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INFINITELY MANY SOLUTIONS

TO QUASILINEAR ELLIPTIC EQUATION

WITH CONCAVE AND CONVEX TERMS

Leran Xia — Minbo Yang — Fukun Zhao

Abstract. In this paper, we are concerned with the following quasilinear

elliptic equation with concave and convex terms

(P) −∆u−
1

2
u∆(|u|2) = α|u|p−2u+ β|u|q−2u, x ∈ Ω,

where Ω ⊂ RN is a bounded smooth domain, 1 < p < 2, 4 < q ≤ 22∗.
The existence of infinitely many solutions is obtained by the perturbation

methods

1. Introduction

In the present paper, we are concerned with the following quasilinear elliptic

equation with concave and convex terms

(P)

−∆u− 1

2
u∆(|u|2) = α|u|p−2u+ β|u|q−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
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where Ω ⊂ RN is a bounded smooth domain, α, β ∈ R are parameters, 1 < p < 2,

4 < q ≤ 22∗, 2∗ = 2N/(N −2) if N ≥ 3 and 2∗ =∞ if N = 1, 2. Such a problem

is referred to as the so-called modified Schrödinger equation (see [3], [24] and

[19]). Our motivation comes from the works about the semilinear case (see, for

example, [2] and [6])

(1.1)

−∆u = α|u|p−2u+ β|u|q−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where 1 < p < 2 < q < 2∗. In [2] Ambrosetti, Brezis and Cerami showed that, for

α > 0 small and β > 0, (1.1) has infinitely many solutions with negative energy

and infinitely many solutions with positive energy in H1
0 (Ω). In [6] Bartsch

and Willem dropped the restriction on α via the fountain theorem and its dual

version. More precisely, they show that for β > 0 and α ∈ R (1.1) has infinitely

many solutions with energy going to infinity, and for α > 0 and β ∈ R (1.1) has

infinitely many solutions with negative energy going to zero.

In the case q = 2∗, the existence of a positive solution was obtained by Brezis

and Nirenberg in [9]. See [17] for the multiplicity result. A natural problem is

whether the same conclusions hold true or not for the quasilinear problem (P)?

In this paper, we will give positive answer for the subcritical case q < 22∗

and the critical case q = 22∗. The main idea of our arguments comes from the

works concerning the fountain theorem and its dual version (see [4], [5] and [6]).

Problems similar to (P) were considered recently in some papers. The mini-

mization methods was used in [19], [24]. The main tool in [3], [20] is the Nehari

method. A change of variables argument was involved in [11], [21]. With this

change of variables the quasilinear problem is transformed to a semilinear prob-

lem and various existing methods for semilinear problems can be adopted and

modified to treat the resulting equation such as done recently in [1], [11]–[14],

[18], [23], [25] and the references therein. In particular, in [13], the authors

obtained the existence of a positive solution of a similar problem on RN .

The weak form of (P) is

(1.2)

∫
Ω

[(1 + u2)∇u∇φ+ u|∇u|2φ− α|u|p−2uφ− β|u|q−2uφ] dx = 0,

for all φ ∈ C∞0 (Ω), which is formally the variational formulation of the following

functional

(1.3) I0(u) =
1

2

∫
Ω

(1 + u2)|∇u|2 dx− α

p

∫
Ω

|u|p dx− β

q

∫
Ω

|u|q dx.

We may define the derivative of I0 at u in the direction of φ ∈ C∞0 (Ω) as follows

(1.4) 〈I ′0(u), φ〉 =

∫
Ω

[(1 + u2)∇u∇φ+ u|∇u|2φ] dx
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− α
∫

Ω

|u|p−2uφ dx− β
∫

Ω

|u|q−2uφ dx.

We call u a critical point of I0 if u ∈W 1,2
0 (Ω),

∫
Ω
u2|∇u|2dx <∞ and 〈I ′0(u), φ〉 =

0 for all φ ∈ C∞0 (Ω). That is, u is a weak solution of (P ).

The main difficulty in our problems is that there is no suitable space on which

the functional I0 enjoys both smoothness and compactness, so the standard crit-

ical point theory can not be applied directly. To overcome this difficulty, we

use a perturbation method developed recently in [22]. The main idea is, to find

a family of C1-functionals Iµ with compactness on a suitable work space, adding

a perturbation term to the original functional I0. So, we seek for a sequence

{uµ,n} of critical points of Iµ for µ > 0 small via the arguments in fountain

theorem (see [4], [5], [6] and [26]) and establish suitable estimates for the critical

points as µ → 0, and hence we may pass to the limit to get a sequence of solu-

tions of the original problem. More precisely, we consider a family of perturbed

functionals

(1.5) Iµ(u) =
µ

4

∫
Ω

|∇u|4 dx+ I0(u)

where µ ∈ (0, 1] is a parameter. Obviously, Iµ is a C1-functional on W 1,4
0 (Ω).

For all φ ∈W 1,4
0 (Ω),

(1.6) 〈I ′µ(u), φ〉 = µ

∫
Ω

|∇u|2∇u∇φdx+ 〈I ′0(u), φ〉.

We have the following existence results for (P).

Theorem 1.1. Assume 4 < q < 22∗.

(a) For every β > 0, α ∈ R, the problem (P) has a sequence of weak solutions

{un} such that I0(un)→∞ as n→∞.

(b) For every α > 0, β ∈ R, the problem (P) has a sequence of weak solutions

{vn} with I0(vn) < 0 such that I0(vn)→ 0 as n→∞.

Theorem 1.2. Assume q = 22∗ and β > 0. Then there exists α∗ > 0 such

that, for every 0 < α < α∗, the problem (P) has a sequence of weak solutions

{vn} with I0(vn) < 0 such that I0(vn)→ 0 as n→∞.

Remark 1.3. In fact, our results can be generalized to the more general case

−
N∑

i,j=1

Dj(aij(x, u)Diu) +
1

2

N∑
i,j=1

Dsaij(x, u)DiuDju = α|u|p−2u+ β|u|q−2u,

for x ∈ Ω, where

Di =
∂

∂xi
and Dsaij(x, s) =

∂

∂s
aij(x, s).

For aij(x, u) = (1 + u2)δij , the equation is reduced to (P).



542 L. Xia — M. Yang — F. Zhao

Notations. We denote by ‖ · ‖ the norm of W 1,4
0 (Ω), by ‖ · ‖2 the norm

of W 1,2
0 (Ω) and by | · |s the norm of Ls(Ω)(1 < s < +∞), C and Ci stand for

different positive constants.

2. Proof of Theorem 1.1

First, similar to [22], we have the following convergence results for (P).

Lemma 2.1. Let µn → 0 and q ≤ 22∗. Suppose {un} ⊂ W 1,4
0 (Ω) satisfies

I ′µn
(un) = 0 and Iµn(un) ≤ C for some C ∈ R independent of n. Then there is

u ∈W 1,4
0 (Ω) such that, up to a subsequence, un → u in W 1,2

0 (Ω), un∇un → u∇u
in L2(Ω), µn

∫
Ω
|∇un|4 dx → 0 and Iµn(un) → I0(u) as n → ∞, and u is a

critical point of I0.

Proof. The proof is similar to [22]. We sketch it for completeness. By

I ′µn
(un) = 0 and Iµn

(un) ≤ C, we obtain

C ≥ Iµn(un)− 1

q
〈I ′µn

(un), un〉(2.1)

=

(
1

4
− 1

q

)
µn

∫
Ω

|∇un|4 dx+

(
1

2
− 1

q

)∫
Ω

|∇un|2 dx

+

(
1

2
− 2

q

)∫
Ω

u2
n|∇un|2 dx+ α

(
1

q
− 1

p

)∫
Ω

|un|p dx.

We claim that there exists C0 > 0 such that∫
Ω

|un|pdx ≤ C0.

If not, without loss of generality, we may assume |un|p →∞ as n→∞. By (2.1),

we have

C ≥
(

1

2
− 2

q

)∫
Ω

u2
n|∇un|2 dx+ α

(
1

q
− 1

p

)
|un|pp(2.2)

=

(
1

8
− 1

2q

)∫
Ω

|∇u2
n|2 dx+ α(

1

q
− 1

p
)|un|pp

≥
(

1

8
− 1

2q

)
C1|un|44 + α

(
1

q
− 1

p

)
|un|pp

≥
(

1

8
− 1

2q

)
C2|un|4p − α

(
1

p
− 1

q

)
|un|pp,

which is impossible since p < 2 and q > 4.

Using (2.1) again, we have

(2.3) µn

∫
Ω

|∇un|4 dx+

∫
Ω

|∇un|2 dx+

∫
Ω

u2
n|∇un|2 dx ≤ C3,

where C3 is independent of n. Then we have un ⇀ u in W 1,2
0 (Ω), un∇un ⇀ u∇u

in L2(Ω) and un(x)→ u(x) for almost every x ∈ Ω. Note that un satisfies
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(2.4) µn

∫
Ω

|∇un|2∇un∇φdx+

∫
Ω

[(1 + u2
n)∇un∇φ+ un|∇un|2φ] dx

− α
∫

Ω

|un|p−2unφdx− β
∫

Ω

|un|q−2unφdx = 0,

for all φ ∈W 1,4
0 (Ω). Since(∫

Ω

|un|4N/(N−2) dx

)(N−2)/N

≤ C4

∫
Ω

u2
n|∇un|2 dx ≤ C5,

by Moser’s iteration we obtain

(2.5) |un|L∞(Ω) ≤ C6,

and hence |u|L∞(Ω) ≤ C6, where C6 is independent of n. Now, similar to the

arguments in [10] (see also [22]), one can show that u is a critical point of I0. In

fact, we choose φ = ψe−un in (2.4), where ψ ∈ C∞0 (Ω) satisfies ψ ≥ 0. It follows

from (2.4) that

0 =µn

∫
Ω

|∇un|2∇un(∇ψe−un − ψ∇une−un) dx(2.6)

+

∫
Ω

(1 + u2
n)∇un(∇ψe−un − ψ∇une−un) dx

+

∫
Ω

un|∇un|2ψe−un dx− α
∫

Ω

|un|p−2unψe
−un dx

− β
∫

Ω

|un|q−2unψe
−un dx

≤µn
∫

Ω

|∇un|2∇un∇ψe−un dx+

∫
Ω

(1 + u2
n)∇un∇ψe−un dx

−
∫

Ω

(1 + u2
n − un)|∇un|2ψe−un dx

− α
∫

Ω

|un|p−2unψe
−un dx− β

∫
Ω

|un|q−2unψe
−un dx.

By Fatou’s lemma, the weak convergence of un and (2.3) we have

0 ≤
∫

Ω

(1 + u2)∇u∇ψe−u dx−
∫

Ω

(1 + u2 − u)|∇u|2ψe−u dx(2.7)

− α
∫

Ω

|u|p−2uψe−u dx− β
∫

Ω

|u|q−2uψe−u dx

=

∫
Ω

(1 + u2)∇u∇(ψe−u) dx+

∫
Ω

u|∇u|2ψe−u dx

− α
∫

Ω

|u|p−2uψe−u dx− β
∫

Ω

|u|q−2uψe−u dx.

Let χ ≥ 0, χ ∈ C∞0 (Ω). We may choose a sequence of nonnegative functions

ψn → χeu in W 1,2
0 (Ω), ψn → χeu for almost every x ∈ Ω and {ψn} is uniformly

bounded in L∞(Ω). Then, by approximations in (2.7), we have
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(2.8)

∫
Ω

(1 + u2)∇u∇χdx+

∫
Ω

u|∇u|2χdx

− α
∫

Ω

|u|p−2uχdx− β
∫

Ω

|u|q−2uχdx ≥ 0.

Similarly, we can obtain an opposite inequality. Thus, we have for all χ ∈ C∞0 (Ω),

(2.9)

∫
Ω

(1 + u2)∇u∇χdx+

∫
Ω

u|∇u|2χdx

− α
∫

Ω

|u|p−2uχdx− β
∫

Ω

|u|q−2uχdx = 0.

That is, u is a critical point of I0 and a solution of (P). Replacing χ with u

in (2.9) and doing approximations again we have

(2.10)

∫
Ω

(1 + u2)|∇u|2 dx− α
∫

Ω

|u|p dx− β
∫

Ω

|u|q dx = 0.

Setting φ = un in (2.4), we have

(2.11) µn

∫
Ω

|∇un|4 dx+

∫
Ω

(1+u2
n)|∇un|2 dx−α

∫
Ω

|un|p dx−β
∫

Ω

|un|q dx = 0.

Using ∫
Ω

|un|p dx→
∫

Ω

|u|p dx,
∫

Ω

|un|q dx→
∫

Ω

|u|q dx,

(2.10), (2.11) and the lower semi-continuity we obtain∫
Ω

|∇un|2 dx→
∫

Ω

|∇u|2 dx,
∫

Ω

u2
n|∇un|2 dx→

∫
Ω

u2|∇u|2 dx,

µn

∫
Ω

|∇un|4 dx→ 0.

In particular, we have un → u in W 1,2
0 (Ω), un∇un → u∇u in L2(Ω) and

Iµn
(un)→ I0(u). �

Let {ej} be a Schauder basis of W 1,4
0 (Ω) (see [16] and [7]). Define Xj := Rej .

Note that for each µ ∈ (0, 1], Iµ is even. Now, some notations are in order. Set

Yk :=

k⊕
j=0

Xj , Zk :=

∞⊕
j=k

Xj ,

Bk :=

{
u ∈ Yk :

∫
Ω

(1 + u2)|∇u|2 dx ≤ ρ2
k

}
,

Nk :=

{
u ∈ Zk :

∫
Ω

(1 + u2)|∇u|2 dx = r2
k

}
,

where ρk > rk > 0.

The following intersection property is similar to Lemma 3.4 in [26].

Lemma 2.2. If γ ∈ C(Bk,W
1,4
0 (Ω)) is odd and γ|∂Bk

= id, then

γ(Bk) ∩Nk 6= ∅.
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Proof. Define

U :=

{
u ∈ Bk :

∫
Ω

(1 + γ2(u))|∇γ(u)|2 dx < r2
k

}
.

Denote by Pk the projector onto Yk−1 such that PkZk = {0}. By the Borsuk–

Ulam Theorem, there is u0 ∈ Bk with∫
Ω

(1 + γ2(u0))|∇γ(u0)|2 dx = r2
k

such that Pkγ(u0) = 0. Hence u0 ∈ γ(Bk) ∩Nk. �

Proof of Theorem 1.1. (a) Assume α ∈ R and β > 0. The proof is

divided into several steps.

Step 1. For each k, there is rk > 0 independent of µ ∈ (0, 1] such that

inf
u∈Nk

Iµ(u)→∞, as k →∞.

In fact, define

θk := sup
u∈Zk
u 6=0

|u|2q∫
Ω

(1 + u2)|∇u|2 dx
.

It is clear that 0 < θk+1 ≤ θk, thus θk → θ ≥ 0 as k → ∞. For each k, there

exists uk ∈ Zk such that(∫
Ω

(1 + u2
k)|∇uk|2 dx

)1/2

= 1 and |uk|q >
θk
2
.

By the definition of Zk, uk ⇀ 0 in W 1,4
0 (Ω) (see p. 182–183 in [15]). The Sobolev

imbedding theorem implies that uk → 0 in Lq(Ω). Therefore, θ = 0, i.e.

(2.12) θk → 0 as k →∞.

Observe that there exists C1 > 0 such that |u|p ≤ C1(1 + |u|q), which yields that

I0(u) =
1

2

∫
Ω

(1 + u2)|∇u|2 dx− α

p
|u|pp −

β

q
|u|qq

≥ 1

2
r2
k −
|α|C1|Ω|

p
−
(
β

q
+
|α|C1

p

)
θqk

(∫
Ω

(1 + u2)|∇u|2 dx
)q/2

=
1

2
r2
k −
|α|C1|Ω|

p
−
(
β

q
+
|α|C1

p

)
θqkr

q
k

= r2
k

[
1

2
−
(
β

q
+
|α|C1

p

)
θqkr

q−2
k

]
− |α|C1|Ω|

p

for u ∈ Nk. Choosing rk = [4(β/q+ |α|C1/p)]
−1/(q−2)θ

−q/(q−2)
k , we have rk →∞

as k →∞. Thus

(2.13) inf
u∈Nk

Iµ(u) ≥ inf
u∈Nk

I0(u) ≥ 1

4
r2
k −
|α|C1|Ω|

p
→∞ as k →∞.
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Step 2. For each k, there is ρk > rk independent of µ ∈ (0, 1] such that

(2.14) ak := max
u∈Yk∫

Ω
(1+u2)|∇u|2 dx=ρ2

k

Iµ(u) ≤ 0.

In fact, for u ∈ Yk, we have

Iµ(u) =
1

4
µ

∫
Ω

|∇u|4 dx+
1

2

∫
Ω

(1 + u2)|∇u|2 dx

− α

p

∫
Ω

|u|p dx− β

q

∫
Ω

|u|q dx

≤ 1

4
µ

∫
Ω

|∇u|4 dx+
1

2

∫
Ω

|∇u|2 dx+
1

2

(∫
Ω

|u|4 dx
)1/2(∫

Ω

|∇u|4 dx
)1/2

+
|α|
p

∫
Ω

|u|p dx− β

q

∫
Ω

|u|q dx

≤ 1

4
µ‖u‖4 + C2‖u‖2 + C3‖u‖4 + C4‖u‖p − C5‖u‖q

≤ 1

4
‖u‖4 + C2‖u‖2 + C3‖u‖4 + C4‖u‖p − C5‖u‖q,

since all norms are equivalent on the finite dimensional space Yk, which implies

that we can choose ρk > rk independent of µ ∈ (0, 1] such that bk ≤ 0.

Step 3. We claim that Iµ satisfies the (PS)c condition for every c > 0. In

fact, let {un} ⊂ W 1,4
0 (Ω) be such that Iµ(un) → c, I ′µ(un) → 0 as n → ∞. For

n large enough, we have

c+ 1 + ‖un‖ ≥ Iµ(un)− 1

q
〈I ′µ(un), un〉(2.15)

=

(
1

4
− 1

q

)
µ

∫
Ω

|∇un|4 dx+

(
1

2
− 1

q

)∫
Ω

|∇un|2 dx

+

(
1

2
− 2

q

)∫
Ω

u2
n|∇un|2 dx+

(
α

q
− α

p

)∫
Ω

|un|p dx

≥
(

1

4
− 1

q

)
µ‖un‖4 − C6‖un‖p.

Thus {un} is bounded in W 1,4
0 (Ω). Up to a subsequence, we may assume un ⇀ u

in W 1,4
0 (Ω) and un → u in Ls(Ω) for 1 < s < 22∗. Choosing φ = un − um in

(1.6) we have

o(1)‖un − um‖ = 〈I ′µ(un)− I ′µ(um), un − um〉(2.16)

=µ

∫
Ω

(|∇un|2∇un − |∇um|2∇um)(∇un −∇um) dx

+

∫
Ω

|∇un −∇um|2 dx

+

∫
Ω

(u2
n∇un − u2

m∇um)(∇un − um) dx
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+

∫
Ω

(un|∇un|2 − um|∇um|2)(un − um) dx

− α
∫

Ω

(|un|p−2un − |um|p−2um)(un − um) dx

− β
∫

Ω

(|un|q−2un − |um|q−2um)(un − um) dx.

Now we estimate the above terms appeared on the right hand one by one.∫
Ω

(u2
n∇un − u2

m∇um)(∇un − um) dx(2.17)

=

∫
Ω

u2
n|∇un −∇um|2 dx+

∫
Ω

(u2
n − u2

m)∇um(∇un −∇um) dx

≥ − |un − um|4(|un|4 + |um|4)‖um‖(‖un‖+ ‖um‖)→ 0.

(2.18)

∣∣∣∣ ∫
Ω

(un|∇un|2 − um|∇um|2)(un − um) dx

∣∣∣∣
≤ (|un|4‖un‖2 + |um|4‖um‖2)(|un − um|4)→ 0.

(2.19)

∣∣∣∣α ∫
Ω

(|un|p−2un − |um|p−2um)(un − um) dx

∣∣∣∣
≤ |α|(|un|p−1

p + |um|p−1
p )|un − um|p → 0.

∣∣∣∣β ∫
Ω

(|un|q−2un − |um|q−2um)(un − um) dx

∣∣∣∣(2.20)

≤ |β|
∫

Ω

(|un|q−1 + |um|q−1)|un − um| dx

≤ |β|(|un|q−1
q + |um|q−1

q )|un − um|q → 0.

(2.21) µ

∫
Ω

(|∇un|2∇un − |∇um|2∇um)(∇un −∇um) dx

≥ C7

∫
Ω

|∇un −∇um|4 dx

for some C7 > 0. Combining (2.16)–(2.20) together we obtain

C7

∫
Ω

|∇un −∇um|4 dx ≤ o(1)‖un − um‖+ o(1),

which impliese that {un} is a Cauchy sequence in W 1,4
0 (Ω), and hence there is

u ∈W 1,4
0 (Ω) such that un → u in W 1,4

0 (Ω).

Step 4. Define for k ≥ 2, ck(µ) := inf
γ∈Γk

max
u∈Bk

Iµ(γ(u)), where

Γk := {γ ∈ C(Bk, X) : γ is odd and γ|∂Bk
= id}.
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Obviously, for each k, there holds ck(µ) ≤ ck(1) ≤ maxu∈Bk
I1(u) < ∞, since

Iµ is increasing in µ. On the other hand, by Lemma 2.2, γ(Bk) ∩ Nk 6= ∅ for

γ ∈ Γk. Therefore, ck(µ) ≥ inf
u∈Nk

Iµ(u) ≥ inf
u∈Nk

I0(u). It follows from (2.13) that

ck(µ)→∞ as k →∞.

Step 5. For each k, there is a sequence un,k such that Iµ(un,k) → ck(µ)

and I ′µ(un,k) → 0 as n → ∞. Otherwise, for every ε ∈ (0, (ck − ak)/2) and

γ ∈ Γk with max
u∈Bk

Iµ(γ(u)) ≤ ck(µ) + ε, where ak is given in (2.14), it follows

from the equivariant deformation lemma (see Lemma 3.1 in [26]) that there

exists η ∈ C([0, 1] ×W 1,4
0 (Ω),W 1,4

0 (Ω)) such that η(1, I
ck(µ)+ε
µ ) ⊂ I

ck(µ)−ε
µ and

ϕ(u) := η(1, γ(u)) ∈ Γk. Thus ck(µ) ≤ max
u∈Bk

Iµ(γ(u)) ≤ ck(µ) − ε, which is

absurd.

By Step 3, ck(µ) is a critical value of Iµ. Thus Iµ has an unbounded sequence

of critical values and hence Iµ has a sequence of critical points {uµ,k}. By

Lemma 2.1, passing to the limit for µ → 0, I0 has a sequence of critical points

{uk} such that I0(uk)→∞ as k →∞. This completes the proof of (a).

(b) Assume α > 0 and β ∈ R. The proof is also divided into several steps.

Step 1. We claim there exists k0 such that, for each k ≥ k0, there is ρk > 0

independent of µ ∈ (0, 1] such that

inf
u∈Zk∫

Ω
(1+u2)|∇u|2 dx=ρ2

k

Iµ(u) ≥ 0.

In fact, define

ϑk := sup
u∈Zk
u6=0

|u|2p∫
Ω

(1 + u2)|∇u|2 dx
.

Similar to (2.12), ϑk → 0 as k →∞. Since

|u|q ≤ C0

(∫
Ω

|∇u|2 dx
)1/2

≤ C0

(∫
Ω

(1 + u2)|∇u|2 dx
)1/2

and q > 4, there exists R > 0 such that∫
Ω

(1 + u2)|∇u|2 dx ≤ R⇒ β

q
|u|qq ≤

1

4

∫
Ω

(1 + u2)|∇u|2 dx,

which yields

I0(u) =
1

2

∫
Ω

(1 + u2)|∇u|2 dx− α

p
|u|pp − β/q|u|qq(2.22)

≥ 1

4

∫
Ω

(1 + u2)|∇u|2 dx− α/p|u|pp

≥ 1

4

∫
Ω

(1 + u2)|∇u|2 dx− α

p
ϑpk

(∫
Ω

(1 + u2)|∇u|2 dx
)p/2

,

for u ∈W 1,4
0 (Ω) with

∫
Ω

(1 + u2)|∇u|2 dx ≤ R.
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Choosing ρk = (8α/p)1/(2−p)ϑ
p/(2−p)
k we have ρk → 0 as k →∞. Then there

exists k0 such that ρk ≤ R when k ≥ k0. Thus, for k ≥ k0 and u ∈ Zk with∫
Ω

(1 + u2)|∇u|2 dx = ρ2
k, it follows from (2.22) that

Iµ(u) ≥ I0(u) ≥ ρ2
k

[
1

4
− α

p
ϑpkρ

p−2
k

]
≥ 0,

which implies that the claim is true.

Step 2. For each k ≥ k0, there is 0 < rk < ρk independent of µ ∈ (0, 1] such

that

bk := max
u∈Yk∫

Ω
(1+u2)|∇u|2 dx=r2

k

Iµ(u) < 0.

In fact, for u ∈ Yk, we have

Iµ(u) =
µ

4

∫
Ω

|∇u|4 dx+
1

2

∫
Ω

(1 + u2)|∇u|2 dx− α

p

∫
Ω

|u|p dx− β

q

∫
Ω

|u|q dx

≤ µ

4
|∇u|44 +

1

2
|∇u|22 +

1

2
|u|24|∇u|24 −

α

p
|u|pp +

|β|
q
|u|qq

≤ 1

4
‖u‖4 + C1‖u‖2 + C2‖u‖4 − C3‖u‖p + C4‖u‖q,

since all norms are equivalent on the finite dimensional space Yk, which implies

that we can choose 0 < rk < ρk independent of µ ∈ (0, 1] such that bk < 0.

Step 3. We obtain from (2.22), for k ≥ k0 and u ∈ Bk

Iµ(u) ≥ I0(u) ≥ −α
p
ϑpk

(∫
Ω

(1 + u2)|∇u|2 dx
)p/2

≥ −α
p
ϑpkρ

p
k.

Then ak := inf
u∈Bk

Iµ(u)→ 0 as k →∞ since ϑk → 0 and ρk → 0 as k →∞.

Step 4. Now we prove that Iµ satisfies the (PS)∗c condition for each c < 0

with respect to {Yk}. Consider a sequence {unk
} ⊂W 1,4

0 (Ω) such that nk →∞,

unk
∈ Ynk

, Iµ(unk
)→ c and Iµ|′Ynk

(unk
)→ 0. For k large enough, we have

c+ 1 + ‖unk
‖ ≥ Iµ(unk

)− 1

q
〈I ′µ(unk

), unk
〉

=

(
1

4
− 1

q

)
µ

∫
Ω

|∇unk
|4 dx+

(
1

2
− 1

q

)∫
Ω

|∇unk
|2 dx

+

(
1

2
− 2

q

)∫
Ω

u2
nk
|∇unk

|2 dx+ α

(
1

q
− 1

p

)∫
Ω

|unk
|p dx

≥
(

1

4
− 1

q

)
µ‖unk

‖4 + α

(
1

q
− 1

p

)
C7‖unk

‖p.

Thus {unk
} is bounded in W 1,4

0 (Ω). Similar to the proof of part (a), one can

show that {unk
} has a convergent subsequence in W 1,4

0 (Ω).
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Step 5. We fix n ≥ k ≥ k0 and define

Znk :=,

n⊕
j=k

Xj ,

Bnk :=

{
u ∈ Znk :

∫
Ω

(1 + u2)|∇u|2 dx ≤ ρ2
k

}
,

Γnk := {γ ∈ C(Bnk , Yn) : γ is odd and γ|∂Bn
k

= id},

cnk (µ) := sup
γ∈Γn

k

min
u∈Bn

k

Iµ(γ(u)).

Then cnk (µ) ∈ [ak, bk]. Now, repeating the arguments in (a) to the functional

−Iµ defined on the space Yn, there exists un ∈ Yn such that

cnk (µ)− 2

n
≤ Iµ(un) ≤ cnk (µ) +

2

n
, ‖Iµ|′Xn

(un)‖ ≤ 8

n
.

Since Iµ satisfies the (PS)∗c condition, we see that {cnk (µ)} converges along a

subsequence to a critical value ck(µ) ∈ [ak, bk] of Iµ as n → ∞. Moreover, by

Step 3, ck(µ) → 0− as k → ∞. Using Lemma 2.1 and passing to the limit for

µ→ 0 we have that I0 has a sequence of negative critical values going to 0. This

completes the proof of (b). �

3. Proof of Theorem 1.2

This section is devoted to proving Theorem 1.2. The following lemma plays

a key role in the proof.

Lemma 3.1. There is λ > 0 such that, for any α > 0 and

(3.1) c <
SN/2

2N2N/2β(N−2)/2
− λα22∗/(22∗−p),

the functional Iµ satisfies the (PS)∗c condition.

Proof. Consider a sequence {unk
} ⊂ W 1,4

0 (Ω) such that nk → ∞, unk
∈

Ynk
, Iµ(unk

) → c, Iµ|′Ynk
(unk

) → 0. As in the proof of Theorem 1.1, {unk
} is

bounded in W 1,4
0 (Ω). Going if necessary to a subsequence, we can assume that

unk
⇀ u in W 1,4

0 (Ω), unk
→ u in Ls(Ω) for 1 < s < 22∗ and unk

→ u almost

everywhere on Ω. Since {unk
} is bounded in L22∗(Ω), {|unk

|22∗−2unk
} is bound

in L4N/(3N+2)(Ω) and so

|unk
|22∗−2unk

⇀ |u|22∗−2u in L4N/(3N+2)(Ω).

Then a standard argument shows that u is a critical point of Iµ (see [26]).

We write vnk
:= unk

− u. The Brezis–Lieb lemma (see [8]) leads to

|∇u2
nk
|22 = |∇u2|22 + |∇v2

nk
|22 + o(1),

|unk
|22∗

22∗ = |u|22∗

22∗ + |vnk
|22∗

22∗ + o(1).
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Since 〈I ′µ(unk
), unk

〉 → 0, so we have

µ|∇vnk
|44 + |∇vnk

|22 +
1

2
|∇v2

nk
|22 − β|vnk

|22∗

22∗

→ −µ
∫

Ω

|∇u|4 dx− 2

∫
Ω

u2|∇u|2 dx−
∫

Ω

|∇u|2 dx+ α

∫
Ω

|u|p dx+ β

∫
Ω

|u|22∗ dx

= −〈I ′µ(u), u〉 = 0.

Therefore, we may assume that

µ|∇vnk
|44 + |∇vnk

|22 +
1

2
|∇v2

nk
|22 → b, β|vnk

|22∗

22∗ → b.

By the Soblev inequality, we have

b ≥ 1

2
|∇v2

nk
|22 ≥

1

2
S|v2

nk
|22∗ =

1

2
S|vnk

|422∗ ,

and so b ≥ S(b/β)2/2∗/2. Then b = 0 or b ≥ SN/2/(2N/2β(N−2)/2).

Assume b ≥ SN/2/(2N/2β(N−2)/2). We have

c+ o(1) = Iµ(unk
)− 1

4
〈I ′µ(unk

), unk
〉

=
1

4
|∇unk

|22 + α

(
1

4
− 1

p

)
|unk
|pp + β

(
1

4
− 1

22∗

)
|unk
|22∗

22∗

≥ α
(

1

4
− 1

p

)
|unk
|pp +

β

2N
|unk
|22∗

22∗

= α

(
1

4
− 1

p

)
|u|pp +

β

2N

(
b

β
+ |u|22∗

22∗

)
+ o(1)

≥ SN/2

2N2N/2β(N−2)/2
+

β

2N
|u|22∗

22∗ − C1α|u|p22∗

for some C1 > 0. A direct computation shows that

min
t>0

(
β

2N
t22∗ − C1αt

p

)
= −

(
1− p

22∗

)
C

22∗/(22∗−p)
1 (pN)p/(22∗−p)α22∗/(22∗−p)

Setting λ := (1− p/22∗)C
22∗/(22∗−p)
1 (plN)p/(22∗−p) > 0 we have

(3.2) c ≥ SN/2

2N2N/2β(N−2)/2
− λα22∗/(22∗−p),

which contradicts (3.1). So b = 0, and therefore unk
→ u in W 1,4

0 (Ω). �

Proof of Theorem 1.2. By Lemma 3.1, there exists α∗ > 0 such that for

every 0 < α < α∗ and c < 0, the functional Iµ(u) satisfies the (PS)∗c condition.

Now, repeating the proof of the part (b) of Theorem 1.1 we can obtain the

conclusion. �
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