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STRAUSS AND LIONS TYPE RESULTS

FOR A CLASS OF ORLICZ–SOBOLEV SPACES

AND APPLICATIONS

Claudianor O. Alves — Giovany M. Figueiredo

Jefferson A. Santos

Abstract. The main goal of this work is to prove Strauss- and Lions-type
results for Orlicz–Sobolev spaces. After, we use these results to study the

existence of solutions for a class of quasilinear problems in RN .

1. Introduction

In recent years, a special attention has been given for quasilinear problems

of the type

(P)

−div(a(|∇u|)∇u) + V (x)a(|u|)u = f(u) in RN ,
u ∈W 1LA(RN ) with N ≥ 2,

where V , f are continuous functions satisfying some technical conditions and

a : [0,+∞)→ [0,+∞) is a C1-function.

We cite the papers of Bonanno, Bisci and Radulescu [5], [6], Cerny [7],

Clément, Garcia-Huidobro and Manásevich [8], Donaldson [11], Fuchs and Li [14],

Fuchs and Osmolovski [15], Fukagai, Ito and Narukawa [16], [17], Gossez [18],

2010 Mathematics Subject Classification. 35A15, 35J62, 46E30.
Key words and phrases. Variational methods, quasilinear problems, Orlicz–Sobolev space.
C.O. Alves was partially supported by INCT-MAT, PROCAD, CNPq/Brazil 620150/

2008-4 and 303080/2009-4.

G.M. Figueiredo supported by CNPq/Brazil 300705/2008-5.

435



436 C.O. Alves — G.M. Figueiredo — J.A. Santos

Le and Schmitt [19], Mihailescu and Radulescu [21], [22], Mihailescu and Re-

povs [23], Mihailescu, Radulescu and Repovs [24], Orlicz [27], Santos [28] and

references therein, where quasilinear problems like (P) have been considered in

bounded and unbounded domains of RN . In some those papers, the authors

have mentioned that this class of problem arises in a lot of applications, such as,

nonlinear elasticity, plasticity and non-Newtonian fluids.

One of the most famous methods to get a solution for (P) is the variational

method, where the weak solutions for (P) are precisely the critical points of the

energy functional J : X → R associated with (P), given by

J(u) =

∫
RN

A(|∇u|) +

∫
RN

V (x)A(|u|)−
∫
RN

F (u),

where X is a convenient subspace of W 1LA(RN ), which depends of the hypothe-

ses on the potential V .

In [16], Fukagai, Ito and Narukawa have used the variational method to show

the existence of a solution for (P) by assuming that the function a satisfies the

following assumptions:

• The function a(t)t is increasing in (0,+∞), that is,

(a1) (a(t)t)′ > 0 for all t > 0.

• There exist l,m ∈ (1, N) such that

(a2) l ≤ a(|t|)t2

A(t)
≤ m for all t 6= 0,

where

A(t) =

∫ |t|
0

a(s)s ds, l ≤ m < l∗, l∗ =
lN

N − l
and m∗ =

mN

N −m
.

Using these hypotheses, the authors showed that A is a N -function satisfying

the ∆2-condition. Moreover, in that paper, it is mentioned some examples of

functions A, whose function a(t) satisfies the conditions (a1)–(a2). The examples

are the following:

(i) A(t) = |t|p for 1 < p < N .

(ii) A(t) = |t|p + |t|q for 1 < p < q < N and q ∈ (p, p∗) with p∗ =

Np/(N − p).
(iii) A(t) = (1 + |t|2)γ − 1 for γ ∈ (1, N/(N − 2)).

(iv) A(t) = |t|pln(1 + |t|) for 1<p0<p<N − 1 with p0 = (−1+
√

1+4N)/2.

Motivated by [16], more precisely, by hypotheses (a1)–(a2) considered on

function a, the main goal of the present paper is to prove that some results

found in Strauss [29] and Lions [20] also hold in the Orlicz–Sobolev W 1LA(RN )

for A(t) =
∫ |t|

0
a(s)s ds, when the above conditions are assumed on a. Moreover,
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results of compactness have been proved for domains in RN , which are invariant

by group O(N).

It is well known in the literature, that if the energy functional is invariant by

rotations, sometimes it is possible to find radial solutions for (P). In this case,

Strauss-type results can be an interesting tool. Once that we did not find in the

literature a Strauss-type result for Orlicz–Sobolev spaces, the first result of this

article goes in this direction and it has the following statement:

Theorem 1.1 (A Strauss-type result for Orlicz–Sobolev spaces). Assume

that (a1)–(a2) hold and let v ∈W 1LA(RN ) be a radial function. Then

|v(x)| ≤ A−1

(
C

|x|N−1

∫
RN

[A(|v|) +A(|∇v|)]
)

a.e. in RN ,

where A−1 denotes the inverse function of A restricted to [0,+∞) and C is

a positive constant independent of v.

In the next result, we denote by W 1LA,rad(RN ) the subspace of W 1LA(RN )

consisting of radial functions and by A∗ the conjugate function of A.

Theorem 1.2 (A compactness result for radial functions). Assume that (a1)–

(a2) hold and let B be a N -function verifying

(B1) lim
t→0+

B(t)

A(t)
= 0

and

(B2) lim
t→+∞

B(t)

A∗(t)
= 0.

Then, the embedding W 1LA,rad(RN ) ↪→ LB(RN ) is compact.

The above theorem can be applied, when we intend to prove that some

functional satisfies, for example, the well known Palais–Smale condition on the

space of the radial functions.

In the proof of Theorems 1.1 and 1.2 the reader is invited to observe that

they are true assuming that A(t) =
∫ |t|

0
a(s)s ds is a N -function verifying the ∆2

condition. Here, we have used conditions (a1)–(a2) in view of our applications,

see Theorem 1.8 below.

Other important results are of Lions-type, however we did not find again

results of this type for Orlicz–Sobolev spaces. Motivated by this fact, we prove

also the following result

Theorem 1.3 (A Lions-type result for Orlicz–Sobolev spaces). Assume that

(a1)–(a2) hold and let (un) ⊂W 1LA(RN ) be a bounded sequence such that there

exists R > 0 satisfying:

lim
n→+∞

sup
y∈RN

∫
BR(y)

A(|un|) = 0.
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Then, for any N -function B verifying ∆2-condition with

(B1) lim
t→0

B(t)

A(t)
= 0

and

(B2) lim
|t|→+∞

B(t)

A∗(t)
= 0,

we have un → 0 in LB(RN ).

Theorem 1.3 is interesting because it can be used to prove the existence of

critical points for the energy functional J , when the potential V is ZN -periodic.

Our next result can also be used to show compactness results for the space

W 1
0LA(Ω), when Ω ⊂ RN is invariant with respect to action of a subgroup

of O(N). Before to state it, we need to fix some definitions and notations. To

this end, we follow the spirit of Willem’s book [30].

Definition 1.4. Let G be a subgroup of O(N), y ∈ RN and r > 0. We

define,

m(y, r,G) = sup{n ∈ N : ∃g1, . . . , gn ∈ G : j 6= k ⇒ Br(gjy) ∩Br(gky) = ∅}.

An open set Ω ⊂ RN is said invariant when gΩ = Ω for all g ∈ G. An

invariant subset Ω ⊂ RN is compatible with G if, for some r > 0,

lim
|y|→+∞

dist(y,Ω)≤r

m(y, r,G) = +∞.

Definition 1.5. Let G be a subgroup of O(N) and let Ω ⊂ RN be an

invariant set. The action of G on W 1
0LA(Ω) is defined by

gu(x) = u(g−1x) for all x ∈ RN .

The subspace of invariant functions is defined by

W 1
0,GLA(Ω) = {u ∈W 1

0LA(Ω) : gu = u, for all g ∈ G}.

Theorem 1.6 (A Compactness result involving the group O(N)). If Ω is

compatible with G and (a1)–(a2) hold, the embedding W 1
0,GLA(Ω) ↪→ LB(Ω) is

compact, for any N-function B verifying ∆2-condition with

(B1) lim
t→0

B(t)

A(t)
= 0

and

(B2) lim
|t|→+∞

B(t)

A∗(t)
= 0.

As an immediate consequence of the last result, we have the following corol-

lary:
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Corollary 1.7. Let Nj ≥ 2, j = 1, . . . , k,
k∑
j=1

Nj = N and

G = O(N1)× . . .×O(Nk).

Then, the compact embeddings of Theorem 1.6 occur with Ω = RN .

Related to the Theorems 1.2, 1.3, 1.6 and Corollary 1.7, we would like to

cite the paper due to Fan, Zhao and Zhao [13], where results like above has been

established for the space W 1,p(x)(RN ).

Motivated by the above results, we study the existence of solutions for some

classes of quasilinear problems assuming that V : RN → R is a continuous func-

tion verifying

(V1) 0 < V0 = inf
x∈RN

V (x)

and f : R→ R is a C1-function satisfying the properties:

(f1) lim
|t|→0

f(t)

a(|t|)|t|
= 0,

(f2) lim
|t|→+∞

f(t)

a∗(|t|)|t|
= 0,

where a∗(t)t is such that the Sobolev conjugate function A∗ of A (see Section 2)

is its primitive, that is, A∗(t) =
∫ |t|

0
a∗(s)s ds.

There exists θ > m such that

(f3) 0 < θF (t) =

∫ t

0

f(s)ds ≤ tf(t) for all t ∈ R \ {0}.

Our main result concerning the existence of a solution for problem (P) is the

following:

Theorem 1.8. Suppose that (f1)–(f3), (a1)–(a2) and (V1) hold. Moreover,

assume that one of the following conditions hold:

(a) V is a radial function, that is, V (x) = V (|x|), for all x ∈ RN ,

or

(b) V is a ZN periodic function, that is, V (x + y) = V (x), for all x ∈ RN

and for all y ∈ ZN .

Then, problem (P) has a nontrivial solution.

The plan of this paper is as follows. In Section 2, we review some proprieties

of Orlicz and Orlicz–Sobolev spaces. In Section 3, we prove Theorems 1.1–1.3

and 1.6. In Section 4, we given a proof of Theorem 1.8.
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2. A brief review about N-function and Orlicz–Sobolev spaces

In this section, we recall some properties of Orlicz and Orlicz–Sobolev spaces.

The reader can find more properties of these spaces in the books of Adams and

Fournier [1], Adams and Hedberg [2], Donaldson and Trundiger [12], Fuchs and

Osmolovski [15], Musielak [25] and O’Neill [26].

First of all, we recall that a continuous function Φ: R → [0,+∞) is a N -

function if:

(a) Φ is convex.

(b) Φ(t) = 0 if and only if t = 0.

(c) Φ(t)/t
t→0−−−−→ 0 and Φ(t)/t

t→+∞−−−−→ +∞.

(d) Φ is even.

In what follows, we say that a N -function Φ verifies the ∆2-condition if

Φ(2t) ≤ KΦ(t) for all t ≥ 0,

for some constant K > 0. This condition can be rewritten in the following way:

For each s > 0, there exists Ms > 0 such that

(∆2) Φ(st) ≤MsΦ(t) for all t ≥ 0.

Fixed an open set Ω ⊂ RN and a N-function Φ, the Orlicz space LΦ(Ω) is

defined. When Φ satisfies ∆2-condition, the space LΦ(Ω) is the vectorial space

of the measurable functions u : Ω→ R such that∫
Ω

Φ(|u|) <∞.

The space LΦ(Ω) endowed with Luxemburg norm, that is, with the norm given by

‖u‖Φ = inf

{
α > 0 :

∫
Ω

Φ

(
|u|
α

)
≤ 1

}
,

is a Banach space. The complement function of Φ, denoted by Φ̃(s), is given

by the Legendre transformation, that is Φ̃(s) = max
t≥0
{st − Φ(t)} for s ≥ 0. The

functions Φ and Φ̃ are complementary each other. Moreover, we have the Young’s

inequality given by

(2.1) st ≤ Φ(t) + Φ̃(s) for all t, s ≥ 0.

Using the above inequality, it is possible to prove a Hölder type inequality, that is,

(2.2)

∣∣∣∣ ∫
Ω

uv

∣∣∣∣ ≤ 2‖u‖Φ‖v‖Φ̃, for all u ∈ LΦ(Ω) and v ∈ LΦ̃(Ω).

Another important function related to function Φ, it is the Sobolev conjugate

function Φ∗ of Φ defined by

Φ−1
∗ (t) =

∫ t

0

Φ−1(s)

s(N+1)/N
ds for t > 0,
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when ∫ +∞

1

Φ−1(s)

s(N+1)/N
ds = +∞.

If Φ(t) = |t|p for 1 < p < N , we have Φ∗(t) = p∗p
∗
|t|p∗ , where p∗ =

pN/(N − p).
The next lemma will be used in the proof of some results and its proof can

be found in [18]

Lemma 2.1. Let Ω ⊂ RN be an open set and Φ: R→ [0,∞) be a N -function

satisfying the ∆2-condition. If also the complementary function Φ̃ satisfies the

∆2-condition and (fn) is a bounded sequence in LΦ(Ω) satisfying fn(x) → f(x)

almost everywhere in Ω, then fn ⇀ f in LΦ(Ω), that is,∫
Ω

fnv dx→
∫

Ω

fv dx for all v ∈ LΦ̃(Ω).

Hereafter, we denote by W 1
0LΦ(Ω) the Orlicz–Sobolev space obtained by the

completion of C∞0 (Ω) with the norm ‖u‖ = ‖∇u‖Φ + ‖u‖Φ. When Ω = RN , we

use the symbol W 1LΦ(RN ) to denote the space W 1
0LΦ(RN ).

An important property that we must detach is: If Φ and Φ̃ satisfy ∆2-

condition, the spaces LΦ(Ω) and W 1LΦ(RN ) are reflexive and separable. More-

over, the ∆2-condition also implies that

un → u in LΦ(Ω)⇔
∫

Ω

Φ(|un − u|)→ 0,(2.3)

un → u in W 1LΦ(Ω⇔
∫

Ω

Φ(|un − u|)→ 0 and

∫
Ω

Φ(|∇un −∇u|)→ 0.(2.4)

In the literature, we find some important embeddings involving the Orlicz–

Sobolev spaces, for example, it is possible to prove that embeddingW 1LΦ(RN ) ↪→
LB(RN ) is continuous, if B is a N -function satisfying

lim sup
t→0

B(t)

Φ(t)
< +∞ and lim sup

|t|→+∞

B(t)

Φ∗(t)
< +∞.

When the space RN is replaced by a bounded domain D and the limits below

hold

(2.5) lim sup
t→0

B(t)

Φ(t)
< +∞ and lim sup

|t|→+∞

B(t)

Φ∗(t)
= 0,

the embedding

(2.6) W 1LΦ(D) ↪→ LB(D)

is compact.

The next four lemmas involve the functions A, Ã and A∗ and theirs proofs

can be found in [16]. Hereafter, A is the N -function given in the introduction

and Ã, A∗ are the complement and conjugate functions of A, respectively.
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Lemma 2.2. The functions A and Ã satisfy the inequality

(2.7) Ã(a(|t|)t) ≤ A(2t) for all t ≥ 0.

Lemma 2.3. Assume that (a1)–(a2) hold and let ξ0(t) = min{tl, tm}, ξ1(t) =

max{tl, tm}, for all t ≥ 0. Then

ξ0(ρ)A(t) ≤ A(ρt) ≤ ξ1(ρ)A(t) for ρ, t ≥ 0,(2.8)

ξ0(‖u‖A) ≤
∫
RN

A(|u|) ≤ ξ1(‖u‖A) for u ∈ LA(RN ).(2.9)

Lemma 2.4. The function A∗ satisfies the following inequality

l∗ ≤ a∗(|t|)t2

A∗(t)
≤ m∗ for t 6= 0.

As an immediate consequence of the Lemma 2.4, we have the following result:

Lemma 2.5. Assume that (a1)–(a2) hold and let ξ2(t)=min{tl∗ , tm∗}, ξ3(t)=

max{tl∗ , tm∗}, for all t ≥ 0. Then

ξ2(ρ)A∗(t) ≤ A∗(ρt) ≤ ξ3(ρ)A∗(t) for ρ, t ≥ 0,

ξ2(‖u‖A∗) ≤
∫
RN

A∗(|u|) ≤ ξ3(‖u‖A∗) for u ∈ LA∗(RN ).

3. Strauss and Lions type results for Orlicz–Sobolev spaces

After the above brief review, we are able to prove our main results involving

the Orlicz–Sobolev spaces.

Proof of Theorem 1.1 (Strauss’ Theorem). First of all, we will establish

the result for functions in C∞0 (RN ). After, by density, we establish the result

for all radial functions in W 1LA(RN ).

Consider v ∈ C∞0 (RN ), |x| = r and w(r) = v(x). Note that

A(w(b))−A(w(r)) =

∫ b

r

(
d

ds
A(w)

)
ds for all b > r > 0.

Since w ∈ C∞0 ([0,∞)), for b large enough,

A(w(r)) = −
∫ ∞
r

a(|w|)ww′ ds ≤
∫ ∞
r

a(|w|)|w||w′| ds.

Combining (2.1) with (2.7)

a(|w|)|w||w′| ≤ Ã(a(|w|)|w|) +A(|w′|) ≤ A(2|w|) +A(|w′|),

then by ∆2-condition,

a(|w|)|w||w′| ≤ KA(|w|) +A(|w′|).

Therefore,

A(w(r)) ≤ (K + 1)

∫ ∞
r

[A(|w(s)|) +A(|w′(s)|)] ds,
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and we can conclude that

A(w(r)) ≤ (K + 1)

rN−1

∫ ∞
r

[A(|w(s)|) +A(|w′(s)|)]sN−1 ds.

From this, there is C > 0 such that

A(v(x)) ≤ C

|x|N−1

∫
RN

[A(|v|) +A(|∇v|)].

Since A is an even function, A(v(x)) = A(|v(x)|) for all x ∈ RN , and so,

A(|v(x)|) ≤ C

|x|N−1

∫
RN

[A(|v|) +A(|∇v|)].

From this,

|v(x)| ≤ A−1

(
C

|x|N−1

∫
RN

[A(|v|) +A(|∇v|)]
)

for all x ∈ RN \ {0},

where A−1 denotes the inverse function of A restricted to [0,+∞). Now, the

lemma follows from the density of C∞0 (RN ) in W 1LA(RN ). �

Now, we are able to prove the compactness result involving W 1LA,rad(RN ).

Proof of Theorem 1.2 (Compactness Theorem ). Assume that {un} ⊂
W 1LA,rad(RN ) is a sequence verifying un ⇀ 0 in W 1LA,rad(RN ). Without loss

of generality, we can assume that un ≥ 0 for all n ∈ N. From (B1)–(B2), for each

ε > 0 and q > 1, there is C > 0 such that

(3.1) B(t) ≤ ε(A(t) +A∗(t)) + C|t|q for all t ≥ 0.

Using Theorem 1.1, Lemma 2.3 and the boundedness of {un} in W 1LA(RN ), for

each R > 0, there is C > 0 such that

|un(x)|q ≤ C
(

1

|x|(N−1)q/m
+

1

|x|(N−1)g/l

)
in [|x| ≥ R] and for all n ∈ N.

Choosing q large enough,

g(x) = C

(
1

|x|(N−1)q/m
+

1

|x|(N−1)q/l

)
∈ L1([|x| > δ]) for all δ > 0.

The last inequality combined with Lebesgue’s Theorem implies that∫
[|x|≥R]

|un(x)|q → 0 as n→∞.

This limit together with (3.1) leads to

(3.2)

∫
[|x|≥R]

B(un)→ 0 as n→∞.

Observing that (B1)–(B2) imply that (2.5)–(2.6) hold, one has that

W 1LA([|x| < R]) ↪→ LB([|x| < R])
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is a compact embedding. Hence,

(3.3)

∫
[|x|<R]

B(un)→ 0 as n→∞.

From (3.2) and (3.3), ∫
RN

B(un)→ 0 as n→∞,

and the proof of the theorem is complete. �

Proof of Theorem 1.3 (Lions’ Theorem). First of all, we observe that∫
RN

B(|un|) =

∫
[|un|>k]

B(|un|) +

∫
[|un|≤k]

B(|un|).

From (B2), given ε > 0, there is k > 0 such that

B(t) = B(|t|) ≤ εA∗(|t|), if |t| > k,

which yields ∫
[|un|>k]

B(|un|) ≤ ε
∫

[|un|>k]

A∗(|un|) ≤ εC,

and so,

lim sup
n→+∞

∫
RN

B(|un|) ≤ εC + lim sup
n→+∞

∫
[|un|≤k]

B(|un|).

Claim 3.1.

lim sup
n→+∞

∫
[|un|≤k]

B(|un|) = 0.

Using this claim,

lim sup
n→+∞

∫
RN

B(|un|) ≤ εC,

from where it follows that

lim sup
n→+∞

∫
RN

B(|un|) = 0, then un
n→+∞−−−−→ 0 in LB(RN ).

Now, we will prove the Claim 3.1. Setting the function

vn(x) = χ[|un|≤k](x)un(x),

it is sufficient to show that

(3.4) lim sup
n→+∞

∫
RN

B(|vn|) = 0.

From (∆2), there is Mk > 0 such that A(|vn/k|) ≤ MkA(|vn|), for all n ∈ N.

This combined with Lemma 2.3 asserts∫
BR(y)

A(|vn|) ≥
1

Mk

∫
BR(y)

A
(∣∣∣vn
k

∣∣∣) ≥ C ∫
BR(y)

∣∣∣vn
k

∣∣∣m ,
and so,

lim
n→+∞

sup
y∈RN

∫
BR(y)

∣∣∣∣vnk
∣∣∣∣m = 0.
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Fixing wn = vn/k, (|wn|∞ ≤ 1), we get

(3.5) lim
n→+∞

sup
y∈RN

∫
BR(y)

|wn|m = 0.

Using again (∆2), there is M̂k > 0 such that∫
RN

B(|vn|) =

∫
RN

B

(
k
|vn|
k

)
≤ M̂k

∫
RN

B(|wn|).

Consequently, the limit (3.4) follows if

lim sup
n→+∞

∫
RN

B(|wn|) = 0.

Claim 3.2. For all α > 1 and n ∈ N, A(|wn|α) ∈W 1,1(RN ).

Indeed, since |wn|∞ ≤ 1 and wn ∈W 1LA(RN ),

(3.6)

∫
RN

A(|wn|α) ≤
∫
RN

A(|wn|) < +∞ and

∫
RN

A(|∇wn|) < +∞.

Moreover, ∫
RN

|∇(A(|wn|α))| ≤α
∫
RN

a(|wn|α)|wn|α|wn|α−1|∇wn|

≤α
∫
RN

a(|wn|α)|wn|α|∇wn|.

Since by (2.1) and (2.7),

a(|wn|α)|wn|α|∇wn| ≤ Ã(a(|wn|α)|wn|α) +A(|∇wn|) ≤ A(2|wn|α) +A(|∇wn|),

the ∆2-condition yields, a(|wn|α)|wn|α|∇wn| ≤ KA(|wn|α) + A(|∇wn|), there-

fore, (3.6) gives ∫
RN

|∇(A(|wn|α))| < +∞.

By Sobolev embedding, W 1,1(BR(y)) ↪→ LN/(N−1)(BR(y)). Therefore, there

exists C > 0 such that(∫
BR(y)

A(|wn|α)N/(N−1)

)(N−1)/N

≤ C
∫
BR(y)

(|∇A(|wn|α)|+A(|wn|α)).

Since by Lemma 2.3, A(|t|) ≥ c0|t|m, for all t ∈ [−1, 1], it follows that(∫
BR(y)

|wn|αmN/(N−1)

)N/(N−1)

≤ C
∫
BR(y)

(a(|wn|)|wn||∇wn|+A(|wn|)).

Next, let us fix α > 0 large enough and p = m/N +mα. Thereby,∫
BR(y)

|wn|p =

∫
BR(y)

|wn|m/N |wn|mα

≤
(∫

BR(y)

|wn|m
)1/N(∫

BR(y)

|wn|mαN/(N−1)

)(N−1)/N

.
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By (3.5), (∫
BR(y)

|wn|m
)1/N

< ε,

for n large enough and for all y ∈ RN . Hence, there is n0 ∈ N such that∫
BR(y)

|wn|p ≤ εc1
∫
BR(y)

fn, n ≥ n0 and y ∈ RN ,

where fn = a(|wn|)|wn||∇wn|+A(|wn|).
Now, we set {yj}j∈N ⊂ RN such that RN =

⋃
j∈N

BR(yj) and each point of RN

is contained in at most κ balls. Then,∫
RN

|wn|p ≤
∑
j∈N

∫
BR(yj)

|wn|p ≤ εc1
∑
j∈N

∫
BR(yj)

fn

≤ εc1
∑
j∈N

∫
RN
fnχBR(yj) ≤ εc1

∫
RN
fn
∑
j∈N

χBR(yj) ≤ εc1κ
∫
RN

fn.

As {un} is bounded in W 1LA(RN ), the sequence {fn} is bounded in L1(RN ).

In this way, the last inequality gives wn
n→+∞−−−−→ 0 in Lp(RN ), for p large enough.

On the other hand,

|wn|mm =

∫
RN
|wn|m ≤ c0

∫
RN

A(|wn|) ≤ C, n ∈ N,

from where it follows that {wn} is bounded in Lm(RN ). Then, by interpolation,

wn
n→+∞−−−−→ 0 in Lq(RN ), for all q > m.

From (a2), it follows that l∗,m∗ > m, thus

(3.7) wn
n→+∞−−−−→ 0 in Ll

∗
(RN ) and Lm

∗
(RN ).

On the other hand, by Lemma 2.5, A∗(t) ≤ C(|t|m∗
+ |t|l∗) for all t ∈ RN . This

combined with (3.7) gives ∫
RN

A∗(|wn|)→ 0.

From (B1)–(B2), given ε > 0, there exists Cε > 0 verifying B(|t|) ≤ εA(|t|)+

CεA∗(|t|), t ∈ R. Therefore,∫
RN

B(|wn|) ≤ ε
∫
RN

A(|wn|) + Cε

∫
RN

A∗(|wn|) ≤ εC + Cε

∫
RN

A∗(|wn|),

from where it follows that

lim sup
n→+∞

∫
RN

B(|wn|) ≤ εC for all ε > 0,

showing that

lim sup
n→+∞

∫
RN

B(|wn|) = 0,

that is, wn
n→+∞−−−−→ 0 in LB(RN ), finishing the proof of lemma. �
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Proof of Theorem 1.6 (compactness theorem involving the group O(N)).

The proof follows the same arguments used in Willem [30, Theorem 1.24], when

|un|2 is replaced by A(|un|). Here, we will make a sketch of the proof for conve-

nience of the reader.

Let {un} be a sequence in W 1
0,GLA(Ω) with un ⇀ 0 in W 1

0,GLA(Ω). Without

loss of generality, we can assume that {un} ⊂ W 1
0LA(RN ) by supposing that

un(x) = 0 for all x ∈ Ωc.

From definition of m(y, r,G),

∫
Br(y)

A(|un|) ≤
sup
n

∫
RN

A(|un|)

m(y, r,G)
for all n ∈ N and y ∈ RN .

Once that Ω is compatible with G, given ε > 0, there is R > 0 such that

(3.8) sup
|y|≥R

∫
Br(y)

A(|un|) ≤ ε, for all n ∈ N.

On the other hand, one has Br(y) ⊂ BR+r(0) for all y ∈ BR(0) which implies

that

(3.9) sup
|y|<R

∫
Br(y)

A(|un|) ≤
∫
BR+r(0)

A(|un|).

By (2.6), un → 0 in LA(BR+r(0)) that is,

(3.10)

∫
BR+r(0)

A(|un|)→ 0.

Thereby, from (3.9) and (3.10), there exists n0 ∈ N such that

sup
|y|<R

∫
Br(y)

A(|un|) ≤ ε for all n ≥ n0.

Hence, from (3.8) and (3.10),

lim
n→+∞

sup
y∈RN

∫
BR(y)

A(|un|) = 0.

Now, the result follows applying the Theorem 1.3. �

4. Existence of solutions for problem (P)

In this section, we will use the results obtained in the previous section to

prove Theorem 1.8. Hereafter, let us denote by J : X → R the energy functional

related to (P) given by

J(u) =

∫
RN

A(|∇u|) +

∫
RN

V (x)A(|u|)−
∫
RN

F (u),

where X = W 1LA(RN ) when V is periodic and

X =

{
u ∈W 1LA,rad(RN );

∫
RN

V (x)A(|u|) < +∞
}
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when V is a radial function. In both cases, X will be endowed with the norm

‖u‖ = ‖∇u‖A + ‖u‖V,A

where

‖u‖V,A = inf

{
α > 0;

∫
RN

V (x)A

(
|u|
α

)
≤ 1

}
.

A simple computation gives that the above norm is equivalent to the usual

norm of W 1LA(RN ) when V is a continuous periodic function satisfying (V1).

Moreover, it is possible to prove that J ∈ C1(X,R) with

J ′(u)φ =

∫
RN

a(|∇u|)∇u∇φ+

∫
RN

V (x)a(|u|)uφ−
∫
RN

f(u)φ,

for all φ ∈ X.

Our goal is looking for critical points of J , because its critical points are

weak solutions for (P). Next, we will show three lemmas for the functional J ,

which are true when V is radial or periodic. These lemmas will occur, because

the below embeddings X ↪→ LA(RN ) and X ↪→ LA∗(RN ) are continuous. The

first of them establishes that J verifies the mountain pass geometry on X.

Lemma 4.1. If (a1)–(a2), (f1)–(f2) and (V1) hold, the functional J satisfies

the following conditions:

(a) There exist ρ, η > 0, such that J(u) ≥ η, if ‖u‖ = ρ.

(b) For any φ ∈ C∞0 (RN ) \ {0}, J(tφ)→ −∞ as t 7→ +∞.

Proof. (a) From assumptions (f1)–(f2), given ε > 0, there exists Cε > 0

such that

0 ≤ f(t)t ≤ εa(|t|)|t|2 + Cεa∗(|t|)|t|2 for all t ∈ R.
From (a2) and Lemma 2.4,

(4.1) 0 ≤ f(t)t ≤ εmA(|t|) + Cεm
∗A∗(|t|) for all t ∈ R.

Using (f3),

(4.2) 0 ≤ F (t) ≤ εm

θ
A(|t|) + C̃A∗(|t|) for all t ∈ R.

From (4.2) and (V1),

J(u) ≥
∫
RN

A(|∇u|) +

(
1− εm

θV0

)∫
RN

V (x)A(|u|)− C
∫
RN

A∗(|u|).

Hence, for ε small enough, the Lemmas 2.3 and 2.5 imply that

J(u) ≥ C1(ξ0(‖∇u‖A) + ξ0(‖u‖V,A))− C2ξ3(‖u‖A∗).

Choosing ρ > 0 such that

‖u‖ = ‖∇u‖A + ‖u‖V,A = ρ < 1 and ‖u‖A∗ ≤ C(‖∇u‖A + ‖u‖V,A) < ρ < 1,

we obtain

J(u) ≥ C1(‖∇u‖mA + ‖u‖mV,A)− C2‖u‖l
∗

A∗
,
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which yields J(u) ≥ C3‖u‖m − C4‖u‖l
∗
, for some positive constants C3 and C4.

Since 0 < m < l∗, there exists η > 0 such that J(u) ≥ η for all ‖u‖ = ρ.

(b) From (f3), there exist C5, C6 > 0 such that F (t) ≥ C5|t|θ − C6, for all

t ∈ R. Fixing φ ∈ C∞0 (RN ) \ {0}, the last inequality leads to

J(tφ) ≤ ξ1(t)(ξ1(‖∇φ‖A) + ξ1(‖φ‖V,A))− C5t
θ

∫
RN

|φ|θ + C6 suppφ.

Thus, for t sufficient large,

J(tφ) ≤ tm(ξ1(‖∇φ‖A) + ξ1(‖φ‖V,A))− C5t
θ

∫
RN

|φ|θ + C6 suppφ.

Since m < θ, the result follows. �

Now, in view of the last lemma, we can apply a version of Mountain Pass

Theorem without the Palais–Smale condition found in [4] to get a sequence

{un} ⊂ X verifying

(4.3) J(un)→ c and J ′(un)→ 0 as n→∞,

where the level c is characterized by c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) > 0 and Γ = {γ ∈

C([0, 1], X) : J(0) = 0 and J(γ(1)) < 0}.

Lemma 4.2. Let {vn} be a (PS)d sequence for J . Then, {vn} is a bounded

sequence in X.

Proof. Since {vn} is a (PS)d sequence for the functional J , there is C > 0

such that

C(1 + ‖vn‖) ≥ J(vn)− 1

θ
J ′(vn)vn, for all n ∈ N.

From (f3),

C(1 + ‖vn‖) ≥
(
θ −m
θ

)∫
RN

A(|∇vn|) + V (x)A(|vn|)

≥
(
θ −m
θ

)
[ξ0(‖∇vn‖A) + ξ0(‖vn‖V,A)].

Suppose for contradiction that, up to a subsequence, ‖vn‖ → +∞. This way,

we need to study the following situations:

(a) ‖∇vn‖A → +∞ and ‖vn‖V,A → +∞,

(b) ‖∇vn‖A → +∞ and ‖vn‖V,A is bounded,

and

(c) ‖∇vn‖A is bounded and ‖vn‖V,A → +∞.

In the first case, the Lemma 2.5 implies that

C(1 + ‖vn‖) ≥ C1[‖∇vn‖lA + ‖vn‖lV,A] ≥ C2‖vn‖l,

for n large enough, which is an absurd.
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In case (b), we have for n large enough

C3(1 + ‖∇vn‖A) ≥ C(1 + ‖vn‖) ≥ C2‖∇vn‖lA,

which is an absurd again. The last case is similar to the case (b). �

Using the fact that X is reflexive, it follows from Lemma 4.2 that there exists

a subsequence of {un}, still denoted by itself, and u ∈ X such that un ⇀ u in X.

Lemma 4.3. The sequence {un} satisfies the following limit

∇un(x)
n→+∞−−−−→ ∇u(x) a.e. in RN .

As a consequence, we deduce that u is a critical point for J , that is, J ′(u) = 0.

Proof. We begin this proof observing that (a1) yields

(4.4) (a(|x|)x− a(|y|)y)(x− y) > 0, for all x, y ∈ RN with x 6= y.

Given R > 0, let us consider ξ = ξR ∈ C∞0 (RN ) satisfying

0 ≤ ξ ≤ 1, ξ ≡ 1 in BR(0) and supp(ξ) ⊂ B2R(0).

Using the above information,

0 ≤
∫
BR(0)

(a(|∇un|)∇un − a(|∇u|)∇u)(∇un −∇u)(4.5)

≤
∫
B2R(0)

(a(|∇un|)∇un − a(|∇u|)∇u)(∇un −∇u)ξ

=

∫
B2R(0)

a(|∇un|)∇un(∇un −∇u)ξ

−
∫
B2R(0)

a(|∇u|)∇u(∇un −∇u)ξ.

Now, combining the boundedness of {(un−u)ξ} in X with the limit ‖J ′(un)‖ =

on(1), it follows that

(4.6) on(1) =

∫
B2R(0)

a(|∇un|)∇un∇((un − u)ξ)

+

∫
B2R(0)

V (x)a(|un|)un(un − u)ξ −
∫
B2R(0)

f(un)(un − u)ξ.

Note that {a(|un|)un} is bounded in LÃ(B2R(0)), because∫
B2R(0)

Ã(a(|un|)un) ≤
∫
B2R(0)

A(2|un|) ≤ K
∫
B2R(0)

A(|un|) < +∞.
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From this∣∣∣∣ ∫
B2R(0)

V (x)a(|un|)un(un − u)ξ

∣∣∣∣ ≤ ∫
B2R(0)

|V (x)||a(|un|)un||un − u|(4.7)

≤ 2M‖a(|un|)|un||Ã,B2R(0)‖un − u‖A,B2R(0)

≤C1‖un − u‖A,B2R(0) → 0.

where M = sup
x∈B2R(0)

|V (x)|. On the other hand, using again the boundedness of

(un) in X and (2.7),∫
B2R(0)

Ã∗(a∗(un)un) ≤
∫
B2R(0)

A∗(2un) ≤ C2, n ∈ N,

implying that {a∗(un)un} is bounded in LÃ∗
(B2R(0)). Since∣∣∣∣ ∫

B2R(0)

f(un)(un − u)ξ

∣∣∣∣ ≤ ε(∫
B2R(0)

|a(|un|)un||un − u|(4.8)

+

∫
B2R(0)

|a∗(un)un||un − u|
)

+ c1

∫
B2R(0)

|un − u|

≤ ε‖a(|un|)un‖Ã,B2R(0)‖un − u‖A,B2R(0)

+ εc2‖a∗(un)un‖Ã∗,B2R(0)‖un − u‖A∗,B2R(0)

+ c3‖un − u‖A,B2R(0),

the boundedness of {un}, {a(un)un} and {a∗(un)un} in LA(B2R(0)), LÃ(B2R(0))

and LÃ∗
(B2R(0)) respectively lead to∣∣∣∣ ∫

B2R(0)

f(un)(un − u)ξ

∣∣∣∣ ≤ εC4 + c3‖un − u‖A,B2R(0).

Now, using the convergence of {un} to u in LA(B2R(0)), we get

(4.9)

∣∣∣∣ ∫
B2R(0)

f(un)(un − u)ξ

∣∣∣∣→ 0.

A similar idea can be used to establish the limit

(4.10)

∫
B2R(0)

(un − u)a(|∇un|)∇un∇ξ → 0.

Moreover, the weak convergence of {un} to u in W 1LA(RN ) gives

(4.11)

∫
B2R(0)

ξa(|∇u|)∇u(∇un −∇u)→ 0.

From (4.5)–(4.11),∫
BR(0)

(a(|∇un|)∇un − a(|∇u|)∇u)(∇un −∇u)→ 0.
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Setting β : RN → RN by β(x) = a(|x|)x, x ∈ RN , and observing that β is

monotone by (4.4), the last limit imply that for some subsequence, still denoted

by itself,

(β(∇un(x))− β(∇u(x)))(∇un(x)−∇u(x))→ 0 a.e. in BR(0).

Applying a result found in Dal Maso and Murat [9], it follows that ∇un(x) →
∇u(x) almost everywhere in BR(0), for each R > 0. As R is arbitrary, there is

a subsequence of {un}, still denoted by itself, such that ∇un(x)→ ∇u(x) almost

everywhere in RN .

Recalling that {a(|∇un|)∂un

∂xi
} is bounded in LÃ(RN ), we get from Lemma 2.1∫

RN

a(|∇un|)∇un∇v →
∫
RN

a(|∇u|)∇u∇v,

for all v ∈ Xc = {v ∈ X : v has compact support}. On the other hand, once

that V is bounded on the support of v, {a(|un|)un} is bounded in LÃ(RN ) and

{a∗(|un|)un} is bounded in LÃ∗
(RN ), we have again by Lemma 2.1∫

RN

V (x)a(|un|)unv →
∫
RN

V (x)a(|u|)uv

and ∫
RN

f(un)v →
∫
RN

f(u)v.

Therefore, J ′(u)v = 0 for all v ∈ Xc. Now, the lemma follows using the fact that

Xc is dense in X. �

4.1. Proof of Theorem 1.8. The reader is invited to observe that the main

difference between the radial and periodic case is the following: In the radial

case, the Theorem 1.2 permits to prove that the energy functional J verifies the

(PS) condition, while in the periodic case, we do not have this condition and we

overcome this difficulty by using the Theorem 1.3.

We will prove the Theorem 1.8 studying firstly the radial case, and after, the

periodic case.

The radial case. For the radial case, we begin showing the following lemma:

Claim 4.4. Let {un} the sequence given in (4.3). If (f1)–(f2) hold, one have∫
RN

f(un)un →
∫
RN

f(u)u.

Indeed, as {un} is a bounded sequence in W 1LA,rad(RN ),

sup
n∈N

∫
RN

(A∗(un) +A(un)) < +∞.

Moreover, by hypotheses (f1)–(f2), the function P (t) = f(t)t verifies the limit

lim
|t|→0

P (t)

A(t) +A∗(t)
= 0 and lim

|t|→+∞

P (t)

A(t) +A∗(t)
= 0.
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Since by Theorem 1.1, un(x)→ 0 as |x| → +∞, uniformly with respect to n, it

follows from [3, Theorem A.I],∫
RN

f(un)un →
∫
RN

f(u)u,

proving the claim.

Recalling that J ′(un)un = on(1), or equivalently,∫
RN

(a(|∇un|)|∇un|2 + V (x)a(|un|)|un|2) =

∫
RN

f(un)un + on(1),

we derive from Claim 4.4

lim
n→∞

∫
RN

(a(|∇un|)|∇un|2 + V (x)a(|un|)|un|2) =

∫
RN

f(u)u.

Using the fact that J ′(u)u = 0, it follows that

lim
n→∞

∫
RN

(a(|∇un|)|∇un|2 + V (x)a(|un|)|un|2)

=

∫
RN

(a(|∇u|)|∇u|2 + V (x)a(|u|)|u|2).

Once that ∇un(x) → ∇u(x) and un(x) → u(x) almost everywhere in RN , we

conclude that

a(|∇un|)|∇un|2 → a(|∇u|)|∇u|2 in L1(RN ),

V (x)a(|un|)|un|2 → V (x)a(|u|)|u|2 in L1(RN ).

These limits combined with (a2) yields∫
RN

A(|∇un −∇u|)→ 0 and

∫
RN

V (x)A(|un − u|)→ 0.

Hence, by a similar arguments used in (2.4), we derive that un → u in X, and

thus, J(u) = c > 0 and J ′(u) = 0, showing that u is a critical point of J in X.

Now, using a principle of symmetric criticality on reflexive Banach spaces due

to de Morais Filho, Do Ó and Souto [10], we have that u is a critical point of J

in W 1LA(RN ), and so, u is a nontrivial solution for problem (P).

The periodic case. By Lemma 4.3, we know that the weak limit u of the

sequence {un} given in (4.3) is a critical point for J . If u 6= 0, the theorem is

proved. However, if u = 0, we have the following claim:

Claim 4.5. There is R > 0 such that

lim inf
n→+∞

sup
y∈RN

∫
BR(y)

A(un) > 0.(4.12)
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In fact, if the above claim does not hold, by using Theorem 1.3, we derive

the limit

(4.13)

∫
RN

B(|un|)→ 0,

for any N -function B satisfying (B1)–(B2). Fixing a N -function B satisfying

(B1)–(B2), it follows from (f1)–(f2) that given ε > 0, there exists Cε > 0 such

that

|f(un)un| ≤ ε(A(|un|) +A∗(|un|)) + CεB(|un|) for all n ∈ N.

Thereby, the above inequality together with (4.13) gives∫
RN

f(un)un → 0.

Recalling that J ′(un)un = on(1), that is,∫
RN

a(|∇un|)|∇un|2 +

∫
RN

V (x)a(|un|)|un|2 =

∫
RN

f(un)un + on(1),

we obtain ∫
RN

a(|∇un|)|∇un|2 +

∫
RN

V (x)a(|un|)|un|2 → 0.

The last limit together with (a2) gives∫
RN

A(|∇un|) +

∫
RN

V (x)A(|un|)→ 0,

implying that {un} converges strongly to zero in W 1LA(RN ), leading to c = 0,

which is an absurd. Thus, the limit (4.12) holds and the claim is proved.

Therefore, there are R,α > 0 and {yn} ⊂ ZN such that∫
BR(yn)

A(un) > α.(4.14)

Now, letting un(x) = un(x− yn), since V is ZN -periodic function, one has

‖un‖ = ‖un‖, J(un) = J(un) and J ′(un) = on(1).

Then, there exists u such that un ⇀ u weakly in W 1LA(RN ), and as before, it

follows that J ′(u) = 0. Now, by (4.14),∫
BR(0)

A(un) ≥ α > 0,

which together with the compact embeddings yields∫
BR(0)

A(u) ≥ α > 0,

showing that u 6= 0, and thereby, finishing the proof of the Theorem 1.8. �
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CEP:58429-900, Campina Grande – PB, BRAZIL

E-mail address: jefferson@dme.ufcg.edu.br

TMNA : Volume 44 – 2014 – No 2


