, for all v4,...,vnh_1 € K,

HCk — (Clk + Vlbi +...+ anlb{:_l)H
=|lax —w — (m1bj + ...+ pn_1bp 1)

+ (Abi A+ A b ) —ak — (b 4+ Vb))
H n—1

=|lw— > (Ai— i —vi)bL| > dist(w, [by,..., b ")) > .

i=1
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Thus, in both considered cases, ci € By, (ck—1) and dist(ck, Lx) > 7«.

Now, let L be an arbitrary linear submanifold in K™. Then L = xo+F,
where F is a proper linear subspace of K™. Without loss of generality,
we can suppose that dim F =n — 1. We prove that there exists k € N
such that L N Bgn y, (cx) = 0. We may assume that L N Bgn (0) # 0.
Thus, L = a + [bl,...,b“_l] for some (a,b!,..., b 1) € S, where
bl,...,b™ ! can be selected as an orthogonal sequence, thanks to
Proposition 2.0.3. Since (ay, b]1<, e, b{{‘*l)k is a dense sequence in S,
we can choose such k € N that ||a — ax| < 1/2, [|[b' — bl < 1/2
foralli=1,...,n — 1. Suppose that there exists x € L N Bgn r, (ck).
Thenx = a+AMb! +... +A,_1b™" ! forsome A, ..., An_1 € K. Since
Ixll <1,|lal| <1, we obtain ||x — a|| = |[A;b' +...+ A _1b™ Y < 1
and conclude that A;] < 1fori=1,...,n—1asbl,...,b™ lisan
orthogonal sequence. Then

ek — (ax +Mbi + ... +Aq_1b7 1|
= ek — (@ +Aib 4o A+ A b — x4 x|
=llcx —x+ (a+Abr 4. F A _d™Y
—(ax + Atbk + .o+ A DY)
< max {[lcx — x|, [[(a+AMb! + ...+ Aqp_1b™ )
—(ak + Mbk + ...+ A1 b}

< max {flex = x| lla = axl,_max_n(b = bR} <,

a contradiction with Ly N Bgn », (ci) = 0. O

Next result, applying Theorem 2.1.28, allows to select sequences
of elements of separable non-spherically complete K and its spherical
completion K with very special properties. Let ji: K —K denote the
natural isometric embedding. Recall that every separable and densely
valued field is non-spherically complete ([60, Theorem 20.5]).

2.1.29. Lemma. Let K be separable and densely valued and let n € N.
Then, there exists a sequence (ci)x C K™ (K™ is equipped with the standard
maximum norm), where ¢y, = (ck,...,cl), leL] = ... = [cPt| = 1 for all
k € N, such that
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(1) the sequence of closed balls (Bgn v, (ci))x, where Ty == ||cx — Ci41]|
(k € N), is centered, v := li]r<n Tx > 0and for every linear submanifold
L in K™ there exists kg € N for which L N BK“,rko (cx,) =10;

(2) foreach i € {1,...,n} the sequence of closed balls (Bx,r, (cy))x is
centered and has an empty intersection;

(3) foreachie{l,...,n}, forevery A,\; e K(j =1,...,m, j #1) there
is ko € N such that

n
c]i{_ Z Ajc{(—}\’>rk0 forall k > ko;
j=1,j#i

(4) if x1,...,xn € ]K\Kandxj € ﬂBKrk(jK(ci))foreachj =1,...,n,
oK

then, for everyj € {1,...,n},
dist(xj, [x1,..., %1, %Xj11,...,xn, 1]) =T,
foreveryj € {1,...,n}

Proof. (1) Observe, that the sequence (cy )k (ckx = (c,ld...,c{g) e K™,

k € N) constructed in the proof of Theorem 2.1.28 can be selected

so that it is |c}<| = IC{\ =1forallk,1 € Nandi,j=1,...,n. Indeed,

taking cop = (1,...,1),itis clear thatif ry,_; < 1then |c,i<| =1 foralli=
———

1,...,mand k enN . Hence, by Theorem 2.1.28, there exists a required
centered sequence of closed balls (Bgn r, (ck))k. If limy 1 = 0 then
there exists ¢’ = limy cx and [¢/] N Bgn », (ck) # 0 for each k € N,
a contradiction.

(2) Fixie{l,...,n}. Then |C]i<+1 - cil{l < |lek+1 — ck|| = Tk; hence,
the sequence (B, r, (cy))k is centered. Assume that for some iy €
{1,...,n} there exists y € K such thaty € Q Bk r. (c]if). Then, taking

a linear submanifold L := ye;, + [eq,...,€i,—1,€i+1,---,€en] in KT,
where ey, ..., e, is the standard base of K™, we obtain

dist(cy, L) < lLim |(cl,...,clo7t y,clotd ey —(cf,...,cl)|
m—00

= lim max {Iy —¢?, max Il — CU} < Tk
m—so0 §=1,.i0—Li0+1,.0m
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for all k € N, a contradiction with (1).

(3) Takei € {1,...,n}. Assume the contrary and suppose that there
exist \,A; € K (j =1,...,m, j # 1) such that for every k € N we can
select ny € N, ny > k for which

n
c}lk — Z Ajc;k — Al < Tk
j=1j#1
LetL:=A-ei+[le1+A1ei,...,ei_1+Ai_1€,€i41+Air1€i, ..., en+Anei]
be a linear submanifold in K™. Then we get

dist(cn,, L) = irelfL X —cn |l

= inf  [Aei + (e +Aei) +.. + mi—1(ei—1 +Ai—1eq)
H1seees HnGK

+ iri(eis1 +Aip1ei) +...+ Hnlen +Anei) —cn, ||

n
C}nk_ Z 7\)'}1]' —7\‘}

j=1j#i

n
i S
Cry Z A]cnk A‘}grk.
j=1,j#i

= inf max max  |u; — ¢, |
{51 ..... DT Cnalr

< max max |¢J, —c) |
= j=l.m, jA1 e TR

Thus,
dist(cy, L) = irel{ IIx —cx|l = 712{ Ix —cny +cn — x|

< inf max{|[x — cn,ll, [len, — ek} < Tk
xel

for all k € N, a contradiction with (1).
(4) Assume the contrary and suppose that there exist Ag,A1,..., An
n
Z 7\ij + Ao
j=1

inK,A; =1forsomeie{l,...,n}, such that < 1. Then

we get

n
Z }\ij + Ao
j=1

But, applying (3), we can select kg € N such that

n .
Z 7\5C%< + 7\0
j=1

n n
D N —ik(el)) + Y Ajjklcl) + o
j=1 j=1

<. (2.3)

n .
ZAjJ’K(Ci) +Ao| =
=1

> Ty > T
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Hence, for validity of (2.3),

n

Z Xj —JjK ck))‘>rk0>r.

But [x; — jK(c{;)l — rforeachj e {l,...,n}if k — oo, a contradiction.
OJ

Now, we are ready to prove

2.1.30. Theorem. There exists a four-dimensional normed space E4 over
Cp having a two-dimensional strict HB-subspace D such that D is non-
orthocomplemented in E4.

Proof. Let K = Cy, and let (Bgs ;. (cn))n (cn = (C}L, c121,c3) |c | =

Ic2| =|c3| =1,n € N) be a centered sequence of closed balls which
satisfies the conditions of Lemma 2.1.29 (i.e. the sequence of closed
balls (Bs ;. (cx))x, where Ty := [|cx—cr41]| (k € N), which is centered,
Ti= liin Tk > 0 and for every linear submanifold L in K2 there exists

ko € N for which LN BKS/TkO (cx,) = 0).

Denote A, = C}L, Upn = C%L, Vn = ci’L (n € N) and define
U, Up, Uz, Uy € 1 by

=(1,0,1,0,...),
—(0,1,0,1,0,...),

= (M, 1, A2, 12, A3, 13, - - - ),
ug == (v1,0,v2,0,v3,0,...).

Let 7t: 1%° — 1°°/c( be the natural quotient map and let x; := 7t(u;) for
i=1,...,4. Let B4 = [x1,%2,%3,x4] and D := [xq, x4]. We prove that
D is a strict, non-orthocomplemented HB-subspace of E4.
Clearly {x1,...,x4} is a base of E4, thus any x € E4 can be written
4

asx = ) aix; for some a; € K. The restricted quotient norm of such
i=1
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x is given by

4

E aiuy —z

i=1

= inf

Ix]l =

4
E aixi
i=1

= inf max{|la; + agAn + agvn — 2on—1l,laz + agpun — zon |}
z=(z1,2z,... )Ecyp NEN

= lim max{|la; + azAn + agvnl,lax + azunl}.
n—oo

Part A. First, we prove that every maximal orthogonal set in E4
consists of two elements. It is easy to see that x; L x,. Assume that
there exists x € E4, where x = a1x; + axxy + agxz + agxy, such that
x L [x1,%2]. We derive a contradiction. Observe that

dist(x, [x1,x2]) = dist(a;x1 + azxp + azx3 + asxy, [x1, x21)

= dist(azxz + agxy, [x1,x2]).
Denoting u := azx3 + agxy4, we get

dist(x, [x1,%x2]) = dist(w, [x1,%2])

= inf |asxs + agxg — (hyxg + haxo)||
hy,hyeK

= inf lim max{]azAn + asvn —hil, |azun — hol}
hy,hy €K n—00

=1 - max{|ag|, [a4l}.
Indeed, let h{" := azgAm + a4V and hJ* := agpum, m € N. Then

dist(u, [x1,%x2]) < inf [u— (hi"x1 + hy"xs)l
meN
= inf lim max{|lasAn + asvn — h{"], lagpn — W}
meN n—oo
= inf lim max{|lazA, + agvn — (a3Am + a4 v )|, lazin — azpml}.

meNn—oco

But

lim |azAn + agvn — (a3Am + a4 Vi)
n—oo

< lim max{laz(An — Am)l, lag(vn — v )l},
n—oo
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thus

inf lim max{|azgAn + agvn — (a3Am + a4 v )|, lazun — azpml}
meNn—oo

< lim  lim max{laz(An —Am)l, lag(vn — Vi)l lazun — aguml}
m—o0 N—0o0

Hence dist(u, [x1,x2]) < r-max{|as], |asl}. But by Lemma 2.1.29 (3)

lim |a3An + agvn —hy| > v - max{|azl, [asl},
lim |azpn, — hy| > rlas|,
n—oo

for every hy, hy € K, hence, dist(x, [x1,x2]) = - max{|as], |aal}.

It follows also from (2.4) that dist(x, [x1, X»]) is not attained, con-
flicting with the assumption x L [x3,xz]. By [57, Theorem 5.4] all
maximal orthogonal sets in E4 have the same cardinality, thus, every
maximal orthogonal sequence in E4 consists of two elements.

Part B. Let B3 := [x1, X2, x3]. We show that every two-dimensional
linear subspace of E3 has an orthogonal base. Clearly, {x;, x>} is an
orthogonal base of [x1,x2]. Thus, to finish this part of the proof it
is enough to show that taking any nonzero wy = a;x; + axx and
wy = b1x1 + baxo + x3 (a1, ap, b1, by € K), dist(w,, [wq]) is attained.
Note that

dist(wn, [wq]) = }{rel& IIb1x1 4+ baxp + x3 — - (a1xq + axxy)||

= inf lim max{/b; —h-aj; +Anl,[bs —h-a> + unl}.
hekK n—oo

Clearly, a; # 0 or ap # 0. So, suppose that a; # 0 (assuming ap # 0
we work almost identically). Set

A b
W= 24 L meN.
aq aq

Then, for fixed m € N,

A b
by — (m + l) “a1 +An| = Am — Al (2.5)

a; a

b1 —hm a1 +An| =
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and

by —hm - ax + pnl =

(2.6)

Assume now that |ap/a; < 1. Then, applying Lemma 2.1.29 (3), we
imply that there exists my € N such that for any m > my
@by @

by — —— — A+ um' > Timg- (2.7)
a ap

We can find My € N, My > myg such that |[uym — pnl < T, and
Am — Anl < T, for every m,n > My. Thus, for m,n > Mg we get

b a b a
b2—T1—aAm+Hn = bz—Tl—aAm+Hm—Hm+Hn
ab; @
= b2__)\m+um‘>rmo
aq aq

and, for m > My, using (2.5) and (2.6) we obtain

||W2 - hm‘/\’lH = lim max{/b; —hm - a1 +Anl, by —hm - a + Un|}
n—o00

b
= lim max{l?\m—Anl, by, — @01 _ %?\m—l— Ui }
arb a
= lim bz—g——z?\m—i—un > Ty
n—oo al (11
Fix m > My. Then, for k > m, we obtain
[[wo —hiwi|| = (w2 — hmwi) + (hmwi — hiewy )|
b
n—oo (11 0;1
since
[hmwi —huowi || = [[(hm — hi) - (a1xq 4+ azxp)||

= max{|/(hm —hi) - a1], [(hm — hy) - azl}

} < T‘TTL(]‘

= max {I7\m — Axl,

a
72(7\711 - }\k)
a
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Hence, for any k > m > M,,
dist(wy, (wq]) < lim [fwy —hpwi|| = ||[wy — luewy||.
n—oo
Now, suppose that there is h € K for which
Wy —hwi|| < lim |[wy —hpawy]|.
n—oo

Then

lim max{[by —h-a; +Anl, /by —h-ay+ pnl} < T, (2.8)

n—oo

On the other hand, by (2.7), for large n, we have

a
(bz—h'az-i-un)—*j

(b1 —h-a;+An)
a

ab;  ap
ai ap

2 1'QTTL[]/

a contradiction with (2.8). Now, suppose that |ay/a;| > 1. Then,
obviously a, # 0. Set

b
hm::H7m+72, m € N.
az az

Following similarly like in the previous part, for fixed m € N we get

b
by —hm - a2 + pnl = |b2 — <P—m+2> a2 + Hn
an an
b
b1 —hm a1 +Anl = |b1 — (%—Fz) -a1 + An
an an
b
L T (2.10)
an an

Applying Lemma 2.1.29 (3) again, we imply that there exists my € N
such that, for any m > m,,

> Ty 2.11)




66 Orthocomplemented subspaces in non-Archimedean Banach spaces

We can find My € N, My > mg such that |[um — pnl < T, and
Am — Anl < Tm, for every m,n > My. Thus, for m,n > My, we get

a;b a a1b a
bl—%—a—l?\nﬁ—)\n = b1 — ;ZZ—Q—l)\m+7\m—?\m+)\n
a1b a
_ bl— 1v2 %1 m+)\m’>rm0
an an

and, for m > My, using (2.9) and (2.10), we obtain

HWZ - th1” = lim max{|b; —hm - a1 +Anl,[by —hm - a2 + pnl}
n—00

b
= lim max{ bl—&—ﬂum-i-?\n ,|Hm—Hn|}
ab a
= lim b1—1—2——1um+?\n > Tmy-
n—oo (]_2 a2
Fix m > My. Then, for k > m, we obtain
w2 — hyewq || = [[(w2 — hwi) + (hmwi — hyowy )|
b
= lim bl—&—ﬂpm—%?\n
since
[hmwi —hewi || = |[(hm — i) - (a1x1 + ax,)||
= max{|(hm — hk) - a1], [(hm — hi) - a2}
a
= max (Tz(‘”m — D], [pm — sl p < T
Hence, dist(wy, [w1]) < lim |[[wy — hywi| = [[wy — hgwy|| for any
n—oo
k> m > My.

Now, suppose that there is h € K for which
Wy —hwi|| < lim |[wp —hpwy]|.
n—oo
It means that

li_r)n max{/b; —h-a; +Anl,[by —h-ay+ pnl} < Ty (2.12)
n o
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But, by (2.11), we get for large n

a
a—;(bz—h-az+un)—(b1—h-a1+xn)
b
= bl_al 2_ﬂum+}\n >ngz
as az

a contradiction with (2.12).
Hence, dist(w,, [wq]) = li_r>n |lwa — hnw|| and dist(wy, [wq]) is
n o

attained.

Parr C. The most laborious part of this proof is showing that D is
not orthocomplemented in E4. Assume the contrary and suppose that
there exists a linear subspace Dy C E4 which is an orthocomplement
of D. Note that D, two-dimensional linear subspace of E4, cannot have
an orthogonal base, otherwise we can select an orthogonal sequence
in E4 consisting of three elements, contradicting the conclusion of
Part A. By Part B, we can deduce Dy & Es.

We can write Dy = [wy, w,] for some wq,wy € E4. In fact, it is
enough to consider the following two cases:

(a) wy = aixq + arxxo + x4, W := b1x1 +boxo +x3 (a1, ap, by, by € K;
note that a, # 0 since wy ¢ D),
(b) w1 := a1x1 + X3 + agxg, Wy := b1xq + boxy (a1, aq, by, by € K).

In order to finish this part of the proof, we demonstrate that in
both considered cases Dy has an orthogonal base (note that using
Lemma 1.2.1 it is equivalent to finding such ky € K for which ||[w, —
kowi || = dist(wy, [W1])), deriving a contradiction.

Consider the case (a). By assumption thatw; L. D and w, L D, we
imply that lim |a; + vn| < |apl and lim [by +An| < lim [by + pnl.
n—o0 n—oo n—oo
Let k € K. Then

[wa —kwy|| = T}i_rgrcgomax{lbl +An +k(ag +vn)l, [b2 + un +kazl}.

If lim (b + Anl - lazl) # lim (|by + pnl - lag + vnl) then, taking
k := —(b2 + 1m)/az where m € N is chosen in such a way that

lim [by +An| > lim [un — puml,
n—o00 n—oo
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we get

b
|lwa —kwq|| = lim max { b1 +An— ——(a; +vn)
n—oo a

,Iun—uml}

and observe that

by + un

inf |[w, —kw;| = lim max {|b1 + Anl,
kekK n—oo

. |(11 +Vn|}.

Hence, dist(w,, [wq]) is attained and we conclude that Dy has an
orthogonal base, a contradiction.
Now, we assume that

lim (b1 + Anl-[az)) = lim (Jbz + pnl - [ar + val). (2.13)
n—oo n—oo

Let jx: K — K be a natural embedding of K into its spherical com-
pletion K. Fix Ao, 1o, vo € K such that Ay € ﬂB ]K(?\ )),uo €

ﬂBKT Ox(un)), vo € ﬂBKr (jk(vn)). Then, applymg simplifica-

tlons suggested at the begmnlng of this section, we get
lim |b1+)\n| = lim |b1+7\0*)\0+7\n| :|b1 +)\0|,
n—oo n—oo

since we can choose such ng € N that |b; +Ag| > |A. —Ag| foralln > nyg.
Using the same argumentation, we obtain

lim (/by + pnl - lag + vnl) = [ba + Hol - lag + Vol
n—oo

and conclude that (2.13) is equivalent to

b1 + Aol - laz| = bz + pol - lag + vol. (2.14)

Observe that
b1 + Ao + k(ai + vo)l :T}iir})olbl—l—?\n—i—k(al + va)l (2.15)
[ba + o + kay| = T}Lrgo [b2 + pn + kayl. (2.16)

Indeed, using Lemma 2.1.29 (3), we can find such ny € N that

max{[Ag — Anl, [kl - [vo — vnl} < [An + b1 + kag + kvn|



Characterization of orthocomplemented subspaces 69

for all n > ngy. Then

b1 + Ao + k(ag + vo)l
=AM —An) +An + b1 +k(as +vn) + k(vg —va)l
=|b; + An + k(a; + vn)
for all n > ny; hence, the condition (2.15) is valid. Using the same

argumentation we can prove (2.16).
By simple calculations we obtain

B ‘ (b2 + po)(ar + vo)
_ =

a; + vy

az

_ | (b2 + 1o)(a1 + vo)
az

by +H0+kaz|' +k(ay +V0)

— (b1 +Ag) + (b1 + Ag) + k(a1 + Vo)

by + +
b1+>\0—( 2 “021(‘“ V0)—(191 —i—)\o—i—k(al—l—vo))’. (2.17)
2

By assumption wy L D, thus lim |a; + vu| < |ag| and |az| > [a; + vl
n—oo

> r,since lim |a; + vn| = |a; + vo|. Observe, that
n—oo
1 = lim (Juk — Hol - [vic — vol)
k—o00
= kh_{n ILoVo — VMo — Mk Vo + Mk V| = dist(uovo, [1o, Vo, 1]).
o0

Hence, we can choose z € [{1, vo, 1} (Where [{o, Vo, 1}] is the K-vector
linear subspace of K spanned by {uo, v, 1}) such that |[uyvy — z| <
T-lar + vol < 7-lazl. Then, [1/as] - [uovo — z| = [povo/az — z/as| < 1.
By Lemma 2.1.29 (4), we get

b b
do— )\0—<all—b1+2\/0+1u{)—l>’>1‘
2 az az 2
and
by + a;+v
b1+)\0—(2 Ho()l( 1+ Vo)
2

ab b a 1
Ao — (11 — b1+ —Vo+ — Mo + Volio) ‘
az az az az

a;b b a 1 1
7\0— (“—bl + 72\/0_’_ JLL()— Z> +*(VOLLO—Z)
az az az az az
=dyp>r. (2.18)
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Now, assume that k € K is chosen in such a way that
lim [by + pn + kay| < do.
n—oo

Thus, [by + po + kay| < do by (2.15) and we get

a; + Vo

|b2 + Hp + k(.12| . < do, (219)

since |(a; + vo)/az| < 1 follows from the assumption w; L D. Now,
from (2.19), applying (2.17) and (2.18), we obtain [b1+Ao+k(ai+vo)| =
dp and conclude that

dist(wy — [w1])
= inf lim max{|b; +An + k(a; +vn)|,|by + un + kas|}

keK n—oo

= l?gf max{|b1 + }\0 + k((11 + '\/0)| |b2 + Yo + ka2|} = do

Since |by + Yy + kas| < dg, we obtain by + Ag + k(a1 + vg)| = dg
if a scalar k € K satisfies [by + ug + kap| = T}gr;o by + wn + kap| <
do. Hence, dist(w;, [w1]) is attained and Dy has an orthogonal base,
a contradiction.

Now, consider the case (b). Assuming w; L D and w, L D we get
T}grgo la; + An + agvnl < Junl foralln € Nand [by| < |by]. Let k € K.
Then

[wi —kws|| = lim max{|a; +An + asvn + kbql, [n + kbo[}.
n—o0

If lim (la; +An + agvnl-|bal) # lim (unl-[by]), then
n—oo n—oo

}

Taking k := py /by where m € Nis chosen, thanks to Lemma 2.1.29 (3),
insuch away that lim |a;+An+asvn| > lim |un —pm|, we conclude
n—00 n—oo

b
0"

inf |[w; —kws|| = lim max {|<11 + An + agva,
kekK n—oo

that dist(wq, [W»]) is attained, a contradiction. Assume now that

lim (Ja; +An + agvnl - |b2l) = lm (Jun| - [bq]).
n—oo n—oo
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Then, since hm lai +An + asvn| > 1, we get [b1]/|by| > 1. Recall that
[by]/Iba] <1 by the assumption wp L D. Observe that

b2
oy

by

b —=(aj + An + agvn) + kbs|,
2

Wi —kwy|| = lim max{
n—oo

|Hn—%kbﬂ}. (2.20)

Let R = liLn [ba(a1 + An + as4vn)/b1 — pnl. By Lemma 2.1.29 (3),
n o
R > |by[r/[bs]. Suppose that liLr1 Iun + kbs| < R. Then, we obtain
n o0

by

li
m bz

n—oo

b
b—z(al + An 4+ agve) + kb
1

by

b2

= lim
n—oo

(al +An + agvn) — Un + pun + kb

by
_ b
T2
Hence, from (2.20), applying (2.21), we get that gnﬂfg w1 — kwy|| =
€
[b1/bs| - R. But, it follows that dist(wq, [w,]) is attained for kg € K,
satisfying 1211 lun + koba| < R; thus, Dy has an orthogonal base,
n o0

R>T. (2.21)

a contradiction.

Part D. We demonstrate that D is a HB-subspace. Let f: D — K
be a linear functional, given by f(a;x; +asxs) := a1 +agAs (ag, ag, Ay,
A4 € K). First, suppose that A; = 0. Then, we obtain ||f|| = [A4]/T and

folaixy + asxs + asxs + agxs) := azAg

is the linear extension on the whole of E4 with the same norm.
Assume now A1 # 0. Then

£l := |f( I laiAs + agha| b lim IAllk + A /A
xGD Il apazek a1x1 + agxal|  pegn—ooo [k + vyl
_ sup lim MK+ Vi — Vi A /A ~ lim Ay —Apvnl
kegn_wo [k 4+ vl n—oo T )

Choose A3 € K such that lgn Az/A1 —Anl < lgn Ag/A1 — vn|. Let
n o0 n o
fo: E4 — K be a linear extension of f, defined by

fola1x1 + aoxo + azxz + agxq) := ajA] + azAz + aghg.
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Then
[fo(x)l . la1A1 + azAs + agAy|
= lim
x|  n—co max{la; + azAn + agvnl laz + azpnl}
oA FasAs+aghl L Al fag + asAs/A + agdg /A
< lim = lim
n—oo |a; + azAn + agvn|  n—oo lag + azAn + agvy|
~ lim A1l - lar + asAn 4+ agvn + az(A3/A — An) + aa(Ag/A1 — vl
n—oco lag + azAn + agvy|
A1l - lar + azAn + agva|
lag + azAn + agvy|
A1l - laz(Asz/A1r = An)l A1l - [ag(Ag/Aq _Vn)|}
la; + azAn + agval 7 lag + azAn + agvnl

N

lim max {
n—oo

A3 —AMArl o A —=Arval | A —Arva]
— lim ———= } = lim ———— .

< max {|?\1|, lim
n—oo n—oo T

n—oo T

Hence ||fp| < [If]|

Part E. We prove that D is strict in E4. Let x € E4 \ D. We can
write x = a1Xx] + axXxy + azxz + agx4 for some aq, ap, az, ag € K. Let
u = apsxp + azxz. Since, applying Part B, [x; u] has an orthogonal base
as a two-dimensional subspace of E3, we can choose A € K such that
(uw+Axq1) L [xq].

Now, we show that the element x — (a; —A)x; — agxy4 is orthogonal
to D. Denoting d := A1x1 + A4x4 € D, we get

| (x—(a1=A)x1—agxq) +d[| = [[(x— (a1 —=A)x1—asxq) + (A1x1 +Agxq) |
= [[(w+ Ax1) + (AM1x1 + Agxq) |-

But, it is easy to observe, [x1, x4] has no orthogonal base; hence, we
can find p € K such that

llwxa || = [[Arx1 +Agxall  and  [[wxg + (Arxg +Aaxg)l]| < [[Arxg + Agxy|-
Applying (u+ Axq) L [x1], we obtain
[(w+Ax1) + (AM1x1 + Agxa) |
= [[(w+ A1) — puxg + pxg + (Arxg + Agxa) ||
= ||(w+ Axq) — puxq|| = max{]|(w+ Axq)||, [[ux ||}
> |lwx || = [[(Mx1 + Aaxa) || = [|d]]
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and we conclude that D is orthocomplemented in D + [x]; hence, D is
strict in E4. ]

2.1.31. Remark. It is worthwhile to note that the dimension of the
constructed normed space E4 is the lowest possible. In fact, taking an
arbitrary normed space E with dim E = 3 and its strict HB-subspace
D, we observe that if dimD = 1, the orthocomplementation of D
follows from the HB-property and if dim D = 2, it follows from the
strictness.

2.2 Hilbertian spaces

A non-Archimedean normed space E is called Hilbertian, if every finite-
dimensional linear subspace of E has an orthogonal complement. We
say that E is Cartesian if its every finite-dimensional linear subspace
has an orthogonal base.

In the classical functional analysis (i.e. where the scalar field is R
or C) Hilbert spaces play an especially important role. Unfortunately,
their non-Archimedean infinite-dimensional counterparts do not ex-
ist, i.e. there is no infinite-dimensional Banach space with an inner
product for which every closed linear subspace has an orthogonal
complement. Quite naturally, one looks for classes of Banach spaces
with similar, although weaker properties. Cartesian and Hilbertian
spaces are examples of such classes. Note that if E is Hilbertian and
IIE|| € K|[*/? then E admits an inner product that induces the norm
on E ([40, Theorem 4.1]). Hilbertian spaces were developed by several
authors, see for instance [41], [43], [46] and [57, Chapters 4 and 5].
Cartesian spaces are studied in detail in [7, Chapter 2].

The contents of this section concentrates around the following
three properties:

(1) E has an orthogonal base;

(2) E is Hilbertian;

(3) E is Cartesian.

In general, (1) = (2) (see Corollary 2.0.2) and (2) = (3) (see
Proposition 2.2.2). If K is spherically complete, all non-Archimedean
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normed spaces over K are Hilbertian, thus Cartesian. If K is densely
valued, there are many examples of normed spaces without orthogonal
bases, for instance 1°°; van Rooij and Schikhof proved ([58, Problem 4])
that in this case the implication (3) = (1) does not work in general
(see Proposition 2.2.19). They also formulated the problem if the
implication (3) = (2) is true when K is non-spherically complete.
The question if (2) = (1) works for all non-Archimedean Banach
spaces over non-spherically complete K, was formulated several times
(among others in [43, Problem preceded by Proposition 3.5] and [41,
Remark after Proposition 2.3.2]).

We show, presenting counterexamples, that both implications
(2) = (1) and (3) = (2) are not true in general. We demonstrate
that all immediate extensions of ¢y which are contained in 1*° are
Hilbertian and among them are those which do not have orthogonal
bases (Theorem 2.2.10 and Corollary 2.2.11). We prove also that there
exists an immediate extensions of ¢y which is Hilbertian but it is not
Cartesian (Theorem 2.2.27).

General properties of Hilbertian spaces

At the beginning of this section we recall some known and new prop-
erties of Hilbertian spaces.

2.2.1. Proposition ([43, Theorem 3.1]). Every linear subspace of a Hilber-
tian space E is Hilbertian. If D is a finite-dimensional linear subspace of E
then E/D is Hilbertian. Normed direct sums and finite normed products of
Hilbertian spaces are Hilbertian.

Proof. Let E be a Hilbertian space and D be its linear subspace. For
each x € D\ {0}, [x] is orthocomplemented in E, thus, in D. Hence,
by Proposition 1.1.7, D is Hilbertian. Now, assume that D is finite-
dimensional. Let x € E/D, x # 0; then, there is xg € E such that
n(xg) = x, where 7t: E — E/D is the canonical map. As E is Hilbertian,
there exists a closed linear subspace Dy C E which is an orthocomple-
ment of [xg] 4+ D. Then, for each z € Dy, we get

— x| = inf ||z—xg —y| > inf [xe —y|l = .
I7e(z) — x|] ylnglZ xe — Y| ylgDIIXE y|| = [lre(xe)||
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Thus, 7(Dy) is an orthocomplement of [x].
Let {Ei};c; be a family of Hilbertian spaces and let x = (xi)ie1 €

E = @Ei, x # 0. Thereis iy € I for which ||x|| = ||xi,||. As Ej, is
i€l
Hilbertian, [x;,] has an orthocomplement D;, in E;,. Let D := @ D;,
i€l
where D; = E; if i # iy. Since for each z = (zi)ic1 € D

e+ 2] = maxixi +zi | = [lxig + zioll > [[xio | = [IxIl

we imply that D is an orthocomplement of [x] in E. Now, apply Proposi-
tion 1.1.7 and conclude that E is Hilbertian. If E = x E; and I is finite,
iel
then x E; = € E; and the conclusion follows from the above. ]
iel iel
Note that (see [43, Remarks 3.2]), there exist products of infinitely
many Hilbertian spaces and quotients of Hilbertian spaces which are

not Hilbertian.

2.2.2. Proposition. If E is of countable type, then E is Hilbertian if and
only if E has an orthogonal base.

Proof. If E has an orthogonal base, the conclusion follows from Corol-
lary 2.0.2. Assume that E is a Hilbertian space which is of count-
able type. Then, there are finite-dimensional linear subspaces D,
n € N, of Esuchthat Dy ¢ D, € ..., dim(D,) = n (n € N) and
E = m Take x; € Dy, x; # 0. By Proposition 2.2.1 for each

n € & the finite-dimensional D, is orthocomplemented in Dy, 1;
hence, thereis xn 11 € D41, Xn41 # 0, such that x,, 1 L Dy, . Clearly,
Dni1 = Dn + [xn41l. Thus, by [47, Theorem 2.2.7], {x1,%p, ...} is
orthogonal and by [47, Theorem 2.3.6] it is an orthogonal base. [

The following theorem gives us the necessary and sufficient condi-
tions for a non-Archimedean space of being Hilbertian.

2.2.3. Theorem ([33, Theorem 3.5]). E is Hilbertian if and only if for every
nonzero x € E there exists a set {wi};c; C E such that {x} U {wi};c; is
a maximal orthogonal set in E and E = [x] + D, where D is an immediate
extension of [{wilier].
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Proof. (=) Suppose that E is Hilbertian. Let x € E (x # 0) and let D be
an orthogonal complement of [x] in E. Take {w;}; ., @ maximal orthog-
onal set in D. Obviously, {x} U {wi};; is orthogonal. We prove that
{x}U{wi}; <1 is a maximal orthogonal setin E. Let z € E\ [{x} U {Wi}iel] ;
then, z = Ax+d forsome A € Kand d € D. Since, by Proposition 1.2.10,
D is an immediate extension of [{wi};c;], we can select w € [{w;};¢q]

which satisfies ||[d — w|| < ||d||. Next, we obtain

Iz = (A +w)|| = [ld = wl| <[] < [[Ax+ dll = [|z]|;

hence, dist(z, [{X}U{wi}i@]) < |lz|]|. By Proposition 1.2.10, {x} U
{wi}ie1 is @ maximal orthogonal set in E.

(<) Assume the contrary and suppose that E is not Hilbertian.
Then, there exists x € E (x # 0) such that [x] has no orthogonal
complement in E. By assumption, there exists {w;};c,
set in E such that {x} U{wj};c; is a maximal orthogonal set in E and

an orthogonal

E = [x] + D, where D is an immediate extension of [{wi};¢]. Since,
by assumption, D is not an orthogonal complement of [x] in E, we can
find d € D with |x|| = [|d|| and ||x + d|| < |[x||. Since x L [{wi};c(],
we have d € D\ [{wi};c;]. But then there is w € [{w;};{] satisfying
llw — d|| < ||dll; thus, we get

e +wif =[x+ d = d +wi| < max{[[x + dl|, [w —d|[} < |[x]| = lld],

a contradiction with x L [{wi}i el} . O

Hilbertian subspaces of 1*°

The main result of this section, Theorem 2.2.10, characterizes the spe-
cific class of Hilbertian spaces over non-spherically complete K, linear
subspaces of 1°° among which are those which have no orthogonal
base. Thus, Theorem 2.2.10 enables to construct a counterexample
with respect to the implication (2) = (1).

2.2.4. Example ([33, Example 2.6]). Choose a sequence (an)n C K
such that |a;| > ... > |an| > lan1l > ... > 1forn € N. Let a :=
(a1,az,...), %n == (a1,...,an,0,...) (n € N) be elements of 1°°. We
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can easily observe that (B~ q, ,|(xn))n is a centered sequence of
closed balls and

@ € [V Bi jayl (¥, lan ).
n
Applying Proposition 1.2.12, we deduce that ¢y + [a], a closed linear
subspace of 1°, is an immediate extension of cy. We can easily check
that dist(a,cp) = limp_ o [[a — Xxnl| and prove that (yn)n, where
Yn =1(0,...,0,an, an41,...), n € N, is an orthogonal base of ¢y + [a] .

The Example 2.2.4 shows us that 1> contains closed linear sub-
spaces, which are immediate extensions of cy. Note that by Zorn’s
lemma, among all immediate extensions of ¢y contained in 1°° there
exists a maximal one, clearly not unique. Next results characterize
immediate extensions of ¢y contained in 1° more precisely.

2.2.5. Proposition ([33, Proposition 2.8]). Let Eq be an immediate exten-
sion of co contained in 1°° and let x = (x1,%p,...) € 1. If x € Eg then for
every m € N the set

M (x) == {n e N:n>mand [xn| = sup kal}.

k>m

is nonempty and finite. If x € Eg \ ¢, then dist(x, cg) = lgn IIx —ynll,
n o0

n
where yn = >_ xie; (eq, 1 € N, are unit vectors).
i=1

Proof. First, assume that for some my € N the set My, (x) is empty.
mo
Define z :==x — ) xje;. Clearly, z € Eg and ||z|| > [xn| for all n > my.

i=1
We can choose a subsequence (xn, )i of (xn)n such that [xn, [ > [xn,|

for every k € Nand ||z| = lim [xy,|. Hence,
k—o00
dist(z,co) = lim |xn,|.
k—o0

Thus, we conclude that z L ¢y, a contradiction.

Next, suppose that there exists my such that M, (x) is infinite.
mo
Setting again z := x — ) xjej, we see that [z = x| if j € Mup,.
i=1
Hence, dist(z, cg) = ||z]|, a contradiction.
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Now, let x € Eg \ ¢g. Then, there exists r > 0 and an infinite
subsequence (xn, )k Of (xn )n such that [x, | > rforall k € N. Defining
19 = sup{r > 0 : there exists an infinite subsequence (xn, )x with
IXn,| > 1}, we see that for every ¢ > 0 the set {n € N : [xn| > 19 + €} is

n
finite and dist(x, cg) < r9p+¢. On the other hand, takingyn = Y xie;,
i

=1
we get lgn IIx —yn|| = 10 and finish the proof. O
n—oo

2.2.6. Remark. Observe that if E; is a maximal immediate extension
of ¢y contained in 1%, then there exists x € 1 such that M, (x) is
nonempty and finite for all m € N, but x ¢ Ey. Indeed, take y =
(Y1,Y2,...) € Eg\ cp and nonzero A € K with [A| < dist(y, cg). Setting
X = (x1,Xp,...), where x, := yn + A (n € N) we see that M, (x) =
Mm (y) for all m € N. On the other hand, y —x = (A, A,...) and, by
Proposition 2.2.5, y — x ¢ Eg; thus, x ¢ Eg. We can easily verify that
cp + [x] is an immediate extension of cy and conclude that a maximal
immediate extension of ¢y which contains cg + [x] is not equal to E.

2.2.7. Proposition ([34, Proposition 3]). Let (pn)n be a sequence of non-
negative reals such that

My, = {n e N:n>mand pn = sup pk}
k>m
is nonempty and finite for each m € N. Let x = (x1,%p,...) € 1* and
Mo = {n € N: [xn| > dist(x, co)}. If |xn| = pn for every n € N, then
co+I[x] is an immediate extension of c. If E is a maximal immediate extension
of co contained in 1°°, then, there exists z = (z1,z»,...) € E such that
|Zn| = [Xn| = pn foralln € Mg and |xn — zn| < dist(x, co).

Proof. 1f x € ¢, the conclusion is trivial. So, assume that x € 1°\ ¢o.
First, we prove that ¢ + [x] is an immediate extension of cy. Assume
for a contradiction that there exists y = (y1,y2,...) € ¢ such that
IIx —y|| = dist(x, co). Clearly, Ng ={n € N: [yn| > |Ix —y||} is finite.
Let np = max{n € Np}. Without loss of generality we can assume
thaty € [ey, ..., en,]. Note that Ny and My, are disjoint, My, is finite
by assumption. Define z = (z1,2,...) € ¢, where z; = x; — y; if
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iefl,...,ng], zi = x4 if i € My, and z; = 0 otherwise. We obtain

[x —y —z|| = sup Ixi —yi — zil
ieN

zmaX{_ max [xi —Yi — zil, max |xi —yi — zil,
ie(l,...ng] 1€Mn0

sup{/xi —yi —zil: 1€ N\ ([1,...,nol U Mno)}
= sup{lxi| : 1€ N\ ([1,...,np] UMy )} < [Ix —yl|,

but this contradicts with ||x —y|| = dist(x, co).

Assume now that x ¢ E. By maximality of E, E + [x] is not an
immediate extension of ¢y and by Proposition 1.2.9, E 4 [x] is not an
immediate extension of E; thus, there exists z = (z1,z,,...) € E such
that dist(x, E) = ||x — z||. Clearly, dist(x, E) < dist(x,cg). Thus, we
obtain

|x — z|| = sup [xn — zn| < dist(x, co).
neN

Hence, [z | = [xn| = pn forall n € My. O

2.2.8. Proposition ([33, Proposition 2.10]). Let Ey C 1*° be a maximal
immediate extension of cq and let (pn)n be a strictly decreasing sequence of
reals for which infnen pn > 0and {pn : 1 € N} C [K*|. Then, there exists
Yy = (Y1,Y2,...) € Eg such that [yn| = pn foralln € N.

Proof. Let x = (x1,%x2,...) € 1%\ Eg be such that |x,| = pn for all
n € N. By maximality of Eg, Eg+[x] is not an immediate extension of c.
Hence, by Proposition 1.2.9, Ey+[x] is not an immediate extension of E,.
Applying Lemma 1.2.2, we imply that thereis y = (y1,yp,...) € Eo for
which dist(x, Eg) = ||x —yl|. Clearly, dist(x, Eg) < dist(x, co); thus,

—y|| < inf pn.
I —yll < inf pn

But ||x —y|| = sup [xn —ynl; hence, [yn| = Ixn| = pn foralln € N. This
neN
shows that y, an element of E, satisfies the required conditions. [

2.2.9. Proposition ([35, Proposition 3.2] ). Let a = (aj,ap,...) € 1.
There exists b = (by,by,...) € 1 such that [a,b] is a two-dimensional
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linear subspace without an orthogonal base if and only if |an| < ||al| for all
neN

Proof. Assume that there exists ng € N such that ||a|| = |an,|. Then, by
Proposition 2.1.4, [a] is orthocomplemented in 1*°. Thus, for every b
1%, there exists A € K for whichb = Aa + (b —Aa) and (b —Aa) L [a].
It means that {a, b — Aa} is an orthogonal base of [a, b] .

Suppose that |a,| < ||a|| for all n € N. Applying Proposition 2.1.4
and Theorem 2.1.13, we imply that [a] is not strict in 1°°. Hence, we
can select b € 1% such that [a] is not orthocomplemented in [a, b].
Therefore, by Corollary 2.0.2, [a, b] does not have an orthogonal base
and we are done. O

Now, we are ready to obtain a characterization of a maximal im-
mediate extension of ¢y contained in 1.

2.2.10. Theorem ([33, Theorem 3.6]). Let Eg be a maximal immediate
extension of cq contained in 1°°. Then

(1) Eg is Hilbertian;

(2) Eg is not of countable type;

(3) Eg has no orthogonal base.

Proof. First, we prove that Eg is Hilbertian. Take a nonzero a =
(aj, ay,...) € Eg. By Proposition 2.2.5, there exists a nonempty and
finite My C Nwith [|a|| = [a;i|if i € Mg and ||a]| > |a;]if j € N\ Mg.

Take iy € Mq. Let Xg = {ey,...,ei,—1,€iy+1,..-} and let Dy be
a maximal immediate extension of [Xg] in Eg. We see that {a} U X; is
an orthogonal set. We prove that it is a maximal orthogonal set in Ey,
i.e. there is no element in E( orthogonal to [{a} U Xol.

Indeed, taking b = (by,by,...) € Ep \ [{a}UXp] and applying
Proposition 2.2.5 again, we can select a finite subset M, C N such that
||bll = |bi| for every i € My and ||b]| > |bi| forall i € N\ My,. Assume

thatiy ¢ My and definez:= ) Dbje;; thenz € [Xo] . Next, we obtain
i€ Mb

|b—z| = Hb — ) bie

iEMy

= max |bi| <|bll.
ieN\My
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If iy € My, defining a’ € [{a} U Xl by
a:=a— Z aie;
iGI\/la\{iO}
and z € [{a} U Xo] by
by,
Z = Z bie; + —a,
€My \{io} 10

we get

bi bi
b—z|| = — e; — —2 -0 e
b —z| Hb . > . bie; ato > aie
ieMyp \{io} 0 ieMa\{ig}

= H (b — ) bie— bioeio)

ieMyp\{io}
b.
-+ g <0.10610 —a-+ Z (1161) H
Lo LeMo\{io)
b.
o 20)- e o)
iEMy 10 iEMq

b.
<max{ max |bi|, max {|ai|"10
10

1EN\My iEN\Mgq

H <t

[bi,| = [|bll > max [bi]and |a;j,| > max |ail.
iEN\ My ieN

a

since

Hence, b is not orthogonal to [{a} U Xo].

Now, we prove that Dy is an orthogonal complement of [a] in E,.
Letb = (by,by,...) € Eg. If by, =0, then, applying Proposition 2.2.5,
we deduce that b € Dy. Assuming that b;; # 0, we can write b =
bi,a/a;,+d, where d = b—bj,a/a;,a. Since d;, = by,—bj,a;,/ai, =0,
we conclude that d € Dy and finally Ey = [a] + Dy; hence, by Theo-
rem 2.2.3, Dy is an orthogonal complement of [a] and E, is Hilbertian.

Next, we prove that Ej is not of countable type. Assuming that
K*| is countable, we can choose an uncountable S C (1,2), such
that 7t(r) # n(s) forr # s (r,s € S), where m: R, — R, /|K*| is the



82 Orthocomplemented subspaces in non-Archimedean Banach spaces

natural map (then, elements of S are in different cosets of [K*|). Using
Proposition 2.2.8, for every r € S we construct x" = (x],x3,...) € Eg
such that |x]| < 2, ([x],[)n is a strictly decreasing sequence of reals
and lim [x],| = r. We verify that {x" : r € S} is an 1/2-orthogonal set.
n—oo

Take a finite subset P C S and nonzero A, € K (r € P). Then, by
assumption, we can find vy € P such that

Al 10> max {|A;]-T

P -0 > max (A,
But then, there exists ny € N for which \Aroxi{)\ > [Ayx],| foreachr € P,
T # 19 and all n > ny. Taking m > ny, we have

Z 7\rXT Z 7\1‘7(;1

repP reP

1
= ArgX33] > Ayl - 10 > EH?\TOXWH.

If [K*| is not countable, for every r € (1,2) N |K*| we select x" =
(x],x5,...) € Eop, assuming that

xil=71, IxL_ql>kxhl, "Vr>kil= ¥r for n=23,...
Take a finite subset P C (1,2) N |K*|. Then, if

Z?\x

reP

< max A"

for some A, € K (r € P), we can choose Py C P such that [|[Aqx9|| =
max IA+x"|| for all q € Py. Hence,
TE

Aaxd =gl -q= Arx”
| qX1| | q| q Iglealg(” rX H

forall g € Py. But we can find n € N for which Aqxd| # [A:x]|if q # 1
(q,7 € Pp). Thus,
Z Arx"

reP

> max |A;xj,|
TEP)

and we finally conclude that {xT :re(1,2)Nn|K* I} is an uncountable
1/2-orthogonal set in Ey; hence, E is not of countable type.

Since E( is an immediate extension of cg, by [57, Theorem 5.4], every
maximal orthogonal set in E is countable. But Eg is not of countable
type, thus, by Proposition 2.2.2, Ey has no orthogonal base. O
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2.2.11. Corollary. Every immediate extension of co contained in 1°° is
Hilbertian.

Proof. Let E be an immediate extension of ¢( contained in 1*°. Then,
there exists E(, a maximal immediate extension of ¢y, which is Hilber-
tian by Theorem 2.2.10, and such that E C E(. From Proposition 2.2.1
we conclude that E is Hilbertian. O

2.2.12. Corollary. Every immediate extension of cq contained in 1°° which
is of countable type has an orthogonal base.

Proof. Follows immediately from Corollary 2.2.11 and Proposition
222. O

Theorem 2.2.10 shows that all immediate extensions of [(en )n],
where (e ) is the standard base of ¢, contained in 1*° are Hilbertian.
Now, we extend this result, characterizing linear subspaces of 1%
which are maximal immediate extensions of linear spans of their max-
imal orthogonal sets, giving equivalent conditions for being Cartesian
and Hilbertian. Note (see Remark 2.2.14) that this result cannot be
generalized for all linear subspaces of 1.

2.2.13. Theorem ([35, Theorem 3.3]). Let E be a linear subspace of 1*° and
let (xi)ie1 be a maximal orthogonal set in Eq. If Eq is a maximal immediate
extension of [(xi)ie1] contained in 1°°, then the following are equivalent

(1) Eg is Hilbertian;

(2) ¥y is Cartesian,

(3) foreveryu = (ug,uy,...) € Eop, rrrlgi]( [wn | exists.

Proof. (1) = (2). Follows from [43, Theorem 3.1 and Proposition 3.5].
(2) = (3). Assume the contrary and suppose that there exists

u = (uq,uy,...) € Eg such that maI%( lun | does not exist. Using Propo-
ne

sition 2.2.9, we choose b = (by,by,...) € 1% for which [u, b] has no
orthogonal base. If b € Ej then Ey is not Cartesian; thus, we are done.
Assume that b ¢ Eg. Then, since E is a maximal immediate extension
of [(xi)ie1] and Eg + [b] is not an immediate extension of [(xi)ic1l,
by Proposition 1.2.9, Ey + [b] is not an immediate extension of E,.
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Hence, we can find d € Eq with ||b—d| = dist(b, Ey). By Lemma 1.2.1,
|lb —d| < ||b—Aul| for every A € K. Taking any nonzero p € K, we
get

1 1
= el = - Hu—dH " Hu—b+b—dH
m m
1
= [yl - Hu—bH = [u—ub].
n

Thus, we conclude that dist(u, [d]) is not attained. Using Lemma 1.2.1
again, we imply that [u, d] has no orthogonal base; hence, E; is not
Cartesian.

(3) = (1). If rT{lgI%( lun| exists for every u = (ug,up,...) € Ep,
then, by Proposition 2.1.4, [u] is orthocomplemented in 1°°; thus [u] is
orthocomplemented in Ey and Eg is Hilbertian. O

2.2.14. Remark. The conclusion (1) = (3) of Theorem 2.2.13 does not
work if Eg is an immediate extension of [(xi)ic1], but not maximal. See
Example 2.2.17.

2.2.15. Remark. Theorem 2.2.13 is not valid if K is spherically com-
plete. In this case all normed spaces over K are Hilbertian and Carte-
sian (see [57, Lemma 4.35] and [43, Theorem 3.1 and Proposition 3.5]).
Let (xi)ie1 be a maximal orthogonal set in 1°°, then 1*° is a maximal
immediate extension of its linear span. However, in this case the
implications (1) = (3) and (2) = (3) are false.

Next result, which seems to be interesting on its own right, pro-
vides Example 2.2.17 announced in Remark 2.2.14.

2.2.16. Proposition ([35, Proposition 3.7]). Let Egbe a closed Hilbertian
linear subspace of E. If x € E\ Eg and dist(x, Eg) is attained then [x] 4+ Eg
is Hilbertian, either.

Proof. Since dist(x, Eg) is attained there exists zg € Eq for which

HX_Z’O” = diSt(X/ EO) = diSt(X_ZO/ EO)/
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ie. [x —zy) LEg. Also, it is clear that [x] + Eg = [x — 2] + Ey, so the
conclusion follows as soon we prove that [x — zp] + E¢ is Hilbertian.
For that, note that from orthogonality of [x — zg] and Eo, we imply
that [x —zg] + E¢ is isometrically isomorphic to the Banach space
[x —zo] ® Ep. Obviously, [x — zp] is Hilbertian, Eq is Hilbertian by
assumption. Applying Proposition 2.2.1, we conclude that [x — zg] B Ey,
thus [x] + Ey, is Hilbertian. O

2.2.17. Example ([35, Example 3.8]). Let Ey be a maximal immedi-
ate extension of ¢y contained in 1*°. Choose a bounded sequence
(Un)n C K such that [u,| < [unyq| for every n € N and define
u = (ug,uy,...) € 1°. By Proposition 2.2.5, u ¢ Ej. Let E = [u] + E,.
Then E is Hilbertian. Indeed, first observe that u is orthogonal to Ey.
By Proposition 2.2.5, for any x = (x1,X2,...) € Eq there exists Ny such
that [xn| < [xn,|if n > No. Thus

[x —uf| = sup [xn — un|
neN

= max{ max [Xn —Unl, sup [xn — unl} = max {||x||, ||u||}-.
n<N0 T1.>N0

Now, by Theorem 2.2.10, Eq is Hilbertian; thus, applying Proposi-
tion 2.2.16, we conclude that E is Hilbertian.

However, Theorem 2.2.10 implies that E is not a maximal immedi-
ate extension of the linear span of any maximal orthogonal set.

At the end of this section, let us to get know another interesting
property of a maximal immediate extension of ¢y contained in 1°°.
Recall, that by [57, Theorem 4.1], 1°°/cy is spherically complete for any
(spherically complete and non-spherically complete) K.

2.2.18. Theorem ([35, Theorem 3.9]). Let E be a maximal immediate ex-
tension of cg contained in 1°°. Then E/cq is spherically complete for any K.

Proof. If K is spherically complete then E as a maximal immediate
extension of ¢y contained in 1*° is spherically complete. Thus, the
conclusion follows from [57, Theorem 4.2].
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Let K be non-spherically complete, 7t: 1°° — 1% /c( be the quotient
map and (B /¢, r, (Xn))n be a centered sequence of closed balls such
that (xn)n C 7(E). Suppose that r; > 1, > ... and 1g := 1111111 Th >
0. We prove that (| Bix /¢, r, (Xxn) N 7t(E) is nonempty. Since, by [57,

n

Theorem 4.1], 1°° /¢y is spherically complete, we can choose xy € 1°°/cy
with xg € () By /¢y, (xn). Suppose that xg ¢ 7t(E). Select a sequence
n

(an)n C E for which (a,,) = xn (n € N). Choose ag € 1*° such that
m(ap) = xo. Then, agp ¢ E. Next, for every n > 1 take gn € ¢ for
which [[ag — (an + gn)ll < Th_1. Since (an +gn) € E, dist(ag, E) < 7.
By assumption and Proposition 1.2.9, [ao] + E is not an immediate
extension of E; thus, there exists a € E such that ||ag — al| < ro. Hence,
[0 (@) < v and 7(a) € (VB cyr, (k) N (E) O

An example of Cartesian space which is not Hilbertian

This section complements the previous one providing an example of
a Cartesian space which is not Hilbertian. Let us start by giving an
example of the Cartesian space without an orthogonal base obtained
by van Rooij and Schikhof (see [58, Problem 4]).

2.2.19. Proposition. Let K be densely valued. Then, the spherical comple-
tion ¢y of co contains a linear subspace which is Cartesian but it has no
orthogonal base.

Proof. By Zorn’s Lemma, there is a maximal Cartesian subspace D of
¢o containing co. We show that D is a required example of a Cartesian
space without an orthogonal base. Assume the contrary and suppose
that D has an orthogonal base. Since, by [57, Theorem 5.2], every max-
imal orthogonal set in ¢y is countable, D has a countable orthonormal
base (xn)n.

Select A1, Ay, ... € Ksuch that [A1] > |Ay| > ... — 1 and take z € ¢
such that

<|}\m+1| (m:l,Z,)

m
zo — Z AnXn
n=1
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Then, zy ¢ D. Set Dy = D + [z] and define

m
Zmi=20— ) Anxn (m=12,.). (2.22)

n=1

We will show that {zg, z1, . . .} is an orthogonal base of Dy. First, observe
that ||zn|| = A1l forn =0, 1,... We demonstrate that foreachm € N
if {zp,...,zm—1} is orthogonal, then z,, L [zy,...,zm_1]. Assume the
contrary and suppose that there is k € Nand py, ..., ux—1 € Ksuch
that

llzk + tozo + - -« + tk—1zk—1ll < ||zk || = Pkl (2.23)

Then, ||pozo + . .. + Hk—12k—1ll = [Ak+1l. Since, by assumption, {Zo, ..,
zmq} is orthogonal,

_max [izi] = Ayl

Hence, |ui| < 1foreachie{0,...,k—1}and

(1 + o+ 4 u—1)zig1 ]| = Pgal < Axgal (2.24)

From (2.22) and (2.23) we get

llzic +1ozo+ ...+ me—1zk—1 — (T4 1o+ .-+ Hie—1)Zi41|
K—1
:H(l to+ o me)zo+ ) (14t + oo+ 1) Anxn

n=1

+ Ak — (T+ po + -+ mr—1) 2z

K
Z(Ho +o o)A + (T o + s 1) Ak Xk

n=1

> [T+ o+ ...+ He—1) Ak 1Xk 1] = Akl

since {x1,x2,...} is orthogonal. But, it contradicts with (2.23) and
(2.24). Hence, {z9,21,...} is an orthogonal base of Dy. Thus, Dy is
Cartesian. However, we assumed that D is a maximal Cartesian sub-
space of ¢y, a contradiction. O
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Recall that the space 1°°(N, HA{), the linear space over K of all boun-
ded maps N — K equipped with the supremum norm, is spherically
complete (see [57, 4.A]), thus, it contains a spherical completion of
co(N, K) (note that by [57, 4.B], co(N, ]K) is not spherically complete).

2.2.20. Remark. Note that 1*°(N, HA{) contains elements which are or-
thogonal to 1*° (considered as a linear subspace of 1°°(N, ]IA{)). Hence,
by Lemma 1.2.2, I*°(N, K) contains a proper linear subspace which is a
spherical completion of 1*°. Indeed, let A € ]IA{\K andlet r := dist(A, K).
Then, there exists a sequence (cn)n C K such that [cn — A| — 1 if
n — oco. We can assume that [c, —A| > |cn 1 — Al for each n € N. Set

C _ A~
Hn == = (MnGK), neN
Cn Cn+1
Then,
Cn—A Cn—A Cn—A
i = = - ~1
Cn — Cnt1 Ch —A+A—cCn1 Cn—A
and N
dist(pn, K) = dist(,K) = ;.
Cn — Cn+1 |Cn - Cn+1|

Since [cn — cni1l =lcn = A+ A —cni1l =len — A, dist(pn, K) — 1if
n — oo.
Setx = (1, Wo,...) € lOO(N,]K). Then, ||x]| = 1 and dist(x,1*°) =
sup dist(un, K) = 1; thus, x is orthogonal to 1%°.
n

2.2.21. Proposition ([34, Proposition 6]). The space cy(N, K) is an im-
mediate extension of cg. A linear subspace G of 1°(N, K) is an immediate
extension of co(N, K) if and only if G is an immediate extension of co and
c(N,K) C G.

Proof. Take x = (x1,%p,...) € cO(N,]IA{) \ ¢p, then

dist(x,cg) = max dist(xn,K) >0,
neN

where K in this case denotes a one-dimensional linear subspace of K
generated by element 1. Let My = {n € N : dist(x,, K) = dist(x, co)}.
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Clearly, M, is nonempty and finite. Take n € M,. Since x,, € K\ K,
applying Remark 1.2.13, dist(xn, K) is not attained; hence, co(N, ]IA{)
is an immediate extension of cy. Using Proposition 1.2.9, since ¢y C
co(N, K) C G, we finish the proof. O

2.2.22. Corollary ([34, Corollary 7]). Let x = (x1,%2,...) € loo(N,]K).
If [X] + ¢o(N, K) is an immediate extension of co(N,K) then [x] + ¢ is an
immediate extension of co.

Proof. Since ¢y C co(N,K) ¢ [x] + co(N,K), it follows readily from
Propositions 1.2.9 and 2.2.21 that [x] + co(N, ]K) is an immediate exten-
sion of cy; thus, since [x] +¢o C [x] + ¢ (N, ]IA{), [x] + ¢g is an immediate
extension of cy. O

Next, we want to show that the converse of Corollary 2.2.22 is not
true.

2.2.23. Example. Take a € K\ {0}and ag € ]K\K such that dist(ag, K)
> |al. Define @ = (ag, a,a,...) € 1°(N,K). Then,

diSt(a, Co) (: dist(ao, K))

is not attained; hence, [a] + ¢( is an immediate extension of ¢q. But
[a] + co(N, K) is not an immediate extension of cy(N, K) since

dist(a, co(N,K)) = lla — (ao,0,0,...)| = lal.

2.2.24. Proposition ([34, Proposition 9]). Let
X = (x1,%2,...) € 1°(N,K) \ 1
be such that [x] + cg is an immediate extension of co. Assume that

sup dist(xn,K) > dist(x, co) (2.25)
neN

and there exists ng € N such that

sup dist(xn, K) = dist(xn,, K). (2.26)
neN

If E is a maximal immediate extension of c( contained in 1°°, then
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(1) [x] + E is an immediate extension of E;
(2) [x] + E is an immediate extension of cy.

Proof. Assume the contrary and suppose that there is u = (ug, up,...)
in E for which dist(x, E) = |[x — u||. Using Remark 1.2.13, (2.25) and
(2.26) we obtain

dist(x, BE) = [|[x —u|| = [xn, — un,|
> dist(xn,, K) > dist(x,co) > dist(x, E),

a contradiction. Hence, [x] + E is an immediate extension of E. Ap-
plying Proposition 1.2.9, we conclude that [x] + E is an immediate
extension of cy. O

Note that the condition (2.26) is crucial for the proof of Proposition
2.2.24, as the following example shows.

2.2.25. Example ([34, Example 10]). Let b = (by, by,...) € lOO(N,K) \
1° be such that for every n € N

[br| > [bnyil, dist(bn, K) < dist(bny1, K)

and

lim dist(by,,K) =11 >0, lim |bn|=19>11.
n—o0 n—oo

For every n € N choose ¢, € K for which
dist(bn,K) < [bn —cn| < dist(bny1, K).

Then, |cn| = |bn| and [cn — bn| < lcni1 — bnyil for all n € N. Define
c = (cq,¢z,...) € 1°°. Then, by Proposition 2.2.8, [c] + ¢ is an immedi-
ate extension of c¢g. Let E be a maximal immediate extension of [c] + ¢y,
contained in 1°°. By Proposition 1.2.9, E is a maximal immediate exten-
sion of ¢g. Let x := b —c. Then, sup,, . dist(xn, K) = dist(x,co) =7
but dist(xn,K) < r for every n € N; i.e. the condition (2.26) is not
satisfied. We see that x L E; thus, by Proposition 1.2.9, [x] + E is not
an immediate extension of c.
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All immediate extensions of ¢y contained in 1*° are Hilbertian (see
Corollary 2.2.11). However, among linear subspaces of 1*°(N, K) we
can easily find an immediate extension of ¢y which is not Hilbertian,
Cp for instance. Even more, taking E, a maximal immediate extension
of ¢( contained in 1*°, we can find x € 1*°(N, ]K) such that [x] + E is not
Hilbertian. Theorem 2.2.27 shows, assuming that K is separable and
non-spherically complete, that for some x € (N, K) the space [x] +E
is Cartesian but not Hilbertian. First, a lemma.

2.2.26. Lemma. ([34, Lemma 11]) Let x = (xl,xz, ...) € 1°(N,K). As-
sume that xi. € K\ K, [xx| > [xi41l, dist(xx, K) = r for every k € Nand
hm Ixi| = 1. Let D be a linear subspace of cg —l— [x] such that [eq] is an

orthocomplement of D. Then
(1) there exist Ay, A\ € K, Ax] <1 (k =2,3,...) such that x — Ageq,
ex —Axe1 € D;
2) foreveryk =2,3,...,

K
X1 A+ ) Aixi| < Pxgeral-
i—2

Proof. (1) Let D be an orthocomplement of [e] in ¢y + [x]. Then, for
every z € cg + [x] there exists unequivocally selected A, € K with
z—Aze; € D. In particular, there exist A, Ax € K (k =2,3,...) for
which x — A eq, ex —Axe; € D (k=2,3,...). We see that [Ax| < 1 for
every k =2,3,...; otherwise, ex — Aie; is not orthogonal to [e;] .

(2) Assume the contrary and suppose that there exists kg € N for

which we get
ko

X1 — Ax + Z AiXy

i=2

> [xkor1l- (2.27)

By assumption, we can select ay, ..., ax, € K such that
Ixi + ail < [xi41l; (2.28)

thus,
ALl - [xi 4+ ail < [xxg1l (2.29)
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fori=2,...,ko. Using (2.27) and (2.29) we get

kKo ko ko
X1—=Ac— ) @il =[x —Ac+ ) Aixi— ) Ailxi+aq)
i—2 i=2 i=2
ko
= [x1 —Ax + ZMXi > Xkt 1l
i=2

Hence, applying (2.28), we obtain

ko
:max{ X1 —?\X—Zaﬁ\i
i=2

b2 4+ Gzl g + Qg b 111 kg 2l - }

xX—A 61+Za1 i —Aier)

4

ko

= X1—7\X+Z7\1Xi

i=2

> |Xk0+1|'

But then, choosing Ag € K such that [x; — Aol < [xi,+1l, from (2.28) we
obtain

(x —Ax el—kZa1 —Aier)) +Za1

ko
=||x+ Z aiei — }\061
i—

= max{[x; — Ao, [x2 + azl, ..., [xi, + ax,l, Xig+1l Xig+2l, - - -}
ko

x—A el—l—Za1 i —Aver)]].
i=2

|Xk0 +1 | <

Since x — Ayeq + Z ai(e; —Ajeq) € D, we contradict to [e;] LD. [
i=2

2.2.27. Theorem ([34, Theorem 12]). Let x = (x1,%p,...) € lOO(N,]K).
Assume that for every k € N xy € K\ K, x| > |[xx41l, dist(xy, K) =
r > 0, for every finite subset {k1, ..., kn} C NU{0}

dist(xy,, [Xklz---,in,lkamkan}) >r (i=1,...,n), (2.30)
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where xog = 1 and k11_r>r;o Ixi| = 1. If Eisamaximal immediate extension of
co contained in 1°, then,

(1) [x] + E is not Hilbertian;

(2) [x] + E is Cartesian.

Proof. (1) Assume for a contradiction that [x] + E is Hilbertian. Then,
there exists D, an orthogonal complement of [e;] in [x] + E. Since
[x] +co C [X] +E, Dg := DN ([x] + cp) is an orthogonal complement of
[e1] in [x] 4+ cp. By Lemma 2.2.26, there exist Ay, Ak € K, Ac|, Ax| < 1
(k=2,3,...)such that x — A ej,ex —Are; € Dy (k=2,3,...) and

< Ixierl (2.31)

k
X1 — }\X + Z )\ixi
i=2

forevery k =2,3,...

Now, we find a subsequence (ny )i C Nforwhich A, | > (k—1)/k
(k € N). Fix k € N (k > 1). Then, we choose k; € N (k; > k) such
that

k
|Xk1| < a - T. (232)

Consider two cases:
1—1
@)

k
X1 — Ay + Z Aixi| = [xy,|. By assumption and (2.31),

i=2
k1
X1 —Ax + Z Aixil < x4l < X l;
i—

thus, we imply that [Ay,| = 1. We take ny := k;.

ki—1
(i) [x1 —Ax + > Aixi| < [xi, |- Then, applying (2.30), we choose
)
' ki—1
ka > kq with |x; — A+ > Aixi| > [xx,|. Since, by (2.31)
i=2

kyo—1

X1 —Ax + Z Aixy
i=2

< |Xk2|r
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there exists k3 € N (k1 < k3 < k») such that

k-1
X1 — Ax + Z Aixi| = Ay Xl
i—

Then A, xx,| > [xi,[; hence, using (2.32) we get,

X, | - X, k—1 k-1

Aies| > - T Tk

X1
since [xi,| < |xi, [; we take ny := ka.

There exists a sequence (cx)x C K such that 1}520 ek —x1] = 1
and (B ¢, —c,,,/(ck))x is a centered sequence of closed balls with an
empty intersection. Without loss of generality, we can assume that
Ick — cxr1l > lcks1 — ckazl (k € N) and for some kg € N

1
ck—c < — ek 1—c¢
lex — Cxpl k+1|k1 Kl

if k > kg. Then, for k > kg,

k—1

T 1|Ck—1 — cxl

Anp—1l - ek = cxpal <lex —cxal <

k—1
< lek—1 — ekl < An |- lex—1 —ckl;
thus | o |
Ck — Ck+1 Ck—1 —Ck
2.33
Ao, A (2.33)

Let Np := {nx : k € N}. Define b’ = (b}, b},...) € 1™ by setting

bl = L k03,
A

[
bl =

and b} = 0if i ¢ Np. It follows from (2.33) and Proposition 2.2.5, that
[b’] + ¢ is an immediate extension of ¢g. If b’ ¢ E, by Proposition 2.2.8
there exists g; € 1% such that b’ 4+ g1 € Eand ||g1|| < dist(b’,cg) = .
Define b = b’ + g, taking g = g7 if b’ ¢ E and g = 0, otherwise. By
assumption there exist Ag € K and b € D such that b = Age; + b.
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Since (Bg |, —c,.,|(ck))x has an empty intersection, we can find
my € Nsuch that (b} —Ag) ¢ BK,\cmrcmlﬂl (¢m, ). Then, we can easily
verify that

|bi — Ao+ Cm1| = |bi — Ao +cnl > |Cm1 - le—i—l‘ (2-34)

for allm > my (n € N). Next, we find m, € N for which
mp
|Cm2 - Cm2+1| : ﬁ < |Cm1 - Cm1+1|-

Hence,

|Cm2 - Cm2—|—1|

b, < b =
by, | |nm| B

o]

my
< |Cm2 - Cm2+1| : m < |Cm1 - Cm1+1| (2.35)

for every p > m,. Since

m m
b — Z by, (Aner —en) =b" +g—Agey — Z by, (An.e1 —en,)
— k=1

m
=g+ (bj—Ao— ) b AnJer+by en  +bL en ,t..
k=1
=g+ (b] —N+c1—(c1—c2) —
- (CTTL - Cm—!—l))el + b/ﬂ.m+1 enm+1 + bi’L +2enm+2 +

=g+ (b —Ao+cmy1)er + by en,, +b;

n +zenm+2 + s

taking mp > max{my, my} from (2.35) and (2.34) we get

= max bh |
m>m,

+b/

Mmgy+2 enm0+2

—H9+b

Mmgy+1 enm0+1

< |Cm1 - Cm1+1| < |b1 - A0 + Cm0+1| g H(bi - )\0 + Cm0+1)61”/

a contradiction with orthogonality of D and [eq].
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(2) Since, by Theorem 2.2.10 and Propositions 2.2.1 and 2.2.2, E is
Cartesian, it is enough to prove that for every finite-dimensional linear
subspace F C E there exists xf € F such that ||x — x|l = dist(x, F).

Let n = dim(F). Choose an orthonormal base (vy )y, where vy, =
(vlldvi, ...) (k € N), of F. By Proposition 2.2.5 and assumption of
orthogonality, for every i € {1,...,n} there exists k; € N such that
Ivil| = |vlfi| and k; # k; if i # j. Even more, we can choose (vi )y that
foreachi=1,...,n we have

1 i
Vi = 1? ].' G=1,...,n).
) 0 ifi#j,

Taking ay, ..., an € Kand denoting My, := N\ {ky,...,kn}, we get

n
X — E aivi
i=1

= max{ ~max [|xi, —ai|, sup
ie{l,..n} meMy,

n
X1 — E a;vi"
i=1

}. (2.36)

By (2.30), for every m € My,

n
X — Zv{“xki > 7.
i=1
Let
n
d:= sup |xm — Z Vit Xy, (2.37)
meMn i=1

and assume that, for every i € {1,...,n}, [xx, — ai| < d. Thus, there
exists € > 0 such that
max |x, —ai/=(1—¢)-d and |(x, —ai)vit|<(1—¢)-d
ie{l,..n}

foreveryi e {1,...,n}and m € M,,. Hence, for every m € M,,, we
get

n

Z(xki —avi" < (1—¢)-d. (2.38)
i=1
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Note that by (2.37), there exists my € M, with

n

mo
Xmy — E Vi Xk

i=1

>(1—¢)-d (2.39)

and observe that taking m € M,, we get

n n n
m m
—Zaivi = —Zvi Xy, + E (XK
i=1 i=1 i=1

hence, by (2.38) and (2.39)

n
X — E aivi"
i=1

Now, applying (2.36) we conclude that

n n
X — E aivi Xm — E avit|=d
i=1 i=1

Consequently, there exist ay, ..., an € K such that

X — E aivi

This shows that E + [x] is Cartesian. O

sup
meMy

= sup
meMy

n

m _

Xm — g VXK | =
i=1

= sup
meMy

dist(x, F)

2.2.28. Remark. Note that the valued field C,,, a completion of an al-
gebraic closure of the field of p-adic numbers Q,, (see Proposition 2.12
of [30]) is an example of non-Archimedean field for which the condi-
tion (2.30) satisfies.

The following observation is worth mentioning.

2.2.29. Proposition ([34, Proposition 14]). Let Eq be a maximal immediate
extension of cg, contained in 1°° and let x = (xq,%p,...) € ¢o \ Eg. Assume
that dist(x, Eg) = dist(x,cg) = 1. Denote N := {k : dist(xy,K) =r}. If
Ny is nonempty and finite, then £y + [x] is not Cartesian.
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Proof. Take k € N\ Ny. Then, dist(xy, K) < rand we can find a € K,
lak| = x| which satisfies [xx — ax| < 1. Definey = (y1,ya,...) € 1%,
taking yi = 0if k € Np and yx = ay, otherwise. By Proposition 2.2.8,
there exists z = (z1,zp,...) € Eg such that |z, —yn| <rforalln € N,
Let F = [(ei)ien,). Then, for any Ax € K (k € Nj) we obtain

(x —z) Z A€k

keNy

max Ixk — Akl > 1 =dist(y —x, F)

and conclude that [x — z] + F has no orthogonal base. O

2.3 The finite-dimensional decompositions
in non-Archimedean Banach spaces

Recall that a real or complex separable Banach space X has the finite-
dimensional decomposition if there exists a sequence (D )y of finite-
dimensional subspaces of X such that every x € X can be uniquely

o0
written as x = ) xn with x, € Dy, for all n € N. Clearly, every

Banach space witclh é\ Schauder basis has the finite-dimensional decom-
position, but the converse is false. There exist separable Banach spaces
without finite-dimensional decomposition. Also, a closed linear sub-
space of a real or complex Banach space with the finite-dimensional
decomposition needs not have the finite-dimensional decomposition
(see [8]).

In the non-Archimedean context the situation differs substan-
tially, every non-Archimedean Banach space of countable type has
a Schauder base; thus, all such spaces and their closed subspaces have
the finite-dimensional decomposition (although, as proved Sliwa in
[69], there exist non-Archimedean Fréchet spaces of countable type
without the finite-dimensional decomposition).

A natural modification of the above classical concept reads as
follows:

Let E be a non-Archimedean Banach space of countable type. We
say that E has the orthogonal finite-dimensional decomposition (OFDD) or
E has the orthogonal finite-dimensional decomposition property (OFDDP)
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if E is the orthogonal direct sum of a sequence of finite-dimensional

subspaces D1, D,, ..., i.e. every x € E can be unequivocally written as
o0

X = Y Xn,wherex, € D, (n € N), and we have ||x|| = maxy {||xn||}-

n=1
If K is spherically complete, every non-Archimedean Banach space

of countable type has an orthogonal base ([57, Lemma 5.5]), thus, it has
the orthogonal finite-dimensional decomposition. If K is not spheri-
cally complete, there exist various kinds, even of finite-dimensional
non-Archimedean spaces, without an orthogonal base as well as ex-
amples of non-Archimedean Banach spaces without the orthogonal
finite-dimensional decomposition property (Proposition 2.3.1 shows
simple examples). Thus, for these K, the class of Banach spaces with
the orthogonal finite-dimensional decomposition can be considered
as a proper generalization of the class of non-Archimedean Banach
spaces of countable type with an orthogonal base.

2.3.1. Proposition. Let K be non-spherically complete and let E = K (the
spherical completion of K). Let D be a closed subspace of countable type of
E and T be a finite-dimensional linear subspaces of E, respectively. Then,
(1) D does not have the orthogonal finite-dimensional decomposition pro-
perty;
(2) the space F @ cq has the orthogonal finite-dimensional decomposition
property, but it has no orthogonal base.

Proof. Recall that E, thus D and F, are immediate extensions of any
one-dimensional linear subspaces; hence, assuming that D has OFDD,
we imply that D contains a countable orthogonal set, a contradiction.
Clearly, F @ cg has the orthogonal finite-dimensional decomposition.
As, F has no orthogonal base, it follows from Theorem 1.1.4 that F @ ¢
has no orthogonal base, either. O

By Gruson’s theorem (Theorem 1.1.4 ) every closed linear subspace
of a non-Archimedean Banach space with an orthogonal base has an
orthogonal base, either. The following question, formulated by Perez-
Garcia and Schikhof in [49, Remark 4.10], is quite natural:
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2.3.2. Problem. Does any closed linear subspace of a non-Archime-
dean Banach space E with the orthogonal finite-dimensional decompo-
sition property have the orthogonal finite-dimensional decomposition,
either?

Perez-Garcia and Schikhof proved that the answer for this question
is affirmative if D is orthocomplemented in E (see [49, Theorems 4.1,
4.3 and Remark 10] and [48]). In Theorem 2.3.6 we present a coun-
terexample, a non-Archimedean Banach space E with the OFDDP and
its closed linear subspace without this property.

To prove Theorem 2.3.6 we need the following lemmas.

2.3.3. Lemma ([36, Lemma 2.2]). Let A, v € K and let v > 0. Suppose
there exists ng € N such that

1
A —cnl < (1+ n)r (2.40)

and .
[v+Db—acny| < (1 + n)r (2.41)

hold for some a,b, c1,¢a,... € Kand alln > ng. Then, aA —b € By (V)
if la| <1landv/a+b/a € Bg (A), otherwise.

Proof. Suppose |a| < 1. In this case, by (2.40), we have [aA — acn| <
(14+1/n)rand, by (2.41),

l[aA —b —v|=]aA — acn + acn, — b — V|
1
<max{|laA — acnl,|v+b—acn|} < <1 + n)r.

Since this inequality holds for all n > ng, we derive that aA —b €

B (V).
Kr

Assume now |a| > 1. Then, by (2.40) and (2.41) we get

1 b 1 b

v—i——?\’ = v—i——cn—i—cn—?\'

a a a a
1 1

<max<{ |—|-|[v+b—acnl,A—cnlp <1+ — |,

a n

and we conclude that v/a +b/a € B; _(A). O
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2.3.4. Lemma ([36, Lemma 2.3]). Lef A1, Ay, ... € K \ K. Then, for each

m € N there exists a sequence (¢ )y in K with lim Ay, — ¢t = i 1=
n

dist(Am, K) and such that the following holds:

(1) (B jem—cm (e ))n is a strictly decreasing sequence of closed balls

in K for which
ﬂ BKJCW*C,TH\ (cnn = 0. (2.42)
neN
(2) Foreverym € N,
1
el =Mml and  Am —cf'l < (1 + n>rm, (2.43)

(3) For every c € K there exists ng € N such that

lent —cl=Am —c| foralln > ny. (2.44)

Proof. Let m € N. First of all note that, since r, = dist(A;, K), there
exists a sequence (¢ )n in K with lim Ay, —c}'| = 1. Since dist(A, K)
n

is not attained for each A € K \ K, we can assume that
|?\m - C:Ll‘ > |}\m - C1r?+1| (245)

for all n € N. Next, let us prove (1)—(3).
(1) It follows from (2.45) that

ey — el = Am — el (2.46)

for all n € N. Now, from (2.45) and (2.46) it follows that

lent — et > ety — et (2.47)

for all n € N, for which we get that (B jcm—cm

m 1 (cf))n is a strictly

decreasing sequence of closed balls in K.

Suppose the intersection of these balls is nonempty i.e. there exists
ac € Kwith [c—c!| < et —cty 4| for all n. Then, by (2.46), A —c| <
Am — cptl for all n € N. Hence, [A;, — ¢| = 1 and we imply that
dist(Am, K) is attained, a contradiction.
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(2) It is obvious that the ¢* (m, n € N) can be chosen satisfying the
second part of (2.43). To prove the first part observe that, 1, < [Aml,
from which we have that [A;, — c'| < [Am] for large n, so e = [Aml.
Therefore, the c;;* also can be chosen satisfying the first part of (2.43).

(3) Fix ¢ € K. By (2.42), there exists ng € N such that
(chp)-

¢ & Bjep—cm |

Also, by (2.47), IcT"L‘0 —c™ | > felt — e for all n > nyg, hence we

ng+1 ng

obtain

cn —cl=leq — et +cqy —cl

= max {Ic,nl1 — Cngls leqy — C|} = leq, —cl-

Finally, by (2.46),

Am — ¢l = [Am —cqp +cqp — ¢

= max {Am —cj|, ey —cl} = leq —cl,

and we are done. -

2.3.5. Lemma ([36, Lemma 2.4]). If E has the OFDDP, then every one-
dimensional linear subspace of E is contained in a finite-dimensional ortho-
complemented subspace of E.

Proof. We may assume that E is infinite-dimensional. Let E = € E;,
ieN
where each E; is a finite-dimensional subspace of E. Let [x] be a one-
dimensional subspace of E. We can write x = ) xi, with x; € E4
ieN
for each i € N. Fixip € Nand t < 1. Then, applying [47, Theorem
2.3.13], we can select a subspace D;, C Ej, such that E;, = D;, +
[xi,] and [Ixi, + d|| > t- max{||xi,],lld||} for all d € Dj,. Let Iy =
e N:xill >t |xi,ll, i # 1o} Since x; — 0if i — oo, Iy is finite.

F:= [X]+Dio+ (@Ei>.

ielp

Define
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One can easily verify that
e=r@( D w)
1eN\(ToU{io})

Hence, F is a finite-dimensional orthocomplemented subspace of E
containing [x]. O

The construction of the space presented in Theorem 2.3.6 is based
on some properties of sequences of elements of K.

Choose Ay, Ay, ... € ]IA{\K such that [Ai| =1 (k € N) and dist(Ax, K)
= dist(A,K) forall k > 2. Set r := dist(A,K) and A :={A1, Ay, ...}
Hence, for all ¢ € K,

T<[Ax—c|, sor < |Acland T < 1. (2.48)
In A we define a relation ~ as follows

Ai ~ Aj if there exist a, b € K such that aA; +b € B _(A;).

Let Ex := [{e1,A1e1, €2, Azey, ...} be the closure in 1*°(N, K) of the K-
linear subspace spanned by {ej, A1e1, €2, Azep, ...} (e, €, ... are stan-
dard unit vectors; note that Aey ¢ [ex] for every k € N, since A, €
K\ K). Then, E, is a Banach space of countable type with the OFDDP,
since we can write Ep = @ Dy, where Dy := [ey, Acex], k € N.

Define X := {ej, ey, . .]f}, Xo = {Ae; +Arep, A\eg + Azes, ... tand
DA = [X1UX5]. Then, DA is a one-codimensional (hence closed)
subspace of Ex, since Aje; € Dp and EA = DA + [Ajeq]. One can
easily verify that X; and X, are orthogonal sets, hence every x € Dz

can be uniquely written as

X = Z aiei + Z Ai(Ae; +Aiey), a,AieK, ieN. (2.49)
i=1 i=2

For such A, Ex and D A we prove the following;:

2.3.6. Theorem ([36, Theorem 3.1]). DA has the OFDDP if and only if
A has finitely many equivalence classes with respect to the relation ~.
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Proof. (=) Assume for a contradiction that A has infinitely many
equivalence classes with respect to ~. For each m € N, let (c]'),, be as
in Lemma 2.3.4. By the OFDDP for D o and Lemma 2.3.5, there exists
a finite-dimensional subspace F C DA, containing e;, and a closed
subspace G C DA such that DA =F® G.

Since by assumption F is finite-dimensional, there exists my € N
such that for every x € F, ||x|| < 1, written as

o0 00
X = Z aiei + Z Ai(Aer +Aey)
i=1 i=2

(see (2.49)), la;| < rand |A;| < rfor all 1 > my.
Choose m > mg such that A, # A; foralli € {1,..., mp}. There
exist u, w € F for which

em =u—(u—em),

Ae1 +Amem = —w+ (A1e1 + Amem +w)

and (W—em), (AM1e1 +Amem +w) € G. Since F L G, ||u||, [w| < 1. We
can write

u= Z ajei + Z Ai(AMer +Aer), lail|Ai <rifi>mgy, (2.50)
i=1 i=2

w= Z aiei + Z Al(Aer +Ase), lailJAl < rifi>my. (251)
i=1 i=2
By Lemma 2.3.4 (second part of (2.43)), for every n € N we get
|Are; + Amem —cler —clen |
1
= max {|7\1 — C11|, Am — c]?} < <1 + n)r.
On the other hand,

IAre1 + Amem —cher — cMen |
= |[Are; + Amem + W —w —cle; —cMem — c™Mu + cMul|

=max {|[Are1 + Amem + W + i (uw — em)]|, lcher + cpu+w] },
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sincee;,u,w € F, (u—em), (Me1+Amem+w) € Gand F L G. Hence,
1
AMe1 +Amem +W+cpt(u—em)| < <1 + n)r. (2.52)

Now, applying (2.50) and (2.51), for every n € N we obtain

IAter + Amem +w+cent(u—em)||

(0.¢]
AMer + Amem + ) (af +citai)es

i=1

o0
+ Z(A/i +enAi)(Arer +Ajeq) — CT“femH
i=2

= max{

max |a} +chta; + (AL + el ADAL A — cTTI}, (2.53)

i=2,..., my

7

mo
af +eitar + A <1 + ) (AL + q’?&))
i=2

since |ai|,|a}] < rand |Ai],|A}] < rforalli > mg (see (2.50) and (2.51)),
lcit =1 (see (2.43)) and Ay, — et > 7 (see (2.48)). Thus, by (2.52) and
(2.53), for every i € {2,..., mp} and every n € N, we obtain

1
lai + ctai + (A + e AN < <1 + n>T- (2.54)
We deduce that

AL 4+ cTA < 1 (2.55)

for every i € {2,..., mp} and large n. Indeed, by (3) of Lemma 2.3.4,
for every i € {2,...,mp} there exists n; € N and di > 0 such that
AL +cAil = dj for all n > ny. Assuming that d; > 1, we can choose
k > n; for which di > (1 + 1/k). Then, by (2.54),

< 1 1+ 1 T<T
di k ’
a contradiction with r = dist(A, K).
Letie{2,..., mg}. It follows from (2.55) that, if A; #0,

/

/ m .
a; +¢aq

Tk T A
Al 4 e Ay T

ﬁ+c}?

1

Al <1
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for large n. Also, since by Lemma 2.3.4 (see (2.44)) and (2.48),

/

Al /
T<|=t+An| =lim |- +c,
‘Aﬁ m] m 50+ el
we have A .
r< |/ 4+ <
‘Ai " |A]

again for large n. We derive that |A;| < 1/r (it is trivially true when
Ai = 0). Choose p € N for which

1

1+4 21‘.
P

Al < (2.56)

From Lemma 2.3.4 (see (2.43), (2.46)) and (2.47) we know that

. 1 1
A —C;I < <1 + p>r and |021 —cgll < <1 + p)r
for all ¢ > p. Hence, by (2.56)
Ai(A —cp)eq —ep)l <. (2.57)

As Ai(}\i — C;;)(Cg1 — Cgi) = AicanAi — AiC]TDnAi — Aic%cgl + Aic}acg‘,

from (2.54) and (2.57) we obtain
|} +cgtai + (AL + et AN
: ; 1
— (Aican)\i — Aicgl}\i — AiCLC? + AiC%C{,n)‘ < (1 + q)T‘
for large q. Thus, for those q we get
|ai + cgrai + Al + AicptA + Aicéc? — Aic%)cg1
. . 1
= \7\1(/\/1 + Aicgl) + cgl(ai + Aic]‘D) — Aic}[,cg‘ + a’i\ < <1 + q)r.

Assume that |A] + Aicy'| = 1. Then we have

p T ai + Aicj, _A,—Lc})cg‘—a’i - 1+1 .
VUTTALFAem AL+ Age
i 1+p i 1-p q
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for large q. Since A —cg'l < (1 +1/q)r for all q (see Lemma 2.3.4,
(2.43)), applying Lemma 2.3.3, we conclude that A, ~ A, a contradic-
tion with the choice of m.

By (2.55), |A} + Aicytl < 1foralli € {2,...,mp}. Observe that,
according to the construction of p, we can take the same p for all
ie{2,...,mg}. Hence,

mo
‘1 + ) (A{+ Al =1. (2.58)

i=2

Further, by (2.52) and (2.53) we get, for all q € N, that

myo
1
al +clag + A (1 + ) (AL + cH‘AJ) ' < (1 + q>r.
i=2

Proceeding as in (2.57) we obtain that

|AL (M —c:%,)(cg1 —c)| <

for every i € {2,..., mp} and large q. Then, in this case we arrive at

my
aj +cltag + M (1 +) (AL cglAi)>
i=2

mo
1
— ) (AicAr — AieAr — Aschelt + Aic})cgi)‘ < <1 + q)r
i=2

for large q. Thus, for those q we have

my my
aj +egrar +A (1 + Z(A’i + Aicg‘)> + Z(Aic%,cgl — Aic%,cgl)’
i=2 i=2

my mo Mo
A <1+Z(A{+Aic?)> +cg1 <a1 —|—Z Aw%) —i—ai—Z Aic%,cg
i=2 i=2

i=2
< (1 + 1>r.
q
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By (2.58) we get

my mo
ai+ Y Aicy, aj — Y Aicpelt
i=2 i=2

AM+c = + — <1 + )
1+ 'Zz(Ali +Aic) 1+ .ZZ(AQ + Aicpt) q
1= 1=
for large q. Using Lemma 2.3.3 again, we imply Ay, ~ A1, a contradic-
tion with the choice of m.

(<) Suppose now A has finitely many, say s, equivalence classes
with respect to ~. We will show that D o has the OFDDP.

Define S := {1,...,s}. Next, form {My}, cs, a partition of N such
that 1,j € My (k € S) if and only if A; ~ Aj. Assume 1 € M;. We will
construct closed subspaces Hy, ..., Hs, Hs 1 of DA as follows.

If M1 ={1}, set H; := {0}. Otherwise, for n € My \ {1}, let

1 b1 1
D, = [Mep +Anen + — Men, el + — Ten|,
a al,

n

where al, bl € K satisfy al A, + bl € Bz (A1) (which implies
lal| =1, see the comments before Theorem 2.3.6). Then, for every
X € D}L, which can be written as

b}L 1
X =« Are1 +Anen + — € +B(e+—
an n

for some «, p € K, we obtain

b! 1
|x||:rnax{ oA + o + B }
aTL an

Also,

= laal Ap 4 abl + BJ

bl 1

XAn + o {L‘FBT
a

ﬂ. n

= |occ1117\TL + cxbl1 — A + oM + Bl = laAr + B,

since [A; + c| > 7 for each ¢ € K (see (2.48)) and |[alAn + bl — Ay <

Thus,

bl 1
x|l = |oAn + o= + B—|- (2.59)
al, a

n
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From (2.59) we conclude that, for all n € Mj \ {1},

DLL > Dy,

meM\{I,n}
and from (2.49) and (2.59) that, for those n,

DA:D}L@[YluYz], Yy :={ei:1#mn},

(2.60)
Yy :={Me1 +Ae; :1>2,1#n}

SetH;:= @ DL. Applying (2.60) recurrently onn € My \ {1},
neMy\{1}
we have
Da=Hi+WjuWl], W] :={ej}U{ei:i¢g My},
Wi = {A\e; +Ajeg 11 ¢ My

Now, for k € S\ {1}, choose ni, € My. If My = {ny}, set Hy := {0}
Otherwise, for each n € My \ {ny} define

k 1
k . n
Dy = [Anen, —Aneén — —en,en, — —€n|,
aTl aTl

where ak, bk € K with afA, + bK € Bz (An,) (again |ak| = 1).
Similarly as above we obtain that for every

b‘; 1 K
X =&| An,€n, —Anén — k +pB(en, — a—keTl e Dy,
Tl

n

bk 1
x|l = [oAn + x— " + BQT (2.61)
Tl
and also that for every n € My \ {ny}, DX L > Dk.
meM\{ng,n}
SetHy:= @  DX.Wehave
neMy\{ny}
DA =Hj + Hi + WF U WK, (2.62)

WF ::{ell enk} U {ei i g Ml U Mk}/
W5 :={A1e1 + Angen U {Arer + Ajei 11 & My UMy,
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Next, define

Zy :={e1tU{en, : ke S\{1}},
Zr :={M\e1 + Ankenk :keS \{1}}

and Hgyq = [Z1 U Z;]. Using (2.59) and (2.61) one can easily ver-

ify that, for each i € J, where J ={1,...,s,s +1}, H; L ) Hj.
jelj#t
Therefore, applying (2.62) recurrently on k € S \ {1}, we finally get

Da= @ Hi=He &y DX (n:=1). (2.63)
1<i<s+1 kesSneM\{ny}

As S is finite, Hg 1 is finite-dimensional and from (2.63) we conclude
that D o has the OFDDP. ]

As an application of Theorem 2.3.6 we derive the following.

2.3.7. Proposition ([36, Example 3.2]). Let K = C,,. There exist infinite
sets A1, Ay and the one-codimensional subspaces D,, DA, of Ex, and Ex,
respectively such that

(1) D, does not have the OFDDP;

(2) DA, has the OFDDP.

Proof. (1) By [30, Corollary 2.14], @p \ C;, contains infinitely many
elements Ay, Ay, ... with [A;| = [A;| and dist(A;, C}) = dist(A,Cyy) for
alli,j, such that A; ¥ Aj foralli #j. As I@pl = |Cp|, by scalar multi-
plication we may assume that |A;| = 1 for all i. So, Aq :={A1, A, ...}
has infinitely many equivalence classes with respect to ~. Now, by
Theorem 2.3.6, D o, does not have the OFDDP.

(2) Choose A € Cp, \ Cp, with [A| = Tand ¢ € Cp, with 0 < [c| <
T = dist(A,C;) (as in (2.48) we have r < 1). Then define A; := A
and A; == A1 +c (€ @p \ Cp) for i > 2. It is straightforward to
verify that [A{| = 1, dist(A;,C) = dist(Aj,Cp) for all 1,j and that
the infinite set Ay := {A1, Ay, ... } has only one equivalence class with
respect to ~. Applying again Theorem 2.3.6 we deduce that D 5, has
the OFDDP. ]
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The next result shows that for certain class of non-Archimedean
Banach spaces of countable type over non-spherically complete K, the
OFDDP is preserved by taking finite-codimensional subspaces.

2.3.8. Theorem ([36, Theorem 4.1]). Let E be a non-Archimedean Banach
space over non-spherically complete K. Assume that £ = Fg © Gg, where
Fe and Gg are closed linear subspaces of E and Gg has an orthogonal base.
Let D be a n-codimensional subspace of E for some n € N. Then, there
exist uy, ..., un € E and closed linear subspaces Fp,Gp C E such that
Fp C Fe 4+ [w, ..., unl, Gp has an orthogonal base and D = Fp & Gp.

Proof. 1t suffices to prove the result when D is one-codimensional. For
n > 1, take (closed) subspaces Dy,..., Dy withD = D;; C D1 C
... C D; C Eand dim(E/Dq) = dim(Dy_1/Dx) =1,k € {2,...,n}.
Then apply recurrently the one-codimensional case to get the conclu-
sion.

So, let us assume that D is a one-codimensional (hence closed)
subspace of E. If Fg C D, then D = F¢ @ (Gg N D) and, since Gg N D
has an orthogonal base by Theorem 1.1.4, we are done. Similarly, if
Gg c Dwehave D = (Fg N D) & Gg.

Hence, additionally we may assume that Fg \ D and Gg \ D are
nonempty. Let {z; : j € ]} be an algebraic base of Fg and let {x; : i € I}
be an orthogonal base of Gg (where I is a finite set if Gg is finite-
dimensional and I := N if Gg is infinite-dimensional). Choose f € E/
for which D = kerf. Let by = f(x;) (i € I) and a5 = f(z;) (j € ]).
By assumption, Iy :={i € I : by #0}and Jo :=={j € ] : a; # 0}
are nonempty sets. Define F = [{ajzi — aizj : 1,j € J,1 # j}]. Clearly,
FC DNFe.

Consider the following two cases:

1. There exist iy € Ip and jg € Jp such that

diSt(biOZ]'O,F) = H(l)'OXiOH. (2.64)

Define u := bioz)'o — X4, (E D), Fp =F+u,X= {bioxi _bixio 1 e
I\ {io} (C D) and Gp := [X]. Clearly Fp C Fg + [u]. Also, by Theorem
1.1.4, Gp has an orthogonal base as a closed subspace of Gg. Let us

show that D = Fp & Gp.
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First we prove that Fp L Gp. Take z € Fp, x € Gp. It suffices
to see that ||z + x|| > ||z||. We can write z = zy + c(by,z;, — aj,Xi,),
wherezg € F,c € K. If c =0thenz | xsince F C Fg and Fg L Gg;
otherwise, we get

1z +x[| = llzo + c(biyzj, — ajoxi,) + ||
= HZO + Cbiozio — CQj,Xi, + X”

= max {|[zo + cbi,zj, I, || — cajoxi, +xlI} > [lz]],
since

2] = max {|lzo + cbiyzj, I, lleaj,xi, ||

Z0
= |c| max {HC + by, zj,

,||ajoxio||} — Jlz0 + cbi, 2z |,

where the last equality follows from (2.64).

Next we prove that D = Fp + Gp (then, D = Fp ® Gp and we are
done). The inclusion Fp + Gp C D is obvious. For the other inclusion,
let d € D. It can be written as

d= Z ®;zj + Z Bixi, (2.65)

j€Ja iel

where o, B; € K, Jqa C ], Jq finite, jo € Jaq, with «;, eventually null.
Since f(d) = 0, we have

1
oo :_a-< Z x5 aj +Zﬁibi>/
0 NeTqa,i#50 i€l

from which we get

a)'od = Z &5 ((1)'02]' — aijO) + Z Bi(ajoxi — biZjO)- (2.66)
J€Jai#io iel
Also, one can easily see that, for each i € I,

a; b
QjpXi — biZ]’O = b—m(bioxi — bixio) + bil(ajoxio — biozjo)' (2.67)
io i
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Putting together (2.66) and (2.67) we conclude that a; d € Fp + Gp,
iie.d e Fp+ Gp,as aj, £ 0.

2. Foreachi € Ipand j € Jo, dist(biz;, F) < |lajxi| . Letjo € Jo.
For every i € Iy choose w; € F such that

bizj, +will < [lajyxill, (2.68)

from which
Hbizjo + Wi — (leXiH = ||(lj0Xi||. (269)
Let X := {bizjo +wi —ajxii€ Io} U{xi:1€I\Ip} (C D). Then,
using that Fg L Gg, orthogonality of {x; : i € I} and (2.69), one can
easily verify that X is an orthogonal set. Set Fp := F and Gp = [X].
Clearly, X is an orthogonal base of Gp. Let us show that D = Fp @ Gp.
First we prove that Fp L Gp. Take z € Fp, x € Gp. It suffices to
see that ||z + x|| > ||z|| (see the Preliminaries). We can write
X = Z Ci(biZjO +wi — ajoxi) + Z cixy (ci € K).
iely iel\Iy

Then, as Fg L Gg,

z+ Z Ci(bizj0+wi)
i€l

—E ciajoxi—i— E CiXi

i€l ieI\Ip

7

b

Now, by (2.68) and orthogonality of X, it follows from the above that

||z-+x|| = max {

Iz -+ Il = max { |2l max|lecaj,xi, max fleoxi | > 2]l
i€y iel\Ip

Next we prove that D = Fp + Gp (then, D = Fp @ Gp and we are
done). The inclusion Fp + Gp C D is obvious. For the other inclusion,
let d € D be as in (2.65). It follows from (2.66) that

ad= )  o(ajz—aiz)+ ) Bilajxi—bizj,)+ > Biajxi.
j€Jai#io ielp ieI\Iy
Hence,
aj,d = Z o (aj,25 — ajzj,) + Z Biwi
j€Ja,i#io i€l

+ Z Bilajyxi —bizjy —wi) + Z Biajoxi

i€l ieI\Ip
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(observe that, by (2.69), {Bi(aj,xi — bizj, —wi) : 1 € Iy} is summable
and hence so is {3;w; : i € Ip}). This implies that a;,d € Fp + Gp i.e.
dEFD—FGD,aSGjO#O. O

The following conclusion, concerning the heredity of OFDDP by
closed, finite-codimensional linear subspaces, is a direct consequence
of Theorem 2.3.8

2.3.9. Corollary. Assume € = Fg & Gg, where Fg is finite-dimensional
and Gg is a closed subspace of E with an orthogonal base. Then E has the
OFDDP and for every finite-codimensional subspace D of E,
(1) there exist closed subspaces Fp, Gp C E, where Fp is finite-dimensio-
nal and Gp has an orthogonal base, such that D = Fp @ Gp;
(2) D has the OFDDP.

Proof. (1) follows directly from Theorem 2.3.8. Also, since Banach
spaces of countable type with an orthogonal base and finite-dimensio-
nal Banach spaces clearly have the OFDDP, the orthogonal direct sums
of these two kinds of spaces, e.g. E and D, again have the OFDDDP,
which finishes the proof. O



Measures of weak
noncompactness.
Non-Archimedean
quantitative compactness
theorems.

Measures of noncompactness are commonly used in functional analy-
sis. Usually there are defined as mapping B(E) — [0, c0), where B(E)
denotes the family of all nonempty and bounded subsets of E, and they
are equal to zero on every relatively compact subset of E. The value
of a measure of noncompactness taken on a given M € B(E) inform
us, loosely speaking, how far is it from being relatively compact.

There are several applications of noncompactness measures. One
of them are quantitative compactness theorems. Using suitable in-
equalities involving distances we can substantially strengthen the
original, classical results about compactness.

In this chapter we present some basic properties of a few selected
noncompactness measures defined on a non-Archimedean Banach
space E equipped with the weak topology o(E, E*). As an application,
we provide quantitative versions of Grothendieck, Gantmacher and
Krein’s theorems

Recall that a subset M of a locally convex space X is called pre-
compact if, for every zero neighbourhood U there is a finite set F C X
such that M C U + F. Among non-Archimedean valued fields, not all
are locally compact. Since any nonempty convex set in a Hausdorff

115
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locally convex space X which contains at least two points contains the
homeomorphic image of Bk; hence, if K is not locally compact, the
only possible convex precompact sets are singletons. It is the reason
to restrict our considerations only to locally compact fields.

Throughout this chapter, we will additionally assume that K is
locally compact.

3.1 Basic properties of noncompactness measures.
Non-Archimedean quantitative Krein’s theo-
rem

For a set A C E, we define the absolutely convex hull of A as

acoA :_{Z)“ai meNA,...,A\qn €Bg,aqq,...,an GA}.

i=1

We say that A is absolutely convex if A = acoA.

A subset of a topological space is called relatively compact if its
closure is compact. Let M C E be a bounded set. Then, M is relatively

o E**,E*)

weakly compact if and only if M ( C E. Using this observation,

we can introduce some more general definition. Let ¢ > 0. We say that
E** E*

OEE) C E 4 Bgew .. In this

context, it is natural to define the following noncompactness measure

M is e—-weakly relatively compact if M

k(M) := sup dist(x™*, E). (3.1)

x*e MO ETEY

Clearly, k(M) = 0 if and only if MCO(ETE

the fact that M is relatively weakly compact.

C E that is equivalent to

We say that M e-interchanges limits with Bg- if for any two se-
quences (xn) C M and (z},) C Bg+, assuming that the both limits
limlim z}, (xn ) and lim lim z}, (x, ) exist, we have

m n n m

linrin liTanzfn(xn) - lirrln liT%n 27 (xn)| < e
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Applying this concept we can define other noncompactness measure,
setting

Y(M) := sup {‘ liginlirrlnz*m(xn) — liTEnILrirlz;(xn)‘ :
(z1) € Bee, (xn) C M} (32)

Note, as we show in Corollary 3.1.5, M is weakly relatively compact if
and only if y(M) = 0.

We will also consider the Hausdorff measure of noncompactness
given by

h(M) :=inf{e > 0: M C F; + Bg¢; F. is finite}, (3.3)
and de Blasi measure defined as
w(M) :=inf{e >0: M C K¢ +Bg¢; K¢is o(E, E*)-compact}. (3.4)

Since by Theorem 1.1.14 in every non-Archimedean normed space
E over locally compact K any compact set of E is weakly compact, the
measure of weak noncompactness w introduced by De Blasi compares
with the Hausdorff measure h on every bounded subset of E.

The problem of the equivalence of other, considered measures
of weak noncompactness will be studied later in this Chapter (see
Corollary 3.1.5 and Proposition 3.1.6).

First, we check interrelationships between k and y. To do it we
define the function ¢x: [0, 00) — [0, c0) as follows

¢ok(e) :=max{]A|: A e K,|A| < ¢}

Clearly, ¢k (e) € K| and ¢r(e) = € if ¢ € |[K|. We say thatt > 0 is
an upper accumulation point of ||E|| if there exists (xn)n C E such that
IIx1]] < [Ix2]] < ... < tand liTan Ixn| = t.

Since 0 is the only accumulation point of |K|, we observe that
for each bounded M C E we have y(M) € [K|. If ||E|| # K], the
defined functions w, k and 'y may have different sets of values, as
Example 3.1.12 shows.



118 Measures of weak noncompactness

3.1.1. Theorem ([4, Theorem 3.3]). Let M C E be a bounded set and let
e > 0. Then,

(1) if M s e-weakly relatively compact, then M ¢ (€ )-interchanges limits
with BE*;

(2) if M e-interchanges limits with Be -, then there exists . < $x(e)/lpl
(where p is an uniformizing element of K with |p| < 1) such that M
is &¢-weakly relatively compact. If 1 is not an upper accumulation
point of ||E||, then we can select such &, with 6. < $r(e)/lpl.

For the proof of Theorem 3.1.1, we need the following two lemmas.

3.1.2. Lemma ([4, Proposition 3.1]).
- — O_(E***,E**) o
(]‘) ]E*(BE*) :BE***~

(2) If 1is not an upper accumulation point of ||E||, then

fU(E***,E**)
je(Bg.) = Bgwr.
Proof. (a) follows from [47, Corollary 7.4.8].
(b) Since jg+ is an isometry and B+« is o(E***, E**)-closed, we
have R
- o ***, k%
je-(Be+) C B,
Assume for a contradiction that there exists
- (E***/E**)
f € Beee \ jE+ (Ber) :
It follows from [47, Theorem 7.4.6] that there is x** € E** such that
[f(x**)| > 1/lpl and [x**(z*)| < 1 for all z* € Bg+; thus, we can easily
deduce that [|[x**|| < 1/|p|. Since

f k%
]|
we obtain
— = |IX*|| = f(x™)| > — = ||x™|| = f(x™)| = —. (3.5)
ol ol ol
On the other hand,
wx || I (z*)]
[x**|| = sup

seengoy 120l
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Hence, we can select (z},)n C B+, assuming that ||z} || > |p| for all
n € N, such that ||x**|| = lim [x**(z},)|/||z}||. Suppose that there is
n

ng € N for which

()

™| o
[e2
Then, by (3.5), we get
. Ix**(z3, )l v %
Izl = st = P ()l ol <ol

which contradicts with the assumption that ||z}, || > |p| for alln € N.
So, we can assume, selecting a subsequence, if necessary, that
ezl Iz )

(el 125441

1
< I ==

[

for every n € N. Then, for every k € N we can choose nx € N such
that

1<

)l 11
EN
Thus,
K 2 |
lp| > = > lzE || > el
P v R

But then, for every k € N we can choose xi. € E satisfying

k 1z5, (1)
lp| > —=&
k —|pl

> |pl.

x|l

Without loss of generality, we can assume that |z}, (xk])| = [p| for all
k € N. Then, we obtain

k —pl
k

Hence, li]£n Ixk|| = 1 and we deduce that 1 is an upper accumulation

< HXkH < 1.

point of ||E||, a contradiction. O

3.1.3. Remark. Note that the part (1) of Lemma 3.1.2 follows from p-
adic Goldstine theorem which says that if E is normpolar, then jg (B )
isa o(E**, E*)-dense subset of B« (see [47, Corollary 7.4.8]).
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3.1.4. Lemma ([4, Lemma 3.2]). Let x** € E** and assume that d =
dist(x**,E) > 0. For every x1,...,xn € E, anon-zero A € Kand ¢ > 0
with 0 < ¢ < |A| < d there exist z* € Bg« and Ay € K, |Ag| < ¢, such that
X**(2*) = A+ Ag and |xi(z*)| < € foreach i € {1,...,n}. If 1is not an
upper accumulation point of ||E|| then we can even assume that || < d.

Proof. First, define a linear functional fy: E 4+ [x**] — K for which
fo(x**) = A and fy(y) = 0 for ally € E. Then, [[fy| = [Al/d < 1
if we assume that |[A| < d (||fo|| < 1 if we assume that A| < d ).
Applying Ingleton’s theorem (Theorem 1.1.12) we get f € E*** such
that ||f|| = ||fo|| and f|g [x=] = fo. Let

V={ge ™ :[(g—fx")l<e [(g—fxi)l<e i=1,...,nk

Then, since jg-(B¢.) is o(E***, E**)-dense in B... (and if 1 is not an
upper accumulation point of [|E||, then jg«(Bg+) is dense in Bg -« with
respect to the topology o(E***, E**)), applying Proposition 3.1.2, we
can find z* € VN Bg«. Let Ag = (z* — f)(x**). Then

XM () = (X)) — F(xX™) + 25 (x™) = f(x™) + (2" — ) (x™) = A+ Ap.
Since f|g = 0, we obtain

xi(z)] = 12" (xi) = f(xi)| = |(z" = ) (xi)[ < ¢
foreachi=1{1,...,n} O

Proof of Theorem 3.1.1. (1) Assume that M is e-weakly relatively com-
pact. Let (xn)n € M and (z},)n C Bg+ be sequences such that

lim lim x, (27

lim lim x, (2 m)

n m TTL)/ m n

exist. We prove that
1111111 liglnxn(zj;l) — ligln li]rinxn(z;"n) < dx(e).

Let x* € M°" ") bea o(E**, E*)-cluster point of the sequence

(xn)n. Clearly, dist(x**,E) < €. Fix 8 > 0 and choose x € E for which

|Ix — x| < dist(x™*,E) + .
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Next, take z* € E*, a o(E*, E)-cluster point of (z},)m. Since x and
X1,X2,...arein E, x(z*) and xn(z*) (n = 1,2,...) are cluster points
of (x(z,))m and (xn (2},
sequence of (z}, )m, denoted again by (z},)m, such that lim, x(z},)
exists. Hence, we obtain

))m, respectively. Thus, we can select a sub-

liglnx(zfn) =x(z"), (3.6)

*

and lim xn, (z},) = xn(z*) for every n € N. Clearly,
m

limxn (z3,) = x™(z3,) (3.7)
for every m € Nand
lim lim xq, (27,) = lim xq (2%) = x**(2%). (3.8)
n m n

Thus, by (3.7), (3.6) and (3.8) we have

*

m m m n

‘lim lim x,, (z%,) — lim limxn(z’{n)‘ = [x*"(z*) — limx**(z;)‘
n m

= [x**(z") — limx(z},) + lim x(z},) — lim x (zm)‘

X" (2%) = x(2") + lim(x — x**)(z;)‘

< max {|x** =x)(z"),

ligln(x—x )(zm)‘} < X —=x||.

Since
A —=x")(z")] € K],

[Tim (x — x**) (z3,)
|Ix** —x|| < e+ dand b > 0is arbitrary, we conclude that
max {lim (x — x™) (23], [(x = %) (2]} < ().

So, the proof of (1) is finished.
(2) Suppose that M e-interchanges limits with Bg+; i.e. for any two
sequences (xn)n C M and (z},)n C Bg+ we have

linrin liTan z5 (xn) — lirrln ligln zi (xn)| <, (3.9)
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assuming that the involved limits exist. Clearly,
‘ lim lim 2, (xn) — lim lim z;(xn)‘ e K],

as K is discretely valued. Hence, we get

limlim z}, (xy) — lim lim z:‘n(xn)‘ < okle). (3.10)
m n n m
Take x** € M) and suppose that dg = dist(x**,E) > 0. Set

x1 € M and Ag € Ksuch that [A¢| = [p|- dg if dp € [K|and 1 is an upper
accumulation point of ||E||, and [Ag| = ¢k (dp), otherwise. Applying
Lemma 3.1.4, we select A\; € K, [A1| < [Ao|/2, and z] € B+ for which
x**(z7) = Ao + A1 and [xq(z])] < [Ao/2]. Let

V= {u e EM [(x™ —u)(z])l < |)\30|}

Taking x, € MNV, and applying Lemma 3.1.4 again, we choose A, € K
with [A;| < [Aol/3 and z5 € B+ for which x**(z3) = Ag + A1 + A2 and
Ixi(z3)] < IAol/3 for i = 1,2. Continuing on this direction in the n-th
step we choose x,, € M for which
Aol
n+1’
Next, using Lemma 3.1.4, we select A, € K with [A,| < [Agl/(n+1)
and z}, € Bg« for which x**(z}) =Ag +A1 + ...+ A and
Aol
n+1

k%

|(x** —xn)(z5)] < i=1,...,n—1. (3.11)

Ixi(zn)l < (3.12)

fori=1,...,n. This procedure enables us to form sequences (xn )n C
M, (An)n C Kand (z},)n C Be+ such that for every n € N we have

XM (zn) =N +...+ A, X (zp)l = Aol

* |)\O|
izl < 2o

forie{l,...,n}.

Clearly, by (3.11), for every m € N we have xn (z},

) = xM(zy) if

n — oo; hence,

lim lim xn (z7,) = lim x** (z3,) = > A
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On the other hand, it follows from (3.12) that for every n € N one
has |xn(z},)] — 0if m — oo; thus, liTanligln xn(zh,) = 0. Hence, we
conclude that

li?l%nxn(z*m) —liglnli]inxn(z;)‘ = ‘liglnliTanxn(zT“) = |Agl.
Thus, [Ag| < ¢ (e) by (3.10).

Assume that dy € [K| (dg = dist(x**, E)) and 1 is an upper ac-
cumulation point of ||E|; recall that in this case [Ao| = |p| - do, so
do < dxl(e)/lpl. Suppose now that dyg ¢ [K|. Then, ¢x(dy) = [Ag
and [Ag| < do. Hence, dy € (|Agl, [Aol/lpl) and dg < dx(e)/Ipl. Setting
d¢ = sup d(x**, E), we obtain 5, < dk(e)/Ipl.

p—

Assume now that 1 is not an upper accumulation point of [[E||.

Then ¢k (¢)/lpl is not an accumulation point of ||E||, either. Thus, we

can choose r > 0 such that dist(x**,E) < ¢g(e)/|p| — r for every

x** e M° o(E™.E") . Defining o, := sup d(x**, E) similarly as

o (E** E*)
**GM
above, we get promised 8, < Ilﬁd)K( £). O

3.1.5. Corollary. Let M be a bounded subset of E. Then M is weakly
relatively compact if and only if y(M) = 0.

Next proposition deals with the measure w.

3.1.6. Proposition ([4, Proposition 3.5]). Let M C E be a bounded set.
Then

1) for every € > w(M) there exist yi, ..., yx € E such that

M C{y1,..., Yk} + Bg,e C aco{ys,..., Yk} + Bg,e
Cy1,.--, Yyl + Bee;

(2) w(M) =inf{e >0: M C [F¢] + B, where F, C Eis finite };
(3) w(M) =w(acoM);

(4) w(M) =sup {hmdlst(xm, X1,. ., Xm—1]) : (xm)m C M}
(5) k(M) < w(M).
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Proof. (1) Let ¢ > 0. If ¢ > w(M), then, by definition, there exists

a weakly compact set K¢ (in fact compact by Theorem 1.1.14), for which

M C K¢ 4 Bg¢. By compactness of K, we can select yi,...,yx € E
Kk

such that K. ¢ |J U;, where
i=1

Wi={xeb:|x—vyi| <e={yi}+Bre, i=1,..., k.

Since Bg ¢ + Bg,e = Bg,. by Lemma 1.1.2, we get

K
M c | J{yi} +Bee) + Bee C Y-, Y} + Bee.

i=1

Other inclusions in (1) are obvious.
(2) Denote

wp :=inf{e >0: M C [F¢] + Bg,. where F. C Eis finite }.

To prove wy > w(M), take ¢ > 0 and assume that there exists a finite
set F. C E such that M C [F.]+ B¢ . Since M is bounded, there exists
r > ¢ > 0 for which M C Bg ,. Then, K, = [F.] N B, is compact. Set
x € M. Then, x = xf + x, where xf € [F¢] and x € Bg . Clearly,

XF € [ ] (M + BE e) [Fs] N (BE,T + BE,&) = [Fe] N BE,T‘

by Lemma 1.1.2. Thus, x € K, + Bg . and we imply M C K/, + Bg ..

Hence, w(M) < wy. The inequality wg < w(M) follows directly

from (1).

(3) Clearly w(M) < w(acoM). Assume that M C F + B¢, for

some finite-dimensional subspace F C E and ¢ > 0. Take z € acoM.
n

Thenz = ) Aix; for some A; € Bx and x; € M, i =1,...,n. Since
i=1

xi € M, for every i € {1,...,n}, we can choose x| € Fand x{ € Bg,¢

such that x; = x{ + x{. Then we have

n
Z x + x{) Z)\lx +Z7\1X1/
i=1

z
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n n
and conclude that z € F + Bg ¢, since )} Ajx{ € Fand ) Aix{ € Bg.

i=1 i=1

Hence, acoM C F+ Bg . and w(M) > w(acoM).
(4) Denote

WNA = sup {@ dist(xm, [X1,...,Xm—1]) : (xm) C M}.

Let ¢g = w(M). Fix ¢ > ¢p and assume that there exists a sequence
(xn)n € M for which

@ dist(xn, [X1,...,Xn-1]) > €.

Then we can choose a subsequence (xn, )k of (xn)n for which
li]I<n dist(xn,, [X1,...,Xn—1]) > €

and even, removing finitely many elements, such that

dist(xn,, [X1,..., Xn,—1]) > € (3.13)

for all k € N. Clearly, ||xn,|| > € for all k € N. By (1), we can select
Yi,.-.,Yp € Esuch that M C {yy,...,yp} + B ¢; we can assume that
lyi —yjll > e foralli,j € {1,...,p} with i #j. Since xn, € M, we find
j1 €{1,...,p} for which

[xn, —yj, [l < e (3.14)

By (3.13), dist(xn,, [x1,...,%n,—1]) > €, hence, we have||xn, —xn, || > e.
Applying (3.14), we obtain

Hxﬂz _th = HXTLz —Xn; +Xny _th = Hxﬂz —anﬂ > E.

Thus, we can choose j, € {1,...,p}\ {ji} for which ||xn, — yj,|| < e.
Continuing on this direction, we show that ||xn, —yj,|| < ¢ foreachi =
1,...,p, where {ji,...,jp} ={1,...,p}. Hence, M C {an,---,xnp} +
Be . Then, ||><an —Xn,|| < eforsomeie{1,...,p} But, by (3.13)

dist(xnpﬂ, [X1,... ,xnp]) > €,
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providing a contradiction. Thus wna < €, and we conclude wna <
w(M).

In order to show wna = w(M) take ¢ < w(M). Since, by (1),
M ¢ F + Bg, for every finite-dimensional subspace F C E, setting
x1 € M, we get M € [x1] + B . Hence, there exists x, € M such that
dist(xp, [x1]) > €. Continuing on this direction, inductively, we select
a sequence (xn)n C M for which dist(xn, [x1,...,Xn_1]) > €. Thus

m(diSt(Xn/ [Xll I /anl])) Z g,
n

and the proof of this part is completed.
(5) Observe that for ¢ > 0 and a weakly compact set K¢ C E such
that M C K, + B¢ . we have

(E**,E*

M E) K 4+ By CE+ Bpeo .

Hence k(M) < w(M). O

Note that for any set I, ||co(I)|| = [K|; thus w(M) € [K]| for any
bounded set M C cy(I). For the case E being the space c((I) we have
the following.

3.1.7. Lemma ([4, Lemma 3.6]). Let ¢ > 0and ¢ € [K|. If (Wn)n C co(I),
wn = (WY)ie1 (n € N), is a bounded sequence for which there exists an
infinite subset | C 1 such that maxn|wh| = ¢ for all i € | then
(1) there exists (un)n € aco{wy, wy,...}and{ky,ky,...} C J such that
for everymn € Njukn| = ¢, ukm = 0if m € {1,...,n—1} and
ukm| < e forallm >n,
(2) w({wy,wy,...}) > e

Proof. Take n; € N and k; € ] for which |WT]§11| = ¢. Note that J; =
{i el: \W}HI > a} is finite, since wn, is an element of cy(I). Thus, we
can find n, > ny and k, € J\ J; such that Iw]f{"zl = ¢; then, clearly
|w$121| < ¢&. Next, we find n3 > ny and k3 € J\ (J1 U J»), where
Jo = {i el: Iw}12 > 5}, such that IWT]?SI = ¢. Continuing on this
direction we select sequences (kj); C ] and (n;); C N such that

k; K; . .
Iwn’jl =e¢and jwy | < eforeachie{l,...,j—1}.
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Define u; := wy,. Suppose that we have specified uy, ..., um_1
satisfying the required properties. Then we define

kq
n
Um,1 = Wn,, o W
k!
knfl
= maly, forn=2 1
Umn = Umn—1— —j—Un forn=2,... m-1
Un

Set Um := Um,m—1. We can easily verify that (W )m Caco{wy, wo,...}
and (um )m satisfies the required properties, i.e. for everyi € N Iuli<i | =
g, u?j = 0 for each j < 1, and Iu]fjl < eforallj > 1i. Let P: co(I) —
co(Jo), where Jo = {ky, kp, ...}, be the natural orthoprojection. Clearly,
[P(un)|| = ¢ for every n € N. Denoting P(u,) = (v ,V2,...),n €N,
we see that foreveryn e N, | = ¢, k| =0if k < nand V| < ¢ if
k > n; hence, {P(un) : n € N} is orthogonal. Thus, for fixed m € N,
we have

dist(P(um), [P(wy),...,Plum—1)]) = ¢.

But dist(um, w, ..., um—1]) = dist(P(um), [P(u1),..., Plum—1)]),
since P is orthoprojection. Hence, using Proposition 3.1.6 (3) and
(4), we finally obtain w({wy,ws,...}) = w(aco{wy,wy,...}) > e. O

3.1.8. Proposition (see [4, Proposition 3.7] and [24, Proposition 3.1 and
Corollary 3.2]). Let E = co(1), € > 0and M C E be a bounded and infinite
subset. Then,
(1) w(M) = e if and only if there exists x = (x')ie1 € 1°(1) such that
the following conditions hold:
(@) W' < x| for every w = (W)jer € Mand i € 1, and
{i el: x| +# s} is finite;
(b) there exist (Wn)n C M and infinite ] = {ky,ky,...} C I such
that [x*n| = lwkn| for every n € N.
(2) y(M) = w(M). .
(3) M is weakly relatively compact if and only if there exists x = (x')ic1 €
co(1) such that (w'| < |x*| for every w = (W)jer € Mandi€ L.
(4) If w(M) = ¢, then acoM contains an orthogonal sequence (un)n
for which ||un || = e.



128 Measures of weak noncompactness

(5) Let M C co(I) be a bounded subset. Then w(M) = max{e : there
exists an orthogonal sequence (un)n C acoM with ||un|| = ¢ for all
n € N}

Proof. (1) Suppose that x = (x!)ic1 € 1°°(1) is such that (a) and (b) are
satisfied. Let My = {x'e; : i € I} C ¢o(I). Then M, is an orthogonal
set. Using Proposition 3.1.6 (4) we deduce that w(My) = e. Clearly,
M C acoMj since w'| < x!| for every w = (W)je; € M and i € L.
Hence, by Proposition 3.1.6 (3) we note

w(M) < w(acoMyp) = w(My) = ¢.

On the other hand, taking a sequence (wy)n € M defined as in (b),
Lemma 3.1.7 implies w(M) > ¢, so we conclude that w(M) = e.

Now, suppose that w(M) = e. Since K is discretely valued and M
is bounded, for every i € I we can choose A; € K such that

Al = max{|wi\ W= (wj)jel € M}

Take Ay € K for which |[Ag| = ¢. Next, define x = (x})ie1 € 1°(I),
setting x* = Ay if [Ai| > ¢ and x!' = Ay, otherwise. Assume that we
can select an infinite set {11, 15, ...} C I such that [x™i| > ¢,j € N. But
then, for every j € N we can find w; € M for which Iw?jl = [x™i|.

Choosing a subsequence (ji ) such that k| =

gp > ¢ and applying Lemma 3.1.7, we dedl)lkce that w({wq,wy,...}) >
gp > ¢. This yields w(M) > ¢, a contradiction. Hence, the set Jo =
{i:[x'| > ¢, i €I} is finite and (a) is established.

To prove (b) itis enough to show thattheset]J; :={i: [Aj| =¢, i € I}
is infinite. Having this one can easily form a required sequence
(Wn)n C M. Indeed, assume that J; is finite. Then, w!| < ¢ for
every w = (wj)jGI € Mandiel\ (JoU]J;). But then, we can easily
deduce that M C [{e; : 1 € Jo U J1}] + Bg ¢p|, @ contradiction.

(2) (M) < w(M) by Theorem 3.1.1 and Proposition 3.1.6 (5). Let
¢ = w(M). Applying (1), we can select a finite [ C I, (Wn)n C M
and infinite ] = {kq, k, ...} C I'\ Iy such that |W11| <eforeveryn e N
and every j € I'\ Ip, and IwTklnl = ¢ for all n € N. Additionally, since
for every n € N, Iwill = ¢ only for finitely many j € I\ Iy, passing

[x"ik| = gg for some
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to a subsequence, if necessary, we can assume that leﬁ,{il < ¢ for all
n € Nand each m < n. Let T: ¢o(I) — ¢o(I\ Ip) be the natural
orthoprojection. Denote v, = T(wy, ), n € N. Then, |[v,|| = ¢ for all
n € N. We prove that (v ), is orthogonal. Take any {py,...,p1} C N,
p1<...<ppanday,...,q e K with |a;| = 1 foreachi e {1,...,1}.
Then, since, by assumptlon va '| < eforeach i< 1, we get

1
D aivy, Z aivp!!
i=1

Thus, (vn)n is orthogonal. Fix Ag € K with [A¢] = €. Let v}, (n € N)
denotes the linear functional defined on [v, vy, .. .Jby setting v}, (v ) =
0if n # m and v}, (vn) = Ag; since (vn)n is orthogonal, ||v;; || =1 for

= km\ =e= max laivp. -

.....

alln € N. Using Ingleton’s theorem (Theorem 1.1.12), for every n € N
we find a preserving norm extension of v;;, on the whole of co(I\ Ip),
n

denoted again by v};, and define z}; = } v} oT, a linear functional on

i=1
co(I). Clearly, ||z} || <1 (n € N). Observe that z};, (wn) =0if n >m
and z},, (wn) = Ag if n < m. Hence, limz}, (W) = Ag forany n € N
m
and lim z},, (wr,) = 0 for every m € N. Thus,
n

lim lim z7,, (wWn) —limlimzfn(wn)’ =Nl =c¢
n m m n

and we conclude y(M) > w(M).

(3) Suppose that M is weakly relatively compact. For every i € I
choose a; € K such that |a;| = max {w'|: w = (W))je1 € M}, and
define My = {aje;: i€ I}. Assume that there exists ¢ > 0 and an
infinite ] C I such that |ai| > ¢ for all i € J. Then, we can select
(Wn)n € M and {ny,ny,...} C ] for which \wnJI \anjl = ¢q for
some ¢y > €. But applying Lemma 3.1.7, we conclude that w(M) > ¢,
a contradiction. Hence, setting y' := a;, i € I, we obtain (y')ic; €
co(I). Now assume that there exists x = (x!)ic1 € co(I) such that
wil < XY for every w = (Wh)iecr € M and i € 1. Define My =
{x'e;:i €1} C co(I). Using Proposition 3.1.6(4) we deduce that
w(Mp) = 0. Since M C acoMy, we imply w(M) < w(acoMy) =
w(My) =0, thus, M is weakly relatively compact.
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(4) Applying (1) we choose a finite Jo C I, a countable ] ={k1, kp, ...}
C I\ Jo, and a sequence (W )m C M, where wi, = (W )icr (m € N),
km|

such that for every m € N we have |w = ¢and Wi | < e for all

iel\ ]0.

First, we form a sequence (zn)n C aco{wy, wo,...}and {l;,1p,...}
C Isuch that ||z || = |zl¢| = ¢ forall n € N.

If [[wm || = € for infinitely many m, we can choose a subsequence
(Wm, )Jn C (wm) with |[wm, || = ¢, and then set z,, := Wy, and
I := km,,. Suppose now, that |[w, || = € only for finitely many m. Set
Jo="141,---,7s) Without loss of generality, we may assume that there
exists ng € N with Iw ol > €.

In the first step, fix m; € {m : Iw | = maxnen Iw [} and define
L;:=neN:wkn | < ¢}. Clearly, L is infinite. Next, for every n € L3

define _
)1

Wn
Win i=Wn — —=Wn,.
Wi,
Then w]ll =0and \wl " | =¢foreveryn € L.

In the p-th step of the construction, when 1 < p <'s, and if

max Iw
ne Lp 1

e 1l > €

o 1m\—maxneL |w]D ln|}.Ther1we

we fix m,, € {mELp 1: Iw

define L, := {n € L,_1 : n % my and pr L, | <e}and
Jp
w
L p—1n .
Wpn :=Wp_1n — Twpfl,ml (TL € I—p)/
Wpfl,ml
otherwise, we set L, := L, 1 and wpn := Wp_ 1, n € L. Then,

following the construction of the s-th step, for L, = {sq,s,...} and
defining z,, := wyp s, for all n € N we obtain the required sequence
(zn)n.

Finally, using (z, ), defined previously, we form a sequence (i )n.
Set u; := z;. Suppose, that we already selected orthogonal elements
Ug,...,Um. Theset{i € I: Iuil = ¢ for some k = 1,..., m} is finite.
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Hence, we can choose n,, 1 € N for which Iu];nm“l < ¢ for every
p €1{1,...,m}. Then we set W11 := zn, .- Note that we can easily
check that the set {uy,...,um 1} is orthogonal. Continuing on this
direction we obtain the required orthogonal sequence (un)n as we
wanted.

(5) It follows directly from (4) and Proposition 3.1.6 (4). O

3.1.9. Corollary (see [4, Corollary 3.8]). Let M be a bounded set of E.
Then, y(M) = |pl - w(M), where p € K is an uniformizing element.

Proof. By Lemma 1.3.1, there exist a set I and a linear homeomorphism
T: E — co(I) such that |p| - [|Tx]| < ||x]| < |[Tx||. Hence, we have
w(M) < w(T(M)). Observe that for z* € B (1)» we derive
2o T —suplZOT0I L T0) 1

xeb Il el ITGA T ol
Hence (pz* o T) € Bg+, and then y(M) > |p| - Y(T(M)). Applying
Proposition 3.1.8(2) we finally obtain

1
ol Y(M) = y(TM)) = w(T(M)) > w(M). O
Now we present the following quantitative versions of Krein’s
theorem.

3.1.10. Theorem. (see [4, Corollary 3.9]) For a bounded set M C E we
have

Y(M) < y(acoM) < |‘1)|Y(M)-

If IK| = ||Ell then y(M) = y(acoM).
Proof. Clearly, y(M) < y(acoM). To complete the proof, observe that
<

v(M) < v(acoM) < k(acoM)

< w(acoM) = w(M) < |1p|y(M) (3.15)

by Theorem 3.1.1, Proposition 3.1.6(5), (3) and Corollary 3.1.9. By
Theorem 1.3.1, if [K| = ||E| then E is isometrically isomorphic to
co(I) for some I. Thus, w(M) = y(M) by Proposition 3.1.8(2), and
Y(M) =vy(acoM) by (3.15). O
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3.1.11. Theorem (see [4, Theorem 3.10]). If M C E is bounded, then

v(M) < k(M) < k(acoM) < w(M) = w(acoM) < |1p|y(M). (3.16)

If additionally |K| = ||E||, then
Y(M) =vy(acoM) = k(M) = k(acoM) = w(M) = w(acoM). (3.17)

Proof. Clearly, k(M) < k(acoM). The rest of (3.16) follows directly
from Theorem 3.1.1, Proposition 3.1.6 (3) and (5), and Proposition
3.1.8 (2). Now, assume that [K| = ||E||. Since, by Theorem 1.3.1, E is
isometrically isomorphic to co(I) for some I, we can apply Proposi-
tion 3.1.8 (2) obtaining y(M) = w(M). Thus, using (3.16) and Corol-
lary 3.1.10 we reach (3.17). O

In general, if [K| # ||E||, the equality (3.17) does not hold, as the
following example shows.

3.1.12. Example (see [4, Example 3.12]). Set a real ry such that [p| <
T < 1. Let E = (co(I), || - ||"), where the norm || - ||’ is defined by the
formula

1t %2, = max {Ix!, 5] - o, K - To, ... }

Then, M = {ey, e3, ... }isabounded subset of E. We prove that y(M) =
|p|. First, note that ||x|| = 1¢ for every x € M; thus, for every z* € Bg-
we get|z*(e;)| < [pl,1=2,3,...; otherwise, assuming that [z*(e;)| > |p]
for some j € {2,3,...}and z* € Bg+ we get [z*(ej)| > 1, since [K| N
(Ipl,00) = {1, lpI7%, IpI72,...}. Thus, [|x*|| = Ix*(e;)l/|le;ll = 1/70 > 1,
a contradiction. Hence, y(M) < |p|.

Now, let (e}, )n denotes the sequence of functionals such that
erlem) =pif n = mand ef(em) = 0if n # m. For everyn € N
define z;, = ej+...+ey; clearly, (z);)n C Be+. Then, lim, z};(e;m) =0
for everyn € N, and liTrln zy (em) = p for every m € {2,3,...}. Hence

limlim z} (ey) — limlim 2} (em )| = lpl,
n m m n
and we conclude that y(M) = |p|.

On the other hand, ||[x —y|| = 1o for any x,y € M, x # y. This

easily yields w(M) = 1.
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3.2 Non-Archimedean quantitative
Grothendieck’s theorem

Grothendieck proved that an uniformly bounded set H in the Banach
space C(X,R), where X is a compact topological space, is relatively
compact in the pointwise topology T, if and only if it is relatively com-
pact in the weak topology w of C(X, R), see [17], [14, Theorem 4.2] and
[3, Theorem 3.5]. The non-Archimedean version of Grothendieck’s
theorem about weakly compact sets for C(X, K), the spaces of contin-
uous maps on X with values in a locally compact non-trivially valued
non-Archimedean field K, fails in general (see Theorem 3.2.4). How-
ever, it works with some additional assumptions (see Theorem 3.2.5
and Corollary 3.2.7).

Let X be a nonempty, zero-dimensional compact Hausdorff topo-
logical space. Then, the structure of the space C(X,K) as a Banach
space is significantly different than C(X,R), as shown by the following
results.

3.2.1. Theorem (see [47, Theorems 2.5.22, 2.5.24 and 2.5.27]). Let X be
compact zero-dimensional space. Then C(X,K) has an orthonormal base.

(1) If U is a maximal collection of clopen sets for which {&y : U € U} is
orthonormal, then {&y : U € U} is an orthonormal base of C(X,K).

(2) C(X,K) is of countable type if and only if X is ultrametrizable.

(3) If Xisa compact ultrametric space, then C(X,K) has an orthonormal
base consisting of characteristic functions of balls. Each maximal
system of balls whose characteristic functions are linearly independent
is an orthonormal base of C(X,K).

To prove main results of this section, we need two, more general
lemmas

3.2.2. Lemma ([23, Lemma 4])). Let Y = (Y, d) be a compact ultrametric
space and let (By r, (Yn))n be a sequence of pairwise different closed balls.
Then limy v, = 0.

Proof. Denote By, = By, (Yn),n € N. Assume for a contradiction
that for some r > 0 the set M, = {i € N : r; > r}is infinite. Set
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B, ={Bi :1 € M;}an denote by M, the family of all maximal totally
ordered subsets of (B, C). Then, consider two cases:

(@) Any element of M, is finite. For every M € M, denote by
Bi(m) the minimal element of M. Then, the balls B;(n1), M € M, are
pairwise disjoint. Thus, for each M, M’ € M, with M # M’ we get
d(yi(m),Yi(mr)) > 1. By compactness of Y we infer that M. is finite;
so M, is finite, a contradiction.

(b) there exists an infinite Mg € M. Let Ng = {i € N: By € Mg}
Since, for i,j € Np we have B; ¢ Bj if and only if i < 7j, we can
choose a subsequence (ix)x of elements of Ny such that (B;, )i is
strictly monotonic. Suppose that (Bj, )k is strictly decreasing. Then,

for every k € N we can select x € Bj, \ By, ,; hence,

d(xi, Xk4+1) > Tt = d(Xp1, Xk2) > T2 = ... > T,

and we conclude that (xy )k has no convergent subsequence.
Similarly, assuming that (B, )k is strictly increasing, we can choose

a sequence (xy )i with the same property. This contradicts with com-

pactness of Y. So, the both cases yield that li{n i =0. O

3.2.3. Lemma (see [23, Lemma 5]). Let Y be an ultrametric, compact space.
Then, there exists a sequence of closed balls (U, )n in Y such that

=Y, U ¢ [J Uj (neN)
j=n+1

and (&, ), where &y, denotes the characteristic function of Uy, (n € N), is
a maximal orthonormal sequence in C(Y,K).

Proof. Let B(Y) be the family of all closed balls in Y. Denote by M
the family of all M C B(Y) with Y € M such that {{g : B € M} is
linearly independent in C(Y, K). By Kuratowski—Zorn Lemma, (M, C)
has a maximal element My = {B; : i € I}. It is easy to see that I
is infinite and countable by Lemma 3.2.2; so, we can assume that
I = N. Denote B; := By, (yi), i € N. By Lemma 3.2.2, limr; =
0. Let 7t be a permutation of N such that (r,()); is decreasi;lg. Set
U; = Br(i), 1 € N. Clearly, for i,j € N with i > j we have U; & Uj
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o
or Uy NUj; = 0. Moreover, Ui ¢ |J Uj forany i € N. Indeed,
j=i+1
otherwise, there exist iy, k € Nand j(1),...,j(k) € {io+ 1,ip +2,...}

k
such that {U;(q), ..., Uj(x)}isa partition of U; . Then ‘EUiO =) EUj(n)s
n=1

s0 (&u, )1 is linearly dependent, a contradiction. ]

3.2.4. Theorem ([22, Theorem 2.1]). Let X be an infinite compact zero-
dimensional space. Then there exists a T -relatively compact set H := {gn :
n € N}, which is not relatively weakly compact in C(X,K), such that all
lgnll = T and y(H) > 0.

Proof. Since X is compact and infinite, there exists x € X which is
not isolated. Let U; := U be a clopen neighbourhood of x. Since
U # {x}, there are x; € U\ {x} and a clopen neighbourhood U, of x
such that U, C Uand x; € U\ Uy. Then U, # {x} and we find a clopen
neighbourhood Uj of x with Uz C Uy and anx; € Uy \ Uz. Continuing
this procedure we construct a sequence x1, X, . .. in Xand a decreasing
sequence (U, )n of clopen subsets of X such that x,, € U, \ Uy for
alln € N.

Since each set U,, is clopen, for eachn € N the function f,,: X =+ K
defined by f(x) := xu, (x), x € X, is continuous. If x € () Uy, then

n
fn(x) = 1. If x € () Uy, then fr (x) — 0. For every n € Nset g (x) :=

frn(x) — fri1(x), ;cl € X. Then g, — 0 for each x € X. Moreover,
12 |gnll = fn(xn) — fas1(xn) = 1,80 ||[gn|| = 1 for alln € N. Set
H := {gn : n € N}. The only cluster point of H in KX (equipped
with the product topology) is a zero function, obviously continuous;
hence, H is Tp-relatively compact. But, H is not relatively compact
in the weak topology of C(X,K). Indeed, otherwise g, — 0 in the
weak topology of C(X, K). Since in C(X, K) every weakly converging
sequence converges in the norm (see Corollary 1.1.15), we reach a
contradiction as ||gn|| = 1 for eachn € N.

Let D be the linear span of H in C(X,K). Define g;, € D* by
g5(gm) = 1lif n = mand g} (gm) := 0if n # m. Using Ingle-
ton’s theorem (Theorem 1.1.12) for every n € N we extend g, to the
whole of C(X,K). For every n € N define a continuous linear func-
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tional hj, := g7 + ... + g5 on C(X,K). Observe that hy (gm) = 1

if m < nand hji(gm) = 0if m > n, so for every m € N we

have limh}, (gm) = 1 and limh} (gm) = O for each n € N. Thus
n m

limlim h¥ (gm ) # limlim h}, (gm ), so y(H) > 0. O
n m m n

Let H be a bounded subset of C(X, K), where X is a zero-dimensio-
nal compact space. Define the map

Yx(H) := sup {}lim im fi (X)) — im lim £ (xq )| :
(fm) CH, (xn) C X},

provided the iterated limits exist. Clearly, yx(H) = 0 if and only if
H is relatively Tp-compact (i.e. compact with respect to the topology
of the pointwise convergence 1,). Considering weak topology and
Tp defined on C(X, K) we get the following variant of quantitative
Grothendieck’s theorem.

3.2.5. Theorem ([24, Theorem 3.3]). Let X be an infinite zero-dimensional,
metrizable compact space and let H be an uniformly bounded absolutely
convex subset of C(X,K). Then yx(H) =vy(H).

Proof. First we prove that yx(H) < y(H). Define the map 6: X —
B¢ (x k)« by the formula 5(x)(f) = f(x). Then, since 6(X) C B¢ (xk)+,
we conclude yx(H) < y(H).

Next we show that y(H) < yx(H). Assume that y(H) = ¢ > 0. We
prove yx(H) > . Applying Propositions 3.1.8 (4), we select an orthog-
onal sequence (un)n C H such that |ju, || = . Since, by assumption
X is metrizable, C(X, K) is a non-Archimedean Banach space of count-
able type by Theorem 3.2.1. Applying Lemma 3.2.3 and Theorem 3.2.1,
we choose a sequence of closed balls (U;, ), C X such that

=X U Z [J U (3.18)
j=n+1

and (xu, )n , the sequence of characteristic functions of U,,n € N,
forms an orthonormal base of C(X, K).
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Denote gn o := un, n € N. Consequently, for any n € N we have
the following form

o0
Ino= ) ANoXUn
m=1
for some (A))m C K; then, llgnol = maxm Aol foralln € N.
Now, set iy := min {k: 7‘];,0 # 0 for some n € N}. Choose ny € N

such that IAE],OI = max {‘7‘2,0| :n € N} and for every n > ny define

i

0
In,1 = 9n0 — }\: Inq,0- (319)
TL1,0
Clearly, gn,1 € H and, since (gn,0)n is orthogonal, ||gn,1|| = € for all

n > mnj.
Takecy,...,cp1 € Bg and ky, ..., kp > ny. Then, we get

1911 + -+ +Cp19k, 11+ 9k,

Mot T A
C19k,,0 - -+ +Cp—19k, 1,07 9k,,0— o 9n,,0
T11,0

hence, (gn,1)n>n, is orthogonal. For every n > n; we can choose
AT € K, m € N, and write

o
m
Ini= D ATiXU,-
m=1

Then, from (3.19) we deduce that 7\‘;31 = (0 for each m < i;.
Continuing on this direction in the k-th step, having defined ny_4,
ik and {gnx—1:n=nx_1,ng_1+1,...} C H, where

o0
Onk—1= Z A k—1XUn, quadwhere AT € K,
m=1
we setiy := min {i : ?\}L x_1 7 0 for somen > ny_4 } Next, we select
Ny such that |}\:‘1{k,k71| = max { |)‘11k,k71| n o> le—l} and for every
n > ny define

ik
)\n k—1

—_
ALk

TLk,k—l

Ink ‘= 9nk—1 — Ony k—1-
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Then, gk € H for all n > ny, either. Applying the same argumenta-
tion as above we deduce that ||gn k|| = € foralln > ny and (gn k)n>n,
is orthogonal. Choosing ?\T“Jk € K, m € N such that

(e¢]
Ik = ) AMXu, (n>ny),
m=1
we imply that AT", = 0 for m < ix. We see that the sequences (n)x
and (ix )k are strictly increasing.
Now, consider the sequence (gn, k—1)k- Set

Zy = max {m: |)\1Tk,k—1| = s}, k e N.

Observe that zx1 > ik for every k € N. Next, we select a strictly
increasing sequence (ky, )p C N, setting ki = 1, such that the condition
k-1 > Zk, holds for every p € N. Now, define f, := I, kp—1s
p € N. Consequently, for every p € N we can write

o
fp= D HpXun,
m=1
m 3 — m
for SOH: upt € K, m € N. Then, (f},);, is orthogonal, [f, || = max iy
=¢an

min{m : |uJ'| = e} < max{m : [uy'| = ¢}

<max{m:|u}, 4| =0foralll € {1,...,m}}. (3.20)

Set tp := min{m:[u]'| = ¢}, p € N. Applying (3.18), for every p € N
choose
xp € U, \ | ;. (3.21)
>ty
Next, select a convergent subsequence (xi, Jm C (xx)k. Let xp :=
linrln Xk, - Set fiy = fx,., Xy == Xk,, and dy = liT{n 1. (x},) for every
m € N. Clearly |dim| < e forall m € N. Set M :={m: [dm| = €}.
Assume that M is infinite. Then, we can choose a sequence (my )k
of elements of M such that li]En liTan fin, (X3, ) exists. Since, by (3.20) and
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(3.21), l1m fin, (xn) = 0 for every n € N, we obtain
limlim 1, (x,)—~lim lim 1., ] - ] lim lim 1, (x;)| = ¢. (3.22)

Suppose now that M is finite. Removing the first few elements of
(f/m)m and (x/m)m we can assume that |d.,| < € forall m € N. For each
m € N defineh,, = f| + ... + ], ; obviously hr, € H. Applying (3.20)
and (3.21) again, we get f, (x),) = 0 if m > n. Since, by assumption
|dm| < € for all m € N, for every k € N we can find k’ € N such that
k" > kand [fi (x;,)| < eif n > k. Hence, passing to subsequences,
we can assume that [f], (x},)| < ¢ if m < n. It follows from (3.21) that

If7. (x )| = ¢, n € N. Hence, for each m > n we obtain
R () = £ (X) + .+ (x})

and conclude that limh (x1)

x| = e.
So, we can choose a sequence (le)k such that hm hm hm ( ) exists.

On the other hand, for every m € N set 3, := 11m hon (X, .)- Then,

Bm—hmh( n=d+...+dm

and, by assumption, || < € for all m € N. Choose a convergent
subsequence (f3m,)1. Then, { < ¢. Therefore, we obtain

lilr<n li{n hm, (x3,) — 11{11 lim b, (x ‘ = ‘11m lim hpy, (X5, )| = e
(3.23)
Thus, by (3.22) and (3.23), yx(H) > ¢ =y(H). O

3.2.6. Remark. Note that [24, Theorem 3.3] gives the formulation of
Theorem 3.2.5 without the assumption about metrizability of X. How-
ever, the proof of [22, Theorem 2.7] which is used to get [24, Theo-
rem 3.3] is not quit correct. Hence, the question if the assumption
about metrizability of X can be omitted should be specified as an open
problem.
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3.2.7. Corollary. Let X be an infinite zero-dimensional, metrizable compact
space and let H be an uniformly bounded subset of C(X,K). Then

vx(acoH) = y(H).

Proof. Since ||C(X,K)| = |K], the equality y(H) = y(acoH) follows
from Theorem 3.1.11. Applying Theorem 3.2.5 for the set acoH we
complete the proof. O

3.3 Non-Archimedean quantitative versions
of Gantmacher and Schauder’s theorems

For any Banach space X, its unit ball Bx is weakly compact if and only
if X reflexive. If K is locally compact, then E is reflexive if and only if
E is finite-dimensional (see Proposition 1.1.9). Hence, Bg is weakly
compact if and only if E is finite-dimensional. It is worthwhile to
remark that (similarly like in the real case), applying Proposition 3.1.8,
we imply w(B., (1)) = 1 for any infinite set . However, there exist
infinite-dimensional Banach spaces over locally compact K for which
the value of de Blasi measure defined on its unit ball is less than unity
(see Example 3.3.1).

3.3.1. Example. Let (tn)n C (Ipl, 1], 11 = 1, be a strictly decreasing
sequence (where p is an uniformizing element of K with |p| < 1).
Define s: N —(|p|, 1] by s: n — 1. Then, using Proposition 3.1.6, we
imply w(B¢,(1:5)) = hTIlnTn <1

We obtain the following non-Archimedean counterpart of the Gant-
macher’s (Schauder’s) quantitative theorem (recall that in this case
weak compactness coincide with compactness).

3.3.2. Theorem ([24, Theorem 3.5]). Let E, F be Banach spaces with ||E|| =
IIFIl = K|, T: E — F be a continuous operator and T*: F* — E* be its
adjoint. Then,

(U(TBE) = (,U(T*B]:*) and Y(TBE) :Y(T*BF*).
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Proof. Assume that w(TBg) = ¢ > 0. Then, since TBg is absolutely
convex, by Proposition 3.1.8 there exists a sequence (xn)n C B such
that (Txn)n is orthogonal and ||Txn| = ¢ foralln € N. Take A € K
with |A] = e. For every n € N define a linear functional f, on D =
[(Txn)nl, setting fn(Txn) = A and fn(Txm) = 0if n # m. Since
(Txn)n is orthogonal, [f,|| = 1 for each n € N; applying Ingleton’s
theorem (Theorem 1.1.12), we extend, preserving norm, each f;, on the
whole of F. Observe that for every k € Nand every ay,...,ax_1 € K

HalT*fl +.oo a1 T 1+ T*ka
[(arfy + ...+ axafie 1+ i) (Txa)l I (Tx) 3

> - -
~ [kl [l [l

> €.

Hence, dist(T*fy, [T*fy,..., T*fx_1]) > € for every k € N and by
Proposition 3.1.6(4), w(T*B¢+) > €. Hence, w(TBg) < w(T*Bg«).

Let w(T*Bf+) = ¢ > 0. Then, by Proposition 3.1.8, there exists a
sequence (f% ) C B+ such that (T*%,),, is orthogonal and || T*f0|| = ¢
for each n € N. Choose x; € Bg for which [|[T*fY]| = [f)(Txy)| = .
Next, for every k = 2,3, ..., define

0 1.
fl (TXl)

fl =1} —

Then, 1‘11< € Bg- and fi(Txl) =0 forevery k = 2,3,.... Since (T*f%)n
is orthogonal, for each k =2,3,..., we get
} e

Taking Aq,...,Am—1 € Bxand ky,..., k;m € N\ {1} we obtain

f%(TXl)
f(l) (TXl)

IT*6L]) = max {HT*f%H, ™

IMT e, + oA A T+ T || = ‘ MT +...

7\11’21 (Txl) + ...+ f(]lm (TXl)
f(l)(Txl)

+ }\m_lT*f%mfl + T*f%m - T*f(]J =g

hence, (T*f}L)n>1 is orthogonal. Now, we choose x; € B for which
|f%(TX2)| =¢.



142 Measures of weak noncompactness

Continuing on this direction and using the same argumentation as
above, for everyn =2,3,... and, forevery k =n+1,n+2,..., define

fEfl (Txn)

n._ fn—l o
T T (T

n—1
L

For every n=2,3,... we select x, 11 € Bg such that [f | (Txn1)[=¢.
Now, set gn = f,’{*l, n € N. Then, for every n € N, gn € B,
|gn (Txn)l = € and |gn (Txm )| = 0 if m < n. Fix k € N. Then, for every

ag,...,ax—1 € K, we get

|gk((11TX1 + oot ag—q Txpe—1 + TXk)|
larTxy + ...+ ax—1Txx—1 + Txk||
) 9i(Txe)
larTxy + ...+ ax—1Txx—1 + Txk||
£
N HalTx1 4+ .ot a1 Tx_1 + TXkH '

1= |lgll =

Thus, dist(Txx, [Txq,..., Txx_1]) > €. Applying Proposition 3.1.6(4)
again, we imply w(TBg) > ¢; hence, w(T*Bf+) < w(TBg). The equa-
lity y(TBg) = y(T*B+) follows directly from Theorem 3.1.11. O

The following Example shows that the conclusion of Theorem 3.3.2
fails if we remove the assumption ||E|| = ||F|| = [K].

3.3.3. Example ([24, Example 3.6]). Choose s1,s2 < 1such that s;-sp >
lol. Let s7, s), be maps defined on N such that s} (n) = s; and s}(n) = s
foreachn € N. Let E := ¢o @ co(N : s7) and F := co @ co(N : s});
then, every x € E can be written as x = x; + ) Anen where x; € ¢y,

(An)n C Kand (en)n is a standard base of cy(N : s7); similarly for
y € Fwecan writey = y1 +>_PBnfn, Y1 € co, (Bn)n C K, (fu)n is
n

a standard base of co(N : s/).
Define

T:E—=F x1+) Anent Z)\nfn.
n mn

Then, TBg = {0} @ {x €co(N:sh) x| < sz}. Hence, by Proposi-
tion 3.1.6, w(TBg) > sp > |pl/s1.
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Now, assume that || T*f|| > |p|/s; for some f € Bg-. Then, there
exists x € Bg, (x = X1 + X, X1 € cgand x, € ¢o(N : s7)) such that
[F(T)l ol
Xl s

But then, since Tx = T(x1 +x2) = T(x2),

\pl
If(Tx2)| > [|x2| -

Suppose that ||x;|| = s1. Then, [f(Txz)| > |p|; hence, [f(Tx,)| = 1. Since
ITx2|| = s2 < 1, we get

PG

T Tl s

and conclude that f ¢ Bg«, a contradiction. Thus,

>1

W(T*Bg-) < <ol w(TBE).

51
Since, by Theorem 1.3.1, for every (E, || - ||) there exists an iso-
morphism S: E — ¢o(I) such that [p| - ||Sx|| < [x|| < [|Sx]| (p is an
uniformizing element), defining ||x||x = ||S(x)||, x € E, we introduce
anorm on E, equivalent with || - || such that
pl- [xll < lxll < llxlx, x€E (3.24)

Clearly, (E, || - ||x) is isometrically isomorphic with cq(I). Furthermore,
IIx[[x = inf{r:r e |K|, [x|| <7}, |E|lx = K|, Be ={x € E:||x][x <1}
Define for a bounded set M C E
wi(M):=inf{e>0: M C K +{x € E: x| < ¢}
K is o(E, E*)-compact }.
Then, we obtain the following generalization of Theorem 3.3.2.

3.3.4. Corollary ([24, Corollary 3.7]). Let E, F be Banach spaces, T: E — F
be a continuous operator and T*: F* — E* be its adjoint. Then

ol - w(TBe) < w(T*Br+) < f'(TBE), (3.25)
0P - v(TBe) < v(T*Br+) < |1|2v(TBE). (3.26)
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Proof. Since, by Proposition 3.1.6,

w(TBg) = sup {mdist(xm, X1, ., Xm—1)) : (xm) C TBE},

m

it follows from (3.24) that
1

w(TBg) < wk(TBg) < o

w(TBEg). (3.27)
Let

*
Il = sup b
x#£0 [Ixl

Vio={x" € F i)l <1} and Vi, =" € F o x|k <1}

Take x* € Bg«. Then,

(x* € F*),

x| x* ()

Il = il
for every x € F, x # 0; hence, x* € Vi« and Br+ C Vg« If x* € Vi« |
then for every x € F,x # 0

1>

Ix*(x)]

. (3.28)
Il

lp| >

Using (3.28) and (3.24), we get
x* (x)] x* ()]
ol - [Ixllx = Iix|
and conclude V- |, C Bg«. Thus, T*Vg. |, C T*Bg« C T*VE+ and
lpl - wi (T*VE:) < w(T*Bp+) < wi (T V). (3.29)

By Theorem 3.3.2, wx (TBg) = wk (T*VF-+). Hence, by (3.27) and (3.29),
we get (3.25). The inequalities (3.26) follow directly from (3.25) and
Theorem 3.1.11. O

1>

Recall that T € L(E, F) is called (weakly compact) compact if TBE is
(relatively weakly compact) relatively compact.

3.3.5. Corollary. Let E, F be Banach spaces, T: E — F be a continuous op-

erator and T*: F* — E* be its adjoint. Then, T is weakly compact (compact)
if and only if T* is weakly compact (compact).

Proof. 1t follows directly from Corollary 3.3.4 that w(TBg) = 0 if and
only if w(T*Bg+) = 0. O



Remarks 145

3.4 Remarks

The results of this chapter, obtained for non-Archimedean Banach
spaces, were strongly motivated by recent studies about quantitative
compactness theorems carried out for real Banach spaces by many
authors (see [2], [3], [5], [9], [13], [15], [16] and [28], among others; see
also [21, Chapter 4]).

The concept of e-weakly relatively compact sets (for ¢ > 0) was con-
sidered by several authors (see for instance [2], [13], [15], [9] and [16]).
Theorem 3.1.1 for real Banach spaces was proved by Fabian, Hajek,
Montesinos and Zizler, see [13, Theorems 2 and 13]. They demon-
strated that whenever M is e-weakly relatively compact for some ¢ > 0,
then coM is 2e-weakly relatively compact. Moreover if Bg- is o(E*, E)-
angelic (recall that a Hausdorff topological space X is called angelic
if every relatively countably compact set K in X is relatively compact
and for every x € K there exists a sequence in K converging to x), then
coM is e-weakly relatively compact.

In the corresponding real case, for any bounded set M of a real
Banach space we have k(M) < y(M) < 2k(M), see [3, Theorem 2.3],
and the equality k(M) = k(coM) fails in general, see [15, Theorem 7].
Although vy and w are equivalent on the real space cg (see [28, Theorem
2.9]), in contrast to the non-Archimedean case, there exist real Banach
spaces for which vy and w are not equivalent (see [3, Remark 3.3 and
Corollary 3.4] and [5, p. 372]).

A quantitative versions of Gantmacher and Grothendieck’s the-
orems were proved by Angosto and Cascales, see [3, Theorems 3.1
and 3.5]. For an uniformly bounded subset H of C(K,R), where K is
a compact set, they obtained the inequalitiesyx (H) < y(H) < 2yx(H).
For real Banach spaces E, F and for an operator T € L(E, F) they pro-
vided also y(TBg) < v(T*Bg+) < 2y(TBg).
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Isometrics

in finite-dimensional
non-Archimedean
normed spaces

Chapter 4 is devoted to selected properties of isometric maps defined
on finite-dimensional non-Archimedean spaces. First section concerns
the Aleksandrov problem, i.e. the question under what conditions
is a mapping of a normed space into itself preserving unit distance
an isometry. Next, we refer to the remarkable Mazur-Ulam theorem,
examining its fulfilling in non-Archimedean setting. The last, third
section, is related to the problem whether every isometric map defined
on a finite-dimensional non-Archimedean space is surjective.

Recall that a map (not necessary linear) T: X — Y, where X, Y are
normed spaces, is isometric (an isometry) if ||T(x) —T(y)|| = lIx —y|| for
all x,y € X.

4.1 The distance preserving mappings. Aleksan-
drov problem

We will say that a map T: X — Y, where X, Y are normed spaces, is
non-expansive if ||T(x) — T(y)|| < ||[x —y|| for all x,y € X; T has the
strong distance one preserving property (SDOPP) if for all x,y € X with
|Ix —y|| = 1it follows that || T(x) — T(y)|| = 1 and conversely.

The problem, under what conditions is a mapping of a metric space
into itself preserving unit distance an isometry, known as Aleksandrov

147
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problem, has been intensively studied by many specialists in the real
and complex case (see [51]-[53], [71], [19] and [54], among others). For
example, Rassias and Semrl (see [51, Theorem 5]) proved that every
non-expansive, surjective mapping with SDOPP T: X — Y between
real normed spaces X, Y such that one of them has dimension greater
than one is isometric. In non-Archimedean setting, this topic was
studied in [39] and [29].

We get the following non-Archimedean counterpart of Rassias and
Semrl’s result.

4.1.1. Theorem ([29, Theorem 5 and Corollary 11]). Let E be finite-
dimensional. Then, every surjective, non-expansive map T: E — E which
has SDOPP is isometric if and only if K is locally compact.

The proof of Theorem 4.1.1 needs a couple of lemmas.

4.1.2. Lemma ([29, Lemma 6]). Let E be finite-dimensional, xy € E and let
1o > 1 > 0. If there exist x1,...,xn € Esuch that Bg +(xi) (i=1,...,m)
form a finite partition of Bg r,(xo) (Bgro (x0)), then for everyy € E there
exist Yy, ..., Yn € Esuchthat B +(yi) (1 =1,...,n) forma finite partition
of Ber,(y) (Bg ,, (y)).

Proof. Observe that the map h: E — E given by h(x) :=x +y —xq is
isometric; thus, we can easily verify that Bg »(h(x1)),..., Bgr(h(xn))
form a finite partition of B +,(y). The proof for BE 1, (y) is the same.

O

4.1.3. Lemma ([29, Lemma 7]). If K is discretely valued, t is finite-
dimensional and r1,1, € R such that 0 < vy < v, then |[E*|| N [r1, 1] has
at most finitely many elements and 0 is only an accumulation point of ||[E* ||

Proof. Since K is discretely valued, [K*| ={s™ : n € Z} for some s < 1.
Hence, [K*| N [ry, 12] is at most finite. By [57, Lemma 5.5], E has an
orthogonal base, say {xi,...,xn}. Then, for every x € E there are

n
M, ..., An € Ksuch that x = > Aix;. Thus,
i=1

X[l = max {Ail - x|}
i=1,..n
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Therefore, ||E*|| contains at most n cosets of [K*|and ||[E*|| N [ry, 12]
has at most finitely many elements O

4.1.4. Lemma ([29, Lemma 8]). Let E be locally compact and T: E — E be
a surjective, non-expansive map with SDOPP such that T(0) = 0. Then, for
every xg € E with ||xo|| > 1 we have

(1) T-'(Be(T(x0))) C Be(xo),

@) T B v (Tx0))) © By (30)-
Proof. First, we prove that || T(xo)|l > 1. Assuming that || T(xp)|| =1,
since T(0) =0, we get ||T(xo) — T(0)|| = 1. But T has SDOPP, thus

1= [T(x0) = T(O)[ = [Ixo = Ol = [Ixoll,

a contradiction. Suppose ||T(xg)|| < 1. Taking x; € E with ||x;]| =1,
we obtain
[x1 —xoll = IIxoll > 1 (4.1)

and 1 = [|x1]| = ||x1—=0]|| = ||T(x1)—=T(0)|| = || T(x1)|| , hence, || T(x1)|| >
IIT(x0)||- But then
IT(x1) — T(xo)ll = max{[|TCa) |, [T(xo)[[} = [ TCxa) || = 1,

a contradiction with (4.1) and SDOPP.
(1) Suppose that y € E and T(y) € Be(T(xp)). We prove that
Y € Be(xo).
If | T(xo)—T(y)ll = 1, then ||xp—y|| = 1 by SDOPP, thusy € Bg(xp).
If [[T(xp) — T(y)|| <1, taking z € Bg(xg) for which ||z — x¢|| = 1, we
imply, by SDOPP,
IT(2) = Txo)ll = 1.

From
IT(z) =TIl = [[T(z) = T(xo) + Txo) = T(Y)[| = [IT(z) = T(xo)ll = 1,
applying SDOPP again, we get ||z — yl| = 1; hence,

X0 =yl = [Ixo =z +2z—yl| < max{fxo —z[|, [z —y[[} = 1,

thus, y € Bg(xo), either.
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(2) Choose x, ..., xm € Esuchthatballs Bg(x;),j =1,..., m, form
a finite partition of By 1, I (x0) (since, by assumption E is locally
compact, By 1T (%) (xp) is compact). Then, since T is non-expansive
and T(0) = 0, we get||xo — x|| < [[T(xo)|| < [Ixo0l- Hence, |x;|| =
Ixo|| > 1 foreveryj e {1,...,m}. By (1)

T_l(BE(T(Xj))) C Be(xj) foreveryje{l,...,m} (4.2)

Therefore, to finish the proof, it remains to show that Bg (T(x;)), for
j=1,...,m, form a finite partition of BE,HT(XQ)H (T(xp)). Takingy € E
such that T(y) € BE,”T(XO)” (T(x0)) and choosing j € {1,...,m} for
which T(y) € Be(T(x;)), by (4.2) we gety € BE,HT(XO)”(XO)' Observe,
that

(Txi) =Tl >1 if i#j(,je{l,...,m}. (4.3)

Indeed, clearly ||x; —x;|| > 1; hence, || T(x;) — T(x;)|| # 1 by SDOPP.
Suppose that ||T(x;) — T(x;)|| < 1 and take zy € Be(T(x;)) such that
llzo — T(x;)ll = 1. By surjectivity of T, there exists y € E for which
T(y) = zo; hence, by SDOPP we get

ITY) =T = lly =x5ll =1,
[TOxa) = T = IT(xi) = Tx5) 4+ T(x5) — T(y)]]
=[Ty) =Tl =1;

thus, [[y —xi|| = 1by SDOPP and y € B (xi) N Bg(x;), a contradiction,
since, by assumption, Bg (xi) N Bg(x;j) = 0if i #j.

Using Lemma 4.1.2, we select yi,...,ym € E for which balls
Be(yi), i = 1,...,m, form a finite partition of BE,HT(XQ)H(T(XO))' It
follows from (4.3) that there exists a bijective map

h: {1,...,m}—{1,...,m}

such that T(x;) € Bg(yn(i)), thus Be(yni)) = Be(T(xi)), for each
i e{l,...,m}. This yields that B¢ (T(x{)),i=1,..., m, form a finite
partition of BE,HT(X())H(T(XO))' O
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Proof of Theorem 4.1.1. First, observe that we can assume T(0) = 0.
Indeed, for surjective, non-expansive map Tp: E — E with SDOPP,
the map T(x) := To(x) — Tp(0) is also surjective, non-expansive map,
with SDOPP, and additionally, T(0) = 0. Since ||To(x) — To(y)|| =
IT(x) —T(y)ll for all x,y € E, proving that T is isometric, we get the
same conclusion for Ty.

(<) Let K be locally compact and T: E — E be a surjective, non-
expansive map which has SDOPP such that T(0) = 0. Assume for
a contradiction that for some y1,y € E

lyr — a2l > IIT(y1) — T(y2)|| (4.4)

In the first part of the proof we show that
there exists xo € E for which ||xg|| > || T(xo)]|- (4.5)

Next, using (4.5), in the second part we provide a contradiction with
SDOPP.

Part L |y1ll > |ly2| implies |jy1]| > [|T(y1)||. Indeed, assum-
ing |ly1|| = ||T(y1)|, since T is non-expansive and T(0) = 0 we get
Tyl = [lyall > fly2ll = [IT(y2)|l. Hence,

1T = [yl = llyr —vall > [T(y1) = T2l =Tyl

a contradiction. Therefore, we set xg := y.

Assume now that v := ||y1|| = ||yz2f| > 0. If [[T(y1)]| # [IT(y2)|
or [|[T(y1)|l = lIT(y2)|| < r, then we are done. So, suppose ||T(y1)ll =
IT(y2)ll = 1. Since S = Bg + \ B . is compact, we can select balls

BE,Hyryzll(Zj)’ j=1,...,m, z1,...,zm €S,

which form a finite partition of S. Additionally, we can assume that

Y1 € By, (z) and 2 € Be ) (22).
Suppose that ||T(z;i)|| = v for each i € {1,..., m}; otherwise we

are done. Since T is surjective, for every i € {1,..., m} there exists
j €{1,..., m}such that

T(B (zi)) CB (z5). (4.6)

Ellyi—v:ll Ellyi—yall
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We can find k € {1,..., m} with T(y1), T(y2) € BE,HyryzH (zk) using
(4.4). Hence, by (4.6),

T(BE 1y, (F1) UBE 1y, i (22)) € By (2)-

Thus, applying (4.6) again, we conclude that there exists 1 € {1,..., m}
such that there is no zy € S for which T(zgy) € BE y1—v2 II( z1). Tis
surjective, hence, we can find xo € E with T(xq) € BE y1— yzll( z1).
Clearly, ||xo]| > [|T(x0)|l as T is non-expansive and T(0) = 0. Hence,
we get (4.5).

Parr II. We will consider three cases:

(1) Suppose that ||xg|| > 1 > || T(xo)||. Assume || T(xg)|| < 1. Taking
x1 € E with [|x;1]] = 1, applying SDOPP we get || T(x;)|| = 1 since
T(0) = 0. Then, [T(x1) — T(xo)ll = max{||T(x1)|, ||T(x0)|} = 1. Thus

1= [T0a) = Txo)[l = [x1 = xoll = [Ixoll,
a contradiction. Suppose that || T(xg)|| = 1, then, by SDOPP, we get
1= [[T(xo) = T(O)l = [[xo — Ol| = [xoll,

respectively, a contradiction.

() Let [[xol| > [T(xo)[| > 1and Sy :=(z € E : |2 = |[T(xo)[}. First,
we show that there exists x1 € Sy for which [[x1]| > ||T(x1)||. Assume
the contrary and suppose that ||T(x)|| = [[T(xq)| for every x € Sp.
Choose z1,...,zn € Sp for which balls BEHT H(z],) j=1,...,n,
form a finite partition of Sy (recall that Sy is compact) By Lemma 4.1.4,

T B (o (T(25))) € B ) (23), (4.7)

thus
B i (TED) VB p gy (T(25)) = 0 (4.8)

ifi #j@{,j € {1,...,n}) (assuming that T(z;) € BEHT ”(T(zj))
(i1 #j), by (4.7) we 1rnp1y that z; € B¢ T (x0)ll (z] ), a Contradiction).
Hence, for every i € {1,...,n} there exists ) € {1,...,n} such that
T(z;) € B T(x H(Zi) Obviously, BE,HT(Xo)H(Zi) = BEHT (x0) ||(T( zi));

thus, we conclude that BE IT(x (T(zj)), j=1,...,n, form a finite
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partition of Sy. In particular T(xq) € BEHT(XQ)H (T(zk)) for some k €
{1,...,m}. Since,

B im0 (T(x0)) = B jpr gy (T(21)),

applying Lemma 4.1.4 again, we obtain

T (B xg) (T(2))) € B jrngy (%0) (49)

and conclude that zy € BE,HT(XO)H(XO)’ thus [lzx|| = [|xol] > [|T(x0)|l,
a contradiction. This way, we deduce that there exists x; € Sp such
that ||xq[l > || T(xq)ll.

Continuing on this direction and applying Lemma 4.1.3, we select
inductively a sequence x4, ...,x, € E satisfying

Xl > [TOadll = lxaesall, k=1,....p,

and |[xp || > 1 = [[T(xp)]|. By (1), applied for x,,, we get a contradiction.
(3) Suppose that 1 > ||xg|| > || T(xo)||. Set S1 :={z € E: ||z|| = ||x0|}
and choose z1,...,zn € Sq for which BEHXOH(zj), j=1,...,n, form
a finite partition of S;.
Fixj € {1,...,n}. Then T(BE,HXOH(ZJ')) C BE/HXOH
{1,...,n}or T(BEr”XOH (z;)) N S1 = 0. Indeed, assume that T(z;) € Sy,
then T(z;) € BE,HXOH(Zi) for somei € {1,...,n}. If x € BE,||X0||(Zj)’

then T(x) € BE’”XO

(zi) for some 1 €

I (T(z;)) since T is non-expansive. Therefore,

T(BEIHXOH (Zj)) = BE,HXOH(T(Zjn = BE,HXO” (z1).

Suppose that y € Sy and || T(y)|| < |[xo|- Then, y € BE,IIXoH(Zk) for
some k € {1,...,n}. Since T is non-expansive, we get

[T =TI < X" =yl < [Ixoll
and

ITEN =T = Tly) + T(y)]|
< max {[[T() =TI T} < lIxol
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for every x' € BEHX H(zk) Hence, if there exists x € BEHXOH(zk),
k € {1,...,n}such that [[T(x)|| < [[xo|, then T(BE ™ H( ) NSy =0.
Set Mg:={ie{l,...,n}:T(z{) € S1}. Then,

S1n U T (z))

=510 J TBg @) € U By (20)-
jEMo jEMy

Since, My # {1,...,n}by (4.5), we conclude that | T(BE HX0||( zi))
jell,..n)
does not cover S;. But T is surjective, hence, there exists x; € E such

that [jxa[| > [T(xa) [l = [Ixoll-
Applying this observation and Lemma 4.1.3, we can inductively
select a sequence x1,...,%p € E such that

Xl > [T+l = lIxkll,  k=1,...,p,

and |[xp| > 1 = ||[T(xp)||. Then, applying case (1) for x,,, we get
a contradiction.

(=) Assume that K is not locally compact; then, by [57, 1.B],
card(k) is infinite or K is densely valued. Considering both cases,
we prove that there exists a non-isometric, surjective, non-expansive
map E — E with SDOPP.

First, suppose that card(k) is infinite. Then, we can select an
infinite sequence (An)n C Kwith|An| =1 (n € N)such that [A; —Aj| =
1if 1 #j. Set p € K\ {0} with [u| < 1, xp € E\ {0} with v := ||x¢]| < 1
and form a sequence (xn )n setting xn, := Anxg,n € N. Then, balls
BE,r(Xl)f Bglr(xﬁ, ... are pairwise disjoint. Defineamap T;: E — E as
follows

X ifx € BE,T‘(Xl)’
X+ Xn — Xnil if x € BE,T(XTL_H), neN,
X+ WXn1 — Hxn  ifx € BE/T,|H|(P~XTL)/ neN,

X otherwise.
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Then, T;(0) = 0. Note that

Ty(Bg,(x1)) = B (1051),
T(BEHM(HXn)) BET|M(MXTL+1) (meN)

and
Tl(BE/T(XTL)) = BE,r(XTL—l) (T'L =2,3... )

If x ¢ U ol (Uxn) U BEr(xn)) then T;(x) = x; hence, Ty is

sur]ectlve

Clearly, ||T1(x)|| < ||x| for all x € E. Take x,y € E, x #y. We see
that ||[x —yll = 1 or [|[Ti(x) — Ti(y)|| = 1 only if max{|[x|, |lyll} > 1
hence, we can easily deduce that T; has SDOPP.

Assume that x ¢ B (x1) ory & Bg (x1); then, [|Ti(x) — Ta(y)[| =
[x —y||. Indeed, if x,y € Bg .(xn) for somen € N (n > 1), then

ITa(x) = Tl = Ix +xn — Xnt1 — (Y +xn — Xn+1)ll = Ix —yll.

Similarly, [T (x) = Ti(y)|| = [Ix —y[l if x,y € By |, (uxn) for some
n € N. If there exists n € N such that x € Bglr(xn) (x € BE,T-IuI(”X“))
andy ¢ Bg, (xn) (y & By, (xn), then, [x —y[| > 7 (r-[u) = [x].
Hence, [x —y|| = max{[x||, [yl and Ty (x) = Ty (y)| < ||x — || since
max {[[ T(x)|], [[T(y)[[} < max{[|x]|, [[y]]}-

Forx,y € BE,T(Xl) we get

1T =Tl = Iul - Ix =yl < [[x —yl|.

This way we prove that T; is non-expansive, but it is not an isometry.
Now, suppose that K is densely valued. Choose reals 1, 1, with
0 < 11 <1 < 1and select two sequences (an )n, (bn)n C Ksuch that

T+ T2
2

T1 + T2

<lanl<lanpil < and 711 <|bpygl <bnl < 5

foreveryn € N. Set xg € E with |xg|| = 1. Define A, := B¢ lan |(anx0),
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Bn :=B¢,, (bnxo) (n € N), and the map T,: E — E by

E,|bnl
an .
x ifx€Any, nEN,

An+1
b

ntly ifx e B, n€N,

To(x)=4q bn

b
1y ifx € Ay,
ap
X otherwise.

Clearly, T,(0) = 0 and T, is not isometric. However, T, is a surjective,
non-expansive map with SDOPP. Indeed, observe that T,(A;) = By,
Th(Bn) =Banyi m e N)and H(AL) = A1 (n=2,3,...). If x &

U (An UBq) then T(x) = x; hence, T, is surjective.
neN
Take x,y € E,x # y. Then, || x —yll = 1 or ||To(x) — T2 (y)|| = 1 only

if max{|[x]|, [[yll} = 1; hence, T, has a SDOPP. If x,y ¢ | (An UBy)
neN
then [[To(x) — Ta(y)|| = |Ix —y||. If x € Ay, (x € By) for somen € N

andy ¢ A, (y € Bn), then, ||[x —y|| = max{||x]|, ||ly||}; thus,

IT2(x) = T2(y)ll < [Ix =y,

since || To(x')|| < ||¥'|| for all X" € E. If x,y € An or x,y € By, for some
n € N, then
[T2(x) = T2(y)ll < [x —yll < 1.

Hence, T, is non-expansive. O

4.2 The absence of Mazur-Ulam theorem in non-
Archimedean setting

The classical result of Mazur and Ulam states that if X, Y are normed
spaces over R and T: X — Y is a surjective isometry, then T is affine
i.e. T is a linear mapping up to translation (see [37]). We show that
this conclusion fails when R is replaced by K.

4.2.1. Proposition ([29, Proposition 1]). If E # {0}, then there exists
a surjective isometry T: E — E with T(0) = 0 which is not an additive map.



Mazur-Ulam theorem in non-Archimedean setting 157

Proof. Letxg € E, xg # 0, and let A € By. Define the map T: E — E by
T o {THAX i = Il
x if [|x[| # [xoll

We prove that T is isometric. Let x,x’ € E. Consider three cases:
o |Ix|| = [|x'|| = ||x0||- Then,

ITO) =TOD =1+ [[x = x| = [[x =x'];
e ||x]| = |IX'|| # |Ixo0||- Then, T(x) =x and T(x') = x’; thus,
IT) =T =[x =1
o [[x]l # X[l Then [T(x)]| # [T(x)] and we imply
IT() = TON = max {Ix]l, 1[I} =[x = x|l

Hence, T is an isometry. Obviously, T is surjective and T(0) = 0. Let
z1 := xp and zp := (A — 1)x(. Then, we obtain

T(z1) +T(z2) = T(z1 +20) = (1 +A)xg + (1 +A)(A —1)xg — Axg
= X0 + Mg 4+ A%xg — X — Axg = A%xg.

Hence, T is not additive. O

Making use of Proposition 4.2.1 we shall prove the following result.

4.2.2. Proposition ([29, Theorem 2]). Let E, F be non-Archimedean normed
spaces. Assume that there exists a surjective isometry T: E — F. If every
surjective isometry S: € — F is an additive map up to translation, then
E=F={0}.

Proof. Let T: E — F be a surjective isometry. Assume for a contra-
diction that E # {0}. Taking a nonzero x € E we get || T(x) — T(0)[| =
|Ix|| > 0; thus, F # {0}. Conversely, F # {0} implies E # {0}.

Applying Proposition 4.2.1, we can construct T;: F — F, T;(0) =0,
asurjective isometry which is not additive. Hence, there exist x{,x, € F
for which

Ti(x1 +x2) — Ty (x1) — Ti(x2) # 0. (4.10)
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Next, define T,: E — Fby Ty(x) := T(x) — T(0). By assumption, T, is
additive and surjective. Choose z1,z; € Ewith Tp(z1) = x1, Ta(2z2) = %2
and define T" =Ty o Tp: E — F. Then, T’ is a surjective isometry and
T'(0) = 0. By (4.10), we obtain

T'(z14+22) = T'(z1) = T'(z2) = Ti(Ta(z1 + 22)) — Ta(x1) — Ta(x2)
=T (Ta(z1) + Ta(z2)) — Ta(x1) — Ta(x2)
= Ti(x1 +x2) — Ti(x1) — Ti(x2) #0O.

Hence, T': E — Fis not additive, a contradiction. O

Let us note that some other results with respect to this topic are
obtained in [25], [42] and [39].

4.3 Surjective isometrics

In this chapter we continue the study of isometric maps defined on
a finite-dimensional non-Archimedean spaces. Namely, we prove
Theorem 4.3.1, extending Schikhof’s result obtained for K (see [59,
Theorem 2]), where we characterize the class of finite-dimensional
non-Archimedean spaces for which every isometric map defined on
the member of this class into itself is surjective.

4.3.1. Theorem. Let E be finite-dimensional. Then, every isometric map
T: E — Eis surjective if and only if K is spherically complete and k is finite.

To prove Theorem 4.3.1 we need the following lemmas.

4.3.2. Lemma (see [29, Lemma 13]). Let E be finite-dimensional and K be
spherically complete. Then, every ball Bg (x), x € E, has a finite partition
consisting of balls BE,T(Xi) (i=1,...,m) for some xq,...,xn € Bgr(x) if
and only if k is finite.

Proof. First, assume that k is finite. If r ¢ ||E*||, the conclusion is
straightforward since B »(x) = Bg .(x). Suppose now that r € [[EX||.
Since, by assumption, K is spherically complete, by [57, Lemma 5.5],



Surjective isometrics 159

E has an orthogonal base, say {z1, ..., zm}. Without loss of generality
we can assume that ||zi|| = rif i < mp and ||zi|| ¢ IK*|if i > my for
some mg €{1,..., m}.

Since k is finite, we can choose M, = {7\1, e ,Acard(k)} C Bg
such that B (A;), i = 1,...,card(k) form a finite partition of By;
additionally, we can assume that [A;| < 1 and [A;| =1 if i > 1. Denote
by My the set of all my-permutations with repetitions of elements of
M. Then, card(My) = card(k)™o.

Next, we show that {BE,r(U)}yefo where Mx = {a1z1 + ... +
QmeZm, : (Q1,...,0m,) € My}, is a finite partition of Bg .. Since
{z1,...,2zm,} is orthogonal, § := Ayz1 + ...+ A1zn, is the only one ele-
ment of Mx with the norm less than r. Take distinct y,y’ € Mx such
that |ly|| = ||y/|| = r. Then, there exist (aj,..., am,), (b1,...,bm,) €
My for which

Yy=aiz1+...+amyzZm, and y =biz;+...+ bimyzm,.
By assumption, there is j € Mg such that a; # b;. Hence,
ly =yl :max{r-lfrel%(omk—bﬂ} =r-laj—bjl=r.
Taking z € BE,r(U) we obtain
lz=y'll=lz—y+y =yl =ly-y
and conclude that y ¢ BE,r(U/)- Hence, the balls {BE,r(U) 'Y € MX}

are pairwise disjoint.
Take z € B » \ Mx; then we can write

m
z= Z HikZk
k=1

for some g, ..., um € K. Obviously, [[uxzk| < v for each k > m,.
If ||lz]| < 7, then |lz — Y| < max{[|z[,[[y]]} < rand z € B¢ .(y).
Let ||z|| = r. For every k € {1,..., mp} we can choose by € M, with

mo
e — bx| < 1. Definey := ) byzx € Mx. Then,
k=1

z— =max4{T- max —b max z }<T“
2=yl =max{r- max fu—bd, omax | <
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thus, we get z € BE’T(y) and conclude that {BE,r (Y)lyemy is a finite
partition of Bg r.
To finish the proof we shall consider the following two cases:
o if ||x|| < 1, then Bg» = Bg+(x). Hence, {BE,r(U)}yEMx is a re-
quired finite partition of B (x);
e if ||x|| > 7, define the map h: E — E by h(z) := x + z. Clearly,
h is isometric and h(Bg ) = B¢ »(x). Thus, {BE,r(h(U))}yEMX is
a finite partition of Bg (x).

Now, assume that k is infinite. Then, we can select an infinite
{A1,A2,...} C Bk such that {Bﬂz(?\i)}i is an infinite partition of Bxk.
Take xg € E with ||xg]| = 1. Consider the ball Bg(A1xo) and balls
B (Anxo), 1 € N. Clearly, B (Anxg) C Be(A1xg) for eachn € N. If
y € BE (Aixp) for some i € N, then, for any j € N with i # j we get

Iy —Ajxoll = Iy —Aixo +Aixo — Ajxol| = [[Aixo — Ajxoll = AL = A5l = 1;
hence, balls B¢ (Anxp), n € N, are pairwise disjoint. O

4.3.3. Lemma (see [29, Lemma 13]). Let r > 0, E be finite-dimensional,
T: E — E bean isometric map, x € E and BE,r(Xl)/ .., BE,T(Xn) be a finite
partition of B »(x). Then, for every yog € E for which T(yg) € Bg,»(x)
there exist Y1, ..., Yn € B r+(Yo) such that BE,Y(T(yi)), i=1,...,nform
a finite partition of Bg (x).

Proof. Assume that yp € E, T(yp) € Bg(x) (then Be,(T(yo)) =
Ber(x)) and Bg,r(xl), e, BE,r(XTL) form a finite partition of Bg (x).
The map g: Be,+(T(yo)) — BE,r(yo), defined by g(y) :=yo—T(yo) +vy,
is surjective and isometric. Thus, BE,T (y1),---, BE,T(Un)/ where y; =
g(xi) (i=1,...,n), form a finite partition of B (yo). Then, obviously
lyi —y;l| =rfori#j (i,j € {1,...,n}). Since T is isometric,
IT(yi) — x| = T(yi) — Tlyo) + T(yo) — x|
< max{|[T(ys) — T(yo)ll, [T(yo) — x|}
= max{[[yi — yol, [ T(yo) = x|} < 7;

thus, T(yi) € Bg,»(x) foreachie{1,...,n}and

ITyi) =Tyl = llyi — vyl = (4.11)
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ifi#j(i,je{l,...,n}h.

Choose n; such that T(y1) € Bg .(xn,). By (4.11), there is no
me{2,...,npwith T(ym) € BE,r(an)/ thus there is n,, n, # n; that
T(yo) € B . (Xn,). Continuing on this direction we define the bijective
map

h:{1,...,n}—={1,...,n}, h{i)=n; (i=1,...,n)

and conclude that BE,r(T(yi)), i =1,...,n form a finite partition
of Bg +(x). O

Now, we are ready to prove the main result of this section.

Proof of Theorem 4.3.1. First assume that K is non-spherically complete.
By [57, 4.A.], E is non-spherically complete, hence, there exists a se-
quence of closed balls in E with an empty intersection (Bg r,, (cn))n-
We can assume that r, = |cy, — cnyqland 1y > 1141 (0 € N). Obvi-
ously, inf, ey T > 0. Define the map T: E — E by

T(x) = 4% if x ¢ Ber, (c1),
X —Cn+1 if x € BE,rn(Cn) \ BE,rnH (Cn+1)-

Observe that T is isometric; indeed, take x,y € E, then T(x) = x — ¢y,
T(y) =y —c¢j for some i,j € N.If i = j we are done; so, assume that
i1 <j. Then

Ix —cil > [ly — ¢,
[TH) =T = [[(x =) = (y —¢5)[| = [[x — cill.

But, |[x —ci|| > ri,y € Bg,r,(ci); hence,
Ix—yll =lx—ci+ci—y| =x—cil| = |T(x) — T(y)].

However, T is not surjective since 0 ¢ T(E).

Assume now that K is spherically complete. First, suppose that
card(k) is infinite. It follows from Lemma 4.3.2 that there exists xg € E
and r > 0 such that Bg +(x¢) has an infinite partition consisting of
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balls Bg,r(xi) (i € N) for some x1,x2,... € Bgr(x). Define the map
T: E — E setting

— {x if x ¢ Bex(x0),

X —xX{+xi1 ifx€ BE,r(Xi)'

Then, we can easily verify that T is isometric and x; ¢ T(E).

Finally, suppose that card(k) is finite. Let T: E — E be an isom-
etry. Suppose that there is xg € E such that xg ¢ T(E). Set r; :=
dist(xg, T(E)). Then r; > 0. Indeed, otherwise, take a sequence
(Yn)n C E such that T(yn) — xp if n — oo. Since T is isometric
and E is complete, we imply that (yn )n is convergent to some y’ € E;
but then

IT(y") —xoll = [ITQY) = T(yn) + T(yn) — ol
<max {[ly" —ynll, [T(yn) —xoll}

for every n € N; thus, T(y’) = xo, a contradiction.
Now, we prove that dist(xg, T(E)) is not attained, i.e.

Ixo — x|| > 11 for every x € T(E). (4.12)

Assume for a contradiction that there is y € E for which [[xg —T(y)|| =
1. Using Lemmas 4.3.2 and 4.3.3, we find z1,...,z, € E such that
BE’rl (T(z1)),1=1,...,n form a finite partition of Bg r,(xg). Choose
n; €{1,...,n}thatxy € BE,rl(T(Zm))~ But then, ||xg — T(zn,)|| < 11,
a contradiction.

Select a sequence (yn )n C E such that

Jim[lxo = T(yn)[| = 1.
Assuming that ||xo — T(yn )|l > [|xo — T(yn+1)ll for every n € N, we get

[yn =Ynstll = ITYn) = Tyns o)l
= IT(yn) —x0 +x0 — T(Yns1)||
= [|T(yn) —xoll; (4.13)
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thus, Be |y, —y..,|(Yn) is a centered sequence. By [57, 4.A]], E is
spherically complete; hence, thereisy’ € (1 Bg,|jy,—y..,||(Un)- Then,
neN

by (4.13)

1Ty —xoll = IT(Y) — T(yn) + T(yn) — x|
< max {[|T(y") = T(yn)|l, I T(yn) — xoll}
= max {|ly" — yn |, [ T(yn) — xoll}
< max {[[yn = Ynr1ll, I T(yn) —xoll} = [T(yn) — xoll

for every n € N; thus, || T(y’) — xo|| = r1. This contradicts with (4.12)
and the proof is completed. ]
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