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ON A CLASS OF NONHOMOGENEOUS ELLIPTIC PROBLEMS

INVOLVING EXPONENTIAL CRITICAL GROWTH

Manassés de Souza — Everaldo de Medeiros — Uberlandio Severo

Abstract. In this paper we establish the existence of solutions for elliptic

equations of the form−div(|∇u|n−2∇u)+V (x)|u|n−2u = g(x, u)+λh in Rn

with n ≥ 2. Here the potential V (x) can change sign and the nonlinearity

g(x, u) is possibly discontinuous and may exhibit exponential growth. The

proof relies on the application of a fixed point result and a version of the
Trudinger–Moser inequality.

1. Introduction and the main result

In this paper we consider the existence of nontrivial weak solutions for the

following class of elliptic problems:

(1.1) −div(|∇u|n−2∇u) + V (x)|u|n−2u = g(x, u) + λh in Rn,

where n ≥ 2, λ is a positive parameter, g and V are functions satisfying mild

conditions and h belongs to the dual of an appropriated function space.

When n = 2, problem (1.1) is related to the existence of standing wave

solutions for the nonlinear Schrödinger equation

i~
∂ψ

∂t
= − ~

2m
∆xψ + V (x)ψ − g(x, |ψ|)ψ − h(x)eiωt,
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where m and ~ are positive constants, ω ∈ R and ψ:R2×R→ C. Such equations

arise in various branches of mathematical physics (see for example [3], [4], [27])

and they have been the subject of extensive study during the last years.

We point out that the existence of solutions for problem (1.1) has been

discussed under various conditions on the potential V . We refer the reader

to [13], [15], [18], [30] and references therein. It is worthwhile to remark that

in these works different hypotheses are assumed on V in order to overcome

the problem of “lack of compactness”, typical for elliptic problems in unbounded

domains. More precisely, in many papers it is usually assumed that the potential

is uniformly positive, that is, V (x) ≥ V0 > 0 for any x ∈ Rn and satisfies one of

the following assumptions:

(1) V (x)→ +∞ as |x| → +∞;

(2) 1/V ∈ L1(Rn);

(3) for every M > 0 the Lebesgue measure µ({x ∈ Rn : V (x) ≤M}) <∞.

Each of these conditions guarantee that the space E := {u ∈ W 1,n(Rn) :∫
Rn V |u|n dx < ∞} is compactly embedded in the Lebesgue space Lp(Rn) for

all p ≥ n.

We point out that just a few results are available when V (x) changes sign,

see [11], [26], [31]. However, we stress that in all the above quoted papers, the

authors require the potential V to be continuous and bounded below. Here, we

concentrate our efforts to treat the case in which V can change sign without

requiring any additional condition in order to get compactness. In particular we

do not require a uniform bound on the potential which may develop singularities

near zero. Physically, this correspond to collision of particle with the center of

force, see for instance [22] for more details. Throughout the paper, we assume

the following hypotheses on V :

(V1) V :Rn → R is measurable and there exist b0, R0 > 0 such that

V (x) ≥ b0, for |x| ≥ R0;

(V2) V − ∈ Lp(BR0
) for some 1 < p ≤ ∞;

where V ± = max{±V, 0} and BR denotes the open ball centered at the origin

in Rn.

A typical example of function which satisfies the hypotheses (V1)–(V2) is

given by

(1.2) Vε(x) =

{
1 + η(x) for |x| ≥ 1,

− ε

|x|n/(2p)
for |x| < 1,

where ε > 0, p > 1 and η is a nonnegative measurable function for |x| ≥ 1.

Our second aim in this paper is treat nonlinearities g(x, s) possibly discon-

tinuous and that may exhibit exponential growth. In order to better describe
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the hypotheses on g(x, s) we recall some well known facts about the limiting

Sobolev embedding theorem.

Let Ω be a smooth domain in Rn and W 1,p(Ω) be the Sobolev space endowed

with its usual norm

‖u‖W 1,p(Ω) =

[ ∫
Ω

(|∇u|p + |u|p)dx
]1/p

.

We define W 1,p
0 (Ω) as the closure of C∞0 (Ω) in W 1,p(Ω). After the works [21],

[24] and [29], the limiting case p = n of the Sobolev embedding has received

considerable attention in recent years. Roughly speaking, their results state

that if Ω is bounded and α > 0 then there holds the embedding

W 1,n
0 (Ω) ↪→ LA(Ω),

where LA(Ω) is the Orlicz space based on the N -function A(s) = e|s|
n/(n−1) − 1.

In fact, this embedding is the “best possible” within the Orlicz framework, that

is, if there exists any embedding of the form

W 1,n
0 (Ω) ↪→ LB(Ω),

then A dominates the N -function B near infinity, see [16] (for others improve-

ments, see e.g. [6]). This fact was the main motivation for the notion of expo-

nential critical growth as introduced in the papers [2], [9].

When Ω = Rn, Adams (see [1]) proved that if n ≥ 2, α > 0 and u ∈W 1,n(Rn)

then

(1.3)

∫
Rn

Φα(u) dx <∞,

where

Φα(s) := eα|s|
n/(n−1)

−
n−2∑
j=0

αj |s|jn/(n−1)

j!
.

This result has motivated the study of semilinear and quasilinear elliptic equa-

tions in the whole space Rn, when the nonlinearity g(x, s) behaves as Φα(s) at

infinity, among others see [7], [12], [15], [23] and the references therein.

We emphasize that if g(x, s) is a Carathéodory function, for instance, as in

the works [10], [13], [14], [18], [28], [30], one can perform minimization arguments

(see for example [20]), based on Ekeland variational principle and Lemma 2.1

of [9] to find a solution for nonhomogeneous problems of the type (1.1).

In this paper, we consider a more general class of nonlinearities g(x, s),

namely:

(G1) for each u:Rn → R measurable, the Nemytskĭı function Ng:Rn → R,

Ng(x) = g(x, u(x)) is measurable;
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(G2) for each x ∈ Rn, g(x, s) is nondecreasing in s and

|g(x, s)| ≤ c1k(x)|s|ρ + c2Φα0
(s)|s|µ, for all (x, s) ∈ Rn × R,

where k ∈ Lσ(Rn) for some 1 < σ ≤ ∞, c1, c2 > 0, α
0
> 0, ρ > n − 1

and µ > n− 1.

Example 1.1. As an example of a discontinuous function g(x, s) satisfying

the conditions above, consider

g(x, s) = [k(x)|s|ρ−1s+ |s|µ−1sΦα0(s)]H(s),

where k is a nonnegative function in Lσ(Rn) for some 1 < σ ≤ ∞, ρ > n − 1,

µ > n− 1 and H is such that H(s) = 1 if s < 1 and H(s) = 2 if s ≥ 1.

Example 1.2. Let g:Rn×R→ R be a locally bounded function, that is, for

any bounded interval I ⊂ R, there exists C > 0 such that |g(x, s)| ≤ C for every

(x, s) ∈ Rn× I. If g(x, s) is nondecreasing in s, behaves at infinity as Φα(s) and

it holds

lim
s→0

g(x, s)

|s|ρ−1s
= b ∈ R, uniformly in x ∈ Rn,

with ρ > n− 1, then conditions (G1)–(G2) are satisfied.

In order to obtain the existence of solutions for (1.1), we work in the subspace

of W 1,n(Rn) defined by

X =

{
u ∈W 1,n(Rn) :

∫
Rn

V +(x)|u|n dx <∞
}

and we consider in X the norm

‖u‖ :=

[ ∫
Rn

(|∇u|n + V +(x)|u|n) dx

]1/n

.

Using condition (V1), we show that the embedding X ↪→W 1,n(Rn) is continuous

(see Lemma 2.1 below). Observing that

‖u‖ = (‖∇u‖nn + ‖(V +(x))1/nu‖nn)1/n

and since W 1,n(Rn) and Ln(Rn) are complete spaces, one can see that (X, ‖ · ‖)
is a Banach space. Moreover, using the Clarkson’s first inequality (see [5, p. 95])

it follows that X is uniformly convex, and thus reflexive.

Next, for all n ≤ t <∞ we set

(1.4) St := inf
u∈X
u6=0

∫
Rn

(|∇u|n + V +(x)|u|n) dx(∫
Rn

|u|t dx
)n/t .
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It follows from the continuous embedding W 1,n(Rn) ↪→ Lt(Rn) that St > 0. In

this context, we shall assume that h ∈ X ′, the dual space of X, and we say that

u ∈ X is a weak solution of problem (1.1) if the following holds∫
Rn

|∇u|n−2∇u∇v dx+

∫
Rn

V (x)|u|n−2uv dx =

∫
Rn

g(x, u)v dx+ λ〈h, v〉,

for all v ∈ X, where 〈 · , · 〉 denotes the duality pairing between X and its dual X ′.

At this point, in addition to the hypotheses on V , we assume the condition

(V3) ‖V −‖Lp(BR0
) < St0 , where t0 := pn/(p− 1) > n.

Note that the potentials Vε defined in (1.2) satisfy hypothesis (V3) provided ε is

sufficiently small.

The main result in this work can be stated as follows:

Theorem 1.3. Suppose that (V1)–(V3) and (G1)–(G2) hold. Then, there

exists λ0 > 0 such that for all 0 < λ ≤ λ0, problem (1.1) has a weak solution.

The main features of this class of problems are that they are set in unbounded

domains and involve a nonlinear operator (for n ≥ 3). Furthermore, the non-

linearity g(x, s) may develop jump discontinuities in s and behave like Φα(s) at

infinity. For the authors knowledge the the result is new even for the semilinear

case n = 2.

Remark 1.4. In certain cases, it is possible to obtain nonexistence results

for problem (1.1) when λ is large. For example, in addition to the hypothesis

(V1), if we assume that ∫
|x|≥R0

1

V (x)1/(n−1)
dx <∞,

one can show that the embedding X ↪→ Lt(Rn) is compact for each 1 ≤ t < ∞
(see for instance [30, Lemma 2.4]). Consequently, the infimum St in (1.4) is

attained in a nonnegative function ϕt ∈ X. Hence, in particular for t = n = 2

we have

(1.5)

∫
R2

∇ϕ2∇v dx+

∫
R2

V +(x)ϕ2v dx = S2

∫
R2

ϕ2v dx, for all v ∈ X.

By the strong maximum principle, it follows that ϕ2 > 0 in R2. Next, setting

M = sup{S2r − g(x, r) : (x, r) ∈ R2 × R},

if we also assume 0 < M < ∞ and h ∈ Lν(R2) for some 1 < ν ≤ ∞, with

h ≥ 0, h 6= 0, then there exists 0 < Λ < ∞ such that problem (1.1) does not

have nonnegative solution for λ > Λ. In fact, if u is a nonnegative solution of

(1.1), we have∫
R2

∇u∇ϕ2 dx+

∫
R2

[V +(x)−V −(x)]uϕ2 dx =

∫
R2

g(x, u)ϕ2 dx+λ

∫
R2

h(x)ϕ2 dx.
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Using this, and taking v = u in (1.5) we get

λ

∫
R2

h(x)ϕ2 dx = −
∫
R2

V −(x)uϕ2 dx+

∫
R2

[S2u− g(x, u)]ϕ2 dx

≤
∫
R2

[S2u− g(x, u)]ϕ2 dx

and therefore we must have

λ ≤ Λ :=

M

∫
R2

ϕ2 dx∫
R2

h(x)ϕ2 dx

.

Remark 1.5. Motivated by the classical Trudinger–Moser inequality, the

authors in [2], [12], [9] have introduced the notion of subcriticality and criticality,

namely, we say that a function g(x, s) has subcritical growth if for all α > 0,

lim
|s|→∞

g(x, s)e−α|s|
n/(n−1)

= 0 uniformly in x ∈ Rn,

and has critical growth if there exists α0 > 0 such that

lim
|s|→∞

g(x, s)e−α|s|
n/(n−1)

=

{
0 for all α > α0,

+∞ for all α < α0,

uniformly in x ∈ Rn. We point out that hypothesis (G2) includes nonlinearities

with this kind of growth.

Remark 1.6. Using the regularity result due to J. Serrin [25] and (1.3) one

can prove that weak solutions to problem (1.1) actually belong to C1,θ
loc (Rn).

Remark 1.7. We mention that recently nonhomogeneous problems involv-

ing the critical exponential growth for singular elliptic equations in unbounded

domains have been investigated, among others, by J.M. do Ó and M. de Sou-

za [10], N. Lam and G. Lu [18] and Y. Yang [30]. It is important to mention

that our results also apply, with slight modification, to the singular case and for

a class of more general operators, such as, Leray–Lions operators.

The outline of the paper is as follows: Section 2 contains some preliminary

results which are need to the proof of our main result and in Section 3 we prove

Theorem 1.3.

Hereafter, C, C0, C1, C2, . . . will denote positive (possibly different) con-

stants and we shall use the notation ‖ · ‖p for the norm in Lp(Rn).

2. Preliminary results

In this section, we obtain some technical results and we establish the appro-

priate setting to prove Theorem 1.3.
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Lemma 2.1. By condition (V1) the space X is continuously embedded in

W 1,n(Rn). In particular, the embedding X ↪→ Ls(Rn) is continuous for each

s ∈ [n,∞).

Proof. It is enough to check that there exists a constant C > 0 such that

(2.1)

∫
Rn

(|∇u|n + V +(x)|u|n) dx ≥ C
∫
Rn

|u|n dx, for all u ∈ X.

Suppose, by contradiction, that (2.1) does not hold. Then for each k ∈ N there

exists uk ∈ X such that∫
Rn

|uk|n dx = 1 and

∫
Rn

(|∇uk|n + V +(x)|uk|n) dx < 1/k.

So ‖∇uk‖n → 0, (uk) is bounded in W 1,n(Rn) and, up to a subsequence,

(2.2) uk ⇀ u in W 1,n(Rn).

Now, by using the Gagliardo–Nirenberg inequality (see [17, Proposition 8.12])

we reach

‖uk‖2n ≤ C‖∇uk‖1/2n ,

from which it follows that ‖uk‖2n → 0. On the other hand, by (2.2) uk → u in

L2n(Br) for all r > 0. Thus, u = 0. By (V1) we have∫
|x|≥R0

|uk|n dx ≤
1

b0

∫
|x|≥R0

V +(x)|uk|n dx <
1

kb0
→ 0.

From this convergence and since uk → 0 in Ln(BR0
), taking the limit as k →∞

in the equality

1 =

∫
Rn

|uk|n dx =

∫
BR0

|uk|n dx+

∫
|x|≥R0

|uk|n dx,

we obtain a contradiction. Therefore, (2.1) holds and the lemma is proved. �

We next recall a version of the Trudinger–Moser inequality which holds in

the whole space for which we refer to [1], [7], [12], [19], [23]. We denote the

measure of the (n− 1)-sphere in Rn by ωn−1 and αn := nω
1/(n−1)
n−1 .

Lemma 2.2. Let n ≥ 2 and u ∈W 1,n(Rn). If ‖∇u‖n ≤ 1, ‖u‖n ≤M and

0 < α < αn, then there exists a constant C = C(n,M,α) such that

(2.3)

∫
Rn

Φα(u) dx ≤ C(n,M,α).

As a consequence of (2.3), we establish in our function space framework X

an estimate that will be essential in our arguments.
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Lemma 2.3. Suppose that (V1) holds. Let u, v ∈ X and α, µ > 0. If ‖u‖ ≤
M and αMn/(n−1) < αn, then there exists a constant C = C(α,M, µ) > 0 such

that ∫
Rn

Φα(u)|u|µ|v| dx ≤ C‖u‖µ‖v‖.

Proof. First, we choose q > 1 sufficiently close to 1 satisfying

qαMn/(n−1) < αn and σ :=
2q

q − 1
> max{n, n/µ}.

Thus, 1/q + 1/σ + 1/σ = 1 and applying the generalized Hölder inequality and

Lemma 2.1 one has∫
Rn

Φα(u)|u|µ|v| dx ≤
(∫

Rn

[Φα(u)]q dx

)1/q

‖u‖µµσ‖v‖σ(2.4)

≤C1

(∫
Rn

Φqα(u) dx

)1/q

‖u‖µ‖v‖

≤C1

[ ∫
Rn

ΦqαMn/(n−1)

(
u

‖∇u‖n

)
dx

]1/q

‖u‖µ‖v‖.

Since qαMn/(n−1) < αn, in view of the Trudinger–Moser inequality (2.3) we

conclude that ∫
Rn

Φα(u)|u|µ|v| dx ≤ C‖u‖µ‖v‖

and the proof is finished. �

For the convenience of the reader, in the sequel, we recall some basic concepts

and notations. Let X be a real Banach space. A nonempty subset X+ 6= {0} of

X is called an order cone if the following hold:

(i) X+ is closed and convex;

(ii) if u ∈ X+ and α ≥ 0, then αu ∈ X+;

(iii) if u ∈ X+ and −u ∈ X+, then u = 0.

We observe that an order cone X+ induces in a natural way a partial order in X

as follows: x � y if and only if y − x ∈ X+, and (X,�) is called an ordered

Banach space. If in addition, inf{x, y} and sup{x, y} exist for all x, y ∈ X with

respect to � then we say that (X, ‖ · ‖) is a lattice. Furthermore, if ‖x±‖ ≤ ‖x‖
for all x ∈ X, with x+ := sup{0, x} and x− := − inf{0, x} then (X, ‖ ·‖) is called

a Banach semilattice.

Special examples of Banach semilattices are the Lebesgue spaces Lp(Ω) and

Sobolev spaces W 1,p(Ω) (Ω is a domain of Rn) when we consider the natural

partial order (u � v if and only if u ≤ v almost everywhere in Ω).

Let (X,�) and (X̃,C) be ordered Banach spaces. We say that an operator

G:X → X̃ is increasing if and only if for all x, y ∈ X, x � y implies Gx C Gy.
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A subset B of X is said to have the fixed point property if every increasing

operator S:B → B has a fixed point.

Now, we present a version of the fixed point result due to S. Carl and S.

Heikkilä (see Corollary 2.2 in [8]) which we use to prove Theorem 1.3.

Lemma 2.4. Let X be a Banach semilattice which is reflexive. Then any

closed ball of X has the fixed point property.

For more details with respect to definitions and results about ordered Banach

spaces, we refer to [8] and references therein.

3. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. To do this, we need to

introduce some appropriate operators in order to apply Lemma 2.4. First, we

consider the operator L:X → X ′ defined by

〈Lu, v〉 =

∫
Rn

|∇u|n−2∇u∇v dx+

∫
Rn

V +(x)|u|n−2uv dx, u, v ∈ X.

Note that for each u ∈ X, Lu is a linear map. Moreover, we deduce from Hölder

inequality that

|〈Lu, v〉| ≤ 2‖u‖n−1‖v‖,
which shows that Lu ∈ X ′ and therefore L is well defined. Furthermore, we have

Lemma 3.1. Under the hypothesis (V1), the operator L:X → X ′ is conti-

nuous and invertible.

Poof. Let (uk) in X such that uk → u in X. Using Hölder inequality, for

v ∈ X with ‖v‖ ≤ 1 we obtain

|〈Luk − Lu, v〉| ≤
∫
Rn

∣∣∣∣|∇uk|n−2∇uk − |∇u|n−2∇u
∣∣∣∣|∇v| dx

+

∫
Rn

V +(x)||uk|n−2uk − |u|n−2u||v| dx

≤
(∫

Rn

||∇uk|n−2∇uk − |∇u|n−2∇u|n/(n−1) dx

)(n−1)/n

+

(∫
Rn

V +(x)||uk|n−2uk − |u|n−2u|n/(n−1) dx

)(n−1)/n

.

Since uk → u in X, up to a subsequence, ∇uk → ∇u and uk → u almost every-

where in Rn. Moreover, there exist w1, w2 ∈ L1(Rn) such that |∇uk|n ≤ w1 ∈
L1(Rn) and V +(x)|uk|n ≤ w2 ∈ L1(Rn) almost everywhere in Rn. Hence, in view

of the Lebesgue dominated convergence theorem and from the last inequality

‖Luk − Lu‖X′ = sup
v∈X, ‖v‖≤1

|〈Luk − Lu, v〉| → 0
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and the continuity of L is proved. Furthermore, from 〈Lu, u〉 = ‖u‖n for all

u ∈ X and n ≥ 2 we get

lim
‖u‖→∞

〈Lu, u〉
‖u‖

=∞.

On the other hand, using the well known inequality

(3.1) (|a|n−2a− |b|n−2b)(a− b) ≥ Cn|a− b|n−2, a, b ∈ Rn,

one has

〈Lv1 − Lv2, v1 − v2〉 ≥ Cn‖v1 − v2‖n > 0

for all v1, v2 ∈ X, v1 6= v2. Thus, by the Minty-Browder theorem (see for instance

Theorem 5.16 in [5]), the operador L is invertible and this completes the proof.�

At this point, we consider another operator T : X → X ′ given by

〈Tu, v〉 =

∫
Rn

[V −(x)|u|n−2u+ g(x, u)]v dx+ λ〈h, v〉, u, v ∈ X.

It is clear that for each fixed u ∈ X fixed Tu is a linear map. As a consequence

of Lemma 2.3 we have the following estimate:

Lemma 3.2. Assume (V1)–(V2) and (G1)–(G2). Let M > 0 be such that

α0M
n/(n−1) < αn. There exist positive constants C1, C2 such that if ‖u‖ ≤M ,

then

|〈Tu, v〉| ≤ (S−1
t0 ‖V

−‖Lp(BR0
)‖u‖n−1 + C1‖u‖ρ + C2‖u‖µ + λ‖h‖X′)‖v‖,

for all v ∈ X. In particular,

‖Tu‖X′ ≤ S−1
t0 ‖V

−‖Lp(BR0
)‖u‖n−1 + C1‖u‖ρ + C2‖u‖µ + λ‖h‖X′ .

Proof. Here, let us consider 1 < p < ∞ and 1 < σ < ∞. The case p = ∞
or σ =∞ are more simple and they are treated similarly. Note that

1

p
+
n− 1

t0
+

1

t0
= 1⇔ t0 =

np

p− 1
.

Since V −(x) = 0 for |x| ≥ R0, using the generalized Hölder inequality together

with the inequality ‖u‖nt0 ≤ S
−1
t0 ‖u‖

n one has

(3.2)

∣∣∣∣ ∫
Rn

V −(x)|u|n−2uv dx

∣∣∣∣ ≤ S−1
t0 ‖V

−‖Lp(BR0
)‖u‖n−1‖v‖.

Analogously, setting β := σ(ρ+ 1)/(σ − 1) > n we see that

1

σ
+
ρ

β
+

1

β
= 1,

from which follows that

(3.3)

∣∣∣∣∫
Rn

k(x)|u|ρv dx
∣∣∣∣ ≤ ‖k‖σ‖u‖ρβ‖v‖β ≤ C‖k‖σ‖u‖ρ‖v‖.
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On the other hand, Lemma 2.3 with α = α0 yields

(3.4)

∫
Rn

Φα0(u)|u|µ|v| dx ≤ C‖u‖µ‖v‖.

Since |〈h, v〉| ≤ ‖h‖X′‖v‖, using estimates (3.2)–(3.4) and condition (G2), we

obtain the desired result. �

Analyzing the previous proof, we observe that (3.2) and (3.3) holds for each

u ∈ X as well as estimate (2.4). This fact together with hypothesis (G2) shows

that the operator T is well defined.

Now, we define the operator S:X → X by S = L−1 ◦ T .

In order to address the existence of a fixed point for S, we need the following

lemma:

Lemma 3.3. Under the hypotheses of Theorem 1.3, there exists R > 0 such

that S(BX [0, R]) ⊂ BX [0, R], where BX [0, R] = {u ∈ X : ‖u‖ ≤ R}.

Proof. Let u ∈ X and set v = (L−1 ◦ T )u = Su. Since 〈Lv, v〉 = ‖v‖n we

get

‖Su‖n = 〈Tu, Su〉 ≤ ‖Tu‖X′‖Su‖.
Choosing R ≤M , if ‖u‖ ≤ R then by Lemma 3.2 one has

‖Su‖n−1 ≤ ‖Tu‖X′ ≤ S−1
t0 ‖V

−‖Lp(BR0
)‖u‖n−1 + C1‖u‖ρ + C2‖u‖µ + λ‖h‖X′

≤ S−1
t0 ‖V

−‖Lp(BR0
)R

n−1 + C1R
ρ + C2R

µ + λ‖h‖X′ ,

which implies

(3.5)
‖Su‖n−1

Rn−1
≤ S−1

t0 ‖V
−‖Lp(BR0

) + C1R
ρ−n+1 + C2R

µ−n+1 + λ
‖h‖X′
Rn−1

.

Now, choose R > 0 sufficiently small so that

C1R
ρ−n+1 + C2R

µ−n+1 ≤
1− S−1

t0 ‖V
−‖Lp(BR0

)

2
.

Setting

λ0 :=
Rn−1(1− S−1

t0 ‖V
−‖Lp(BR0

))

2‖h‖X′
,

for all 0 < λ ≤ λ0, we deduce from (3.5) that ‖Su‖n−1/Rn−1 ≤ 1. Therefore,

S(BX [0, R]) ⊂ BX [0, R] and the proof is complete. �

At this point, we are ready to prove our main result.

Proof of Theorem 1.3. In order to apply Lemma 2.4, we consider the

following partial order in X:

(3.6) u1, u2 ∈ X, u1 � u2 ⇔ u1 ≤ u2 a.e. in Rn.

It is clear that (X,�) is an ordered Banach space and for all u, v ∈ X, there

exist sup{u, v} and inf{u, v} with respect to the order �. Moreover, recalling
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that u+ = sup{u, 0} and u− = − inf{u, 0}, by the order (3.6), u+ and u− are

the positive and negative parts of u. Since |∇u±| ≤ |∇u| and |u±| ≤ |u| almost

everywhere in Rn we see that ‖u±‖ ≤ ‖u‖. Hence (X,�) is a Banach semilattice

which is reflexive. We also observe that the dual space X ′, endowed with the

order:

ϕ1, ϕ2 ∈ X ′, ϕ1 C ϕ2 ⇔ 〈ϕ1, v〉 ≤ 〈ϕ2, v〉, for all v ∈ X+

where X+ := {v ∈ X : v ≥ 0 almost everywhere in Rn}, is an ordered Banach

space.

We claim that L−1: (X ′,C) → (X,�) is an increasing operator. Indeed, let

ϕ1, ϕ2 ∈ X ′ such that ϕ1 C ϕ2. Setting u1 = L−1ϕ1 and u2 = L−1ϕ2, for

v ∈ X+ one has

0 ≤ 〈ϕ2 − ϕ1, v〉 = 〈Lu2 − Lu1, v〉

=

∫
Rn

(|∇u2|n−2∇u2 − |∇u1|n−2∇u1)∇v dx

+

∫
Rn

V +(x)(|u2|n−2u2 − |u1|n−2u1)v dx.

From this, taking v = (u2 − u1)− ∈ X+ and using (3.1) we reach

0 ≤ 〈ϕ2 − ϕ1, (u2 − u1)−〉 ≤ −Cn‖(u2 − u1)−‖n ≤ 0

whence we conclude that (u2 − u1)− = 0 and so u1 ≤ u2 almost everywhere

in Rn, that is, L−1ϕ1 � L−1ϕ2. Now, we prove that T : (X,�) → (X ′, /) is

increasing. To this, let u1, u2 ∈ X such that u1 ≤ u2 almost everywhere in Rn.

Since the function f(s) := |s|n−2s is increasing it follows from assumption (G2)

that

〈Tu1, v〉 =

∫
Rn

[V −(x)|u1|n−2u1 + g(x, u1)]v dx+ λ〈h, v〉

≤
∫
Rn

[V −(x)|u2|n−2u2 + g(x, u2)]v dx+ λ〈h, v〉 = 〈Tu2, v〉,

for all v ∈ X+, that is, Tu1 / Tu2. Consequently, by definition, the operator

S: (X,�) → (X,�) is also increasing. By Lemma 2.4, BX [0, R] has the fixed

point property and in view of Lemma 3.3 there exists u0 ∈ BX [0, R] such that

Su0 = u0. Since S = L−1 ◦ T we have

〈Lu0, v〉 = 〈Tu0, v〉, for all v ∈ X.

Thus, by the definitions of L and T , u0 is a weak solution of (1.1) and the

theorem is proved. �
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