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A SCORZA–DRAGONI APPROACH TO DIRICHLET PROBLEM

WITH AN UPPER-CARATHÉODORY RIGHT-HAND SIDE

Martina Pavlačková

Abstract. In this paper, the existence and localization result will
be proven for multivalued vector Dirichlet problem with an upper-

Carathéodory right-hand side by using bound sets approach. Since Scorza–

Dragoni type technique will be furthermore applied, the conditions for
bounding functions can be required directly on the boundaries of bound

sets and not at some vicinity of them.

1. Introduction

Boundary value problems (b.v.p.) for second-order differential inclusions

have been studied for many years (see, e.g. [1], [5], [6], [9]–[11], [13]) since to

their applications in several areas, such as physics, control theory or mathemat-

ical economics. In mentioned papers, various methods (like an upper and lower

solutions technique, topological transformations, fixed point technique or tube

solution method) were applied for obtaining the existence results. In this paper,

except for the existence of a solution, also its localization is studied for multi-

valued vector Dirichlet problem. More concretely, let us consider the Dirichlet

multivalued problem

(1.1)

ẍ(t) ∈ F (t, x(t), ẋ(t)), for a.a. t ∈ [0, T ],

x(T ) = x(0) = 0,
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where F : [0, T ]×Rn×Rn( Rn is an upper-Carathéodory multivalued mapping,

together with the localization condition

(1.2) x(t) ∈ K, for all t ∈ [0, T ],

where K ⊂ Rn is given open bounded set containing the null vector 0.

Let us note that the notion of a solution will be understood in the strong

sense, i.e. by a solution of problem (1.1)–(1.2) we shall mean a function x : [0, T ]

→ Rn with absolutely continuous first derivative satisfying (1.1)–(1.2).

Dirichlet viability problem (1.1)–(1.2) was already studied in [7], [12]. In [7],

the multivalued mapping F was globally u.s.c. and conditions for bounding

functions were imposed directly on boundaries of bound sets, while in [12], F

was an upper-Carathéodory multivalued mapping but the conditions concerning

bounding functions were imposed at some vicinity of the boundaries of bounds

sets. Since the Scorza–Dragoni type technique is applied in the present paper,

conditions for bounding functions are imposed directly on boundaries of bound

sets also in the case of upper-Carathéodory right-hand side. The obtained result

is at the end of the paper illustrated by the vector dry friction problem.

2. Preliminaries

Let us start with notations we use in the paper. If (X, d) is a metric space

and A ⊂ X, by A, IntA, and ∂A, we mean the closure, the interior, and the

boundary of A, respectively. For a subset A ⊂ X and ε > 0, we define the set

Nε(A) := {x ∈ X | there exists a ∈ A : d(x, a) < ε}, i.e. Nε(A) is an open

neighbourhood of the set A in X.

For a given compact real interval J , we denote by C(J,Rn) (by C1(J,Rn)) the

set of all functions x : J → Rn which are continuous (have continuous first deriva-

tives) on J . By AC1(J,Rn), we shall mean the set of all functions x : J → Rn

with absolutely continuous first derivatives on J .

We also need following definitions and notions from multivalued theory in

the sequel. We say that F is a multivalued mapping from X to Y (written

F : X ( Y ) if, for every x ∈ X, a nonempty subset F (x) of Y is given. A mul-

tivalued mapping F : X ( Y is called upper semi-continuous (shortly, u.s.c.)

if, for each open set U ⊂ Y , the set {x ∈ X | F (x) ⊂ U} is open in X.

Let Y be a metric space and (Ω,U , µ) be a measurable space, i.e. a nonempty

set Ω equipped with a suitable σ-algebra U of its subsets and a countably additive

measure µ on U . A multivalued mapping F : Ω ( Y is called measurable if

{ω ∈ Ω | F (ω) ⊂ V } ∈ U , for each open set V ⊂ Y . In the sequel, the symbol µ

will exclusively denote the Lebesgue measure on R.

We say that mapping F : J ×Rm( Rn, where J ⊂ R is a compact interval,

is an upper-Carathéodory mapping if the map F ( · , x) : J ( Rn is measurable,
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for all x ∈ Rm, the map F (t, · ) : Rm( Rn is u.s.c., for almost all t ∈ J, and the

set F (t, x) is compact and convex, for all (t, x) ∈ J × Rm.

In the proof of the main result, the following slight modification of Scorza–

Dragoni type technique for multivalued mappings will be employed.

Proposition 2.1 (cf. e.g. [4, Proposition 8]). Let X ⊂ Rm be compact and

let F : [a, b] × X ( Rn be an upper-Carathéodory mapping. Then there exists

a multivalued mapping F0 : [a, b] × X ( Rn ∪ {∅} with compact, convex values

and F0(t, x) ⊂ F (t, x), for all (t, x) ∈ [a, b]×X, having the following properties:

(a) if u, v : [a, b] → Rn are measurable functions with v(t) ∈ F (t, u(t)) on

[a, b], then v(t) ∈ F0(t, u(t)) almost everywhere on [a, b];

(b) for every ε > 0, there exists a closed Iε ⊂ [a, b] such that µ([a, b]\Iε) < ε,

F0(t, x) 6= ∅, for all (t, x) ∈ Iε ×X and F0 is u.s.c. on Iε ×X.

The proof of main result, Theorem 3.1 below, will be based (except from

Proposition 2.1) also on the following proposition developed in [12]. Its proof

was based on combination of bound sets approach with the continuation principle

developed in [2]. The key point for application of the continuation principle lied

in the fact that we assigned to the Dirichlet problem (1.1) the family of associated

problems

(2.1)

ẍ(t) ∈ λF (t, q(t), q̇(t)), for a.a. t ∈ [0, T ],

x(T ) = x(0) = 0,

where λ ∈ [0, 1], and

(2.2) q ∈ Q := {q ∈ C1([0, T ],Rn) | q(t) ∈ K for all t ∈ [0, T ]}.

Proposition 2.2 (cf. [12, Theorem 4.1 and Corollary 3.1]). Let us consider

the Dirichlet problem (1.1)–(1.2) where F : [0, T ]× Rn × Rn ( Rn is an upper-

Carathéodory multivalued mapping. Moreover, assume that

(a) the closure K of the set K is a retract of Rn,

(b) there exists a nonnegative, integrable function β : [0, T ]→ R such that

|F (t, q(t), q̇(t))| ≤ β(t), a.e. in [0, T ],

for each q ∈ Q, where Q is defined by (2.2)

(c) there exists a function V ∈ C2(Rn,R) satisfying conditions:

(H1) V | ∂K = 0,

(H2) V (x) ≤ 0 for all x ∈ K,

(d) there exists ε > 0 such that, for all x ∈ K∩Nε(∂K), t ∈ (0, T ), λ ∈ (0, 1]

and v ∈ Rn with |v| ≤ 2
∫ T
0
β(t) dt, the following condition:

(2.3) 〈HV (x)v, v〉+ 〈∇V (x), w〉 > 0

holds, for all w ∈ λF (t, x, v).
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Then the Dirichlet viability problem (1.1)–(1.2) has a solution.

The function V satisfying conditions from Proposition 2.2 is called a (Liapu-

nov-like) bounding function. Its existence guarantees that K is a bound set for

the b.v.p.

(2.4)

ẍ(t) ∈ λF (t, x(t), ẋ(t)), for a.a. t ∈ [0, T ],

x(T ) = x(0) = 0,

for all λ ∈ (0, 1], i.e. ensures that there does not exist, for any λ ∈ (0, 1],

a solution x of the b.v.p. (2.4) such that x(t) ∈ K, for each t ∈ [0, T ], and

x(t0) ∈ ∂K, for some t0 ∈ [0, T ].

3. Existence and localization result

Approximating the original problem by a sequence of problems satisfying

conditions of Proposition 2.2 and applying the Scorza–Dragoni type result, we

are already able to state the main result of the paper. The transversality con-

dition imposed on the bounding function is now required only on the boundary

∂K of the set K, and not on the whole neighbourhood K ∩ Nε(∂K), as in

Proposition 2.2.

Theorem 3.1. Let us consider the Dirichlet viability problem (1.1)–(1.2) and

assume that

(a) the closure K of the set K is a retract of Rn,
(b) there exists a nonnegative, integrable function α : [0, T ]→ R such that

|F (t, q(t), q̇(t))| ≤ α(t), a.e. in [0, T ],

for each q ∈ Q, where Q is defined by formula (2.2),

(c) there exists a function V ∈ C2(Rn,R) satisfying conditions (H1), (H2),

(d) for all λ ∈ (0, 1], x ∈ ∂K, t ∈ (0, T ), v ∈ Rn with |v| ≤ 2
∫ T
0

(2α(t)+1) dt,

and w ∈ λF (t, x, v), it holds that

(3.1) 〈∇V (x), w〉 > 0,

(e) there exists h > 0 such that HV (x) is positive semi-definite, for all

x ∈ K ∩Nh(∂K).

Then the Dirichlet viability problem (1.1)–(1.2) has a solution.

Proof. At first, let us consider the family of associated problems (2.1) and

let x be a solution of (2.1) for some (q, λ) ∈ Q × (0, 1]. Then it follows from

the boundary conditions that there exists a point ξ ∈ (0, T ) such that ẋ(ξ) = 0.

Therefore, according to condition (b),

|ẋ(0)| = |ẋ(ξ)− ẋ(0)| =
∣∣∣∣ ∫ ξ

0

ẍ(t) dt

∣∣∣∣ ≤ ∫ ξ

0

|ẍ(t)| dt ≤
∫ ξ

0

α(t) dt ≤
∫ T

0

α(t) dt.
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Therefore, for almost all t ∈ [0, T ],

|ẋ(t)| ≤ |ẋ(0)|+
∫ t

0

α(s) ds ≤ 2

∫ T

0

α(s) ds.

Moreover, for almost all t ∈ [0, T ],

|x(t)| ≤ |x(0)|+
∫ t

0

|ẋ(s)| ds ≤ 2

∫ T

0

∫ T

0

α(s) ds du = 2T

∫ T

0

α(s) ds.

Thus, x satisfies |x(t)| ≤ a and |ẋ(t)| ≤ b, for almost all t ∈ [0, T ], where

(3.2) a := 2T

∫ T

0

α(s) ds and b := 2

∫ T

0

α(s) ds.

It follows from condition (d) and from compactness of ∂K that there exists

δ > 0 such that ∇V (x) 6= 0, for all x ∈ Nδ(∂K). Moreover, there exists γ > 0

such that |∇V (x)| ≥ γ, for all x ∈ ∂K.

Let us consider an open bounded set K0 ⊂ Rn such that K ⊂ K0. Since F

is an upper-Carathéodory mapping, we can apply a Scorza–Dragoni type result

(cf. Proposition 2.1). Consequently, there exists a decreasing sequence {θm} of

subsets of [0, T ] and a measurable mapping F : [0, T ] × K0 × B2b ( Rn such

that, for every m ∈ N,

• [0, T ] \ θm is compact and µ(θm) < 1/m,

• F (t, x, y) ⊂ F (t, x, y), for all (t, x, y) ∈ [0, T ]×K0 ×B2b,

• F is u.s.c. on ([0, T ] \ θm)×K0 ×B2b.

It is obvious that
∞⋂
m=1

θm has zero Lebesque measure and that lim
m→∞

χθm(t) = 0,

for every t /∈
∞⋂
m=1

θm. Therefore, F is an upper-Carathéodory mapping.

Let us define the mapping F̂ : [0, T ]× R2n( Rn by the formula

F̂ (t, x, y) :=

F (t, x, y), for (t, x, y) ∈ [0, T ]×K0 ×B2b,

F (t, x, y), otherwise.

Since K0 is open and F̂ (t, x, y) ⊂ F (t, x, y), for all (t, x, y) ∈ [0, T ] × R2n, the

mapping F̂ is also an upper-Carathéodory mapping.

Let τ ∈ C1(Rn, [0, 1]) be such that τ ≡ 1 on Nδ/2(∂K) and τ ≡ 0 on

Rn \Nδ(∂K) and let us consider (for all m ∈ N) the m-th problem

(Pm)

ẍ(t) ∈ Fm(t, x(t), ẋ(t)), for a.a. t ∈ [0, T ],

x(T ) = x(0) = 0,

where an upper-Carathéodory mapping Fm : [0, T ]× R2n( Rn is defined by

Fm(t, x, y) := F (t, x, y) + τ(x)

(
α(t)χθm(t) +

1

m

)
∇V (x)

|∇V (x)|
.
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Moreover, let us consider the family of problems (Πm,q,λ), associated to (Pm),

(Πm,q,λ)

ẍ(t) ∈ λFm(t, q(t), q̇(t)), for a.a. t ∈ [0, T ],

x(T ) = x(0) = 0,

where q ∈ Q and λ ∈ [0, 1].

Let us now prove that there exists m0 ∈ N such that, for all m ∈ N, m ≥ m0,

the problem (Pm) satisfies assumptions (b) and (d) from Proposition 2.2.

(b) Since for all m ∈ N,∣∣∣∣τ(x)

(
α(t)χθm(t) +

1

m

)
∇V (x)

|∇V (x)|

∣∣∣∣ ≤ α(t)χθm(t) +
1

m
≤ α(t) + 1,

for almost all t ∈ [0, T ], it holds for all m ∈ N, q ∈ Q and almost all t ∈ [0, T ]

that

|Fm(t, q(t), q̇(t))| ≤ β(t),

where β(t) := 2α(t) + 1. Assumption (b) from Proposition 2.2 is therefore

satisfied.

(d) If xm be a solution of (Πm,q,λ), then

|xm(t)| ≤ am, |ẋm(t)| ≤ bm, for all t ∈ [0, T ],

where

am = 2T

∫ T

0

(
α(s) + α(s)χθm(s) +

1

m

)
ds,

and

bm = 2

∫ T

0

(
α(s) + α(s)χθm(s) +

1

m

)
ds.

Since µ(θm) < 1/m and 1/m→ 0 as m→∞, it is easy to see that∫ T

0

(
α(s)χθm(s) +

1

m

)
ds→ 0,

implying am → a and bm → b as m → ∞, where a and b are defined by (3.2).

Therefore, it is possible to find m∗ ∈ N such that am < 2a and bm < 2b, for all

m ∈ N, m ≥ m∗.
Let us now verify condition (d) for all m ∈ N, m ≥ m∗.
At first, consider an arbitrary t ∈ θm, x ∈ Nδ/2(∂K)∩Nh(∂K)∩K, λ ∈ (0, 1],

v ∈ Rn with |v| ≤ 2
∫ T
0

(2α(t) + 1) dt and wm ∈ λFm(t, x, v). Then

wm = w + τ(x)

(
α(t)χθm(t) +

1

m

)
∇V (x)

|∇V (x)|

with w ∈ λF̂ (t, x, v) and

〈HV (x)v, v〉+ 〈∇V (x), wm〉 ≥ 〈∇V (x), wm〉,
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by means of condition (e). Moreover,

〈∇V (x), wm〉 = 〈∇V (x), w〉+ τ(x)

(
α(t)χθm(t) +

1

m

)
· |∇V (x)|

= 〈∇V (x), w〉+

(
α(t) +

1

m

)
· |∇V (x)|

≥
(
− |w|+ α(t) +

1

m

)
· |∇V (x)| > 0,

because |∇V (x)| > 0, and since |w| ≤ α(t).

Let t ∈ (0, T ) \ θm, x ∈ ∂K, v ∈ Rn with |v| ≤ 2
∫ T
0

(2α(t) + 1) dt, λ ∈ (0, 1]

and wm ∈ λFm(t, x, v). Then χθm(t) = 0, τ(x) = 1 and

〈HV (x)v, v〉+ 〈∇V (x), wm〉 ≥ 〈∇V (x), wm〉,

according to condition (e). Moreover, there exists w ∈ λF̂ (t, x, v) such that

〈∇V (x), wm〉 = 〈∇V (x), w〉+
1

m
· |∇V (x)| > γ

m
,

by means of condition (d) and reasonings at the beginning of the proof.

According to the Scorza–Dragoni result and since F̂ = F on ([0, T ]\θm)×K×
B2b, the mapping F̂ is u.s.c. on ([0, T ]\θm)×K×B2b. Moreover, V ∈ C2(Rn,R),

and therefore, there exists κm > 0 such that

〈HV (x)v, v〉+ 〈∇V (x), wm〉 > 0,

for all t ∈ (0, T )\θm, x ∈ Nκm
(∂K)∩K∩Nh(∂K), v ∈ Rn with |v| ≤ 2

∫ T
0

(2α(t)

+1) dt, λ ∈ (0, 1] and wm ∈ λFm(t, x, v).

Assumption (d) is, therefore, satisfied with ε = min{δ/2, κm, h}.
Thus, we can apply Proposition 2.2 obtaining, for all m ≥ m∗, the existence

of a solution xm of the m-th problem (Pm) such that xm(t) ∈ K, for each

t ∈ [0, T ]. Due to the continuation principle (see [2]) used for solving (Pm), xm
is indeed a solution of (Πm,q,λ), for λ = 1. Therefore, according to the previous

part of this proof, we obtain that |ẋm(t)| ≤ 2b, for all m ≥ m∗ and t ∈ [0, T ],

where b is defined by (3.2), and |ẍm(t)| ≤ 2α(t) + 1. It is then possible to get

x ∈ C1([0, T ],Rn) with absolutely continuous ẋ and a subsequence (see e.g. [3,

Theorem 0.3.4]), again denoted as the sequence, such that xm → x, ẋm → ẋ,

uniformly in [0, T ], and ẍm ⇀ ẍ, weakly in L1([0, T ],Rn), as m → ∞. Thus, x

satisfies the boundary conditions in (1.1). Put

ϕm(t) := τ(xm(t))

(
α(t)χθm(t) +

1

m

)
· ∇V (xm(t))

|∇V (xm(t))|
.

Since |ϕm(t)| ≤ α(t)χθm(t) + 1/m, for almost all t ∈ [0, T ], and ϕm(t) → 0

as m → ∞ in [0, T ], we have that (ẋm(t), ẍm(t) − ϕm(t)) ⇀ (ẋ, ẍ), weakly in

L1([0, T ],Rn), as m→∞. Therefore, a standard limiting argument implies that

x is a solution of problem (1.1). Finally, since xm(t) ∈ K, for all m ∈ N and
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t ∈ [0, T ], we obtain that also x(t) ∈ K, for all t ∈ [0, T ], which completes the

proof. �

Remark 3.2. As pointed out in the proof, the founded solution x of problem

(1.1)–(1.2) is indeed a solution of (2.1), for q = x and λ = 1. Therefore, due

to the proof and the assumption (b), |ẋ(t)| ≤ b, for all t ∈ [0, T ], where b :=

2
∫ T
0
α(s) ds. It is so possible to enlarge the localization conditions and ensure

the existence of solution of problemẍ(t) ∈ F (t, x(t), ẋ(t)), for a.a. t ∈ [0, T ],

x(T ) = x(0) = 0,

x(t) ∈ K, for all t ∈ [0, T ],

ẋ(t) ∈ Bb, for all t ∈ [0, T ].

As an application of Theorem 3.1, we conclude by the dry friction Dirichlet

problem.

Example 3.3. Let us consider the vector dry friction b.v.p.

(3.3)

ẍ(t) + a · sgn ẋ(t) = ϕ(t, x(t)), for a.a. t ∈ [0, T ],

x(T ) = x(0) = 0,

where a ∈ R, x(t) = (x1(t), . . . , xn(t))T , sgn ẋ(t) = (sgn ẋ1(t), . . . , sgn ẋn(t))T ,

and ϕ : [0, T ]× Rn → Rn is a Carathéodory function such that

|ϕ(t, x)| ≤ β(t)(1 + |x|) with β ∈ L1([0, T ], [0,∞)).

Because of discontinuity in sgn y, we can only consider Filippov solutions which

can be identified (see e.g. [1], [4], [8]) as Carathéodory solutions of

(3.4)

ẍ(t) ∈ ϕ(t, x(t))− a · Sgn ẋ(t), for a.a. t ∈ [0, T ],

x(T ) = x(0) = 0,

where Sgn y = (Sgn y1, . . . ,Sgn yn)T and, for all i ∈ {1, . . . , n},

Sgn yi :=


−1, for yi < 0,

[−1, 1], for yi = 0,

1, for yi > 0.

If there exist D > 0 such that 〈ϕ(t, x), x〉 − a
√
D
√
n > 0, for all t ∈ (0, T )

and x ∈ Rn with |x| = D, then the dry friction b.v.p. (3.4) admits, according to

Theorem 3.1, a solution x such that |x| < D.

More concretely, for verifying conditions (a)–(e) from Theorem 3.1, let us

define the set K := {x ∈ Rn | |x| < D}, the bounding function V (x) :=

(|x|2 − D2)/2, and α(t) := β(t)(1 + D). Then, for all x ∈ Rn, OV (x) = x and
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HV (x) = I, and conditions (a), (c), (e) from Theorem 3.1 are obviously satisfied.

Moreover, since for all λ ∈ (0, 1], x ∈ ∂K, v ∈ Rn and w ∈ λ ·ϕ(t, x)−λ ·a ·Sgn v,

〈OV (x), w〉 ≥ λ(〈x, ϕ(t, x)〉−a(|x1|+ . . .+ |xn|)) ≥ λ(〈ϕ(t, x), x〉−a
√
D
√
n) > 0,

condition (d) from Theorem 3.1 holds, too.

All assumptions of Theorem 3.1 are so satisfied, by which, the dry friction

problem (3.4) admits a solution x such that |x| < D. This solution represents

the Filippov solution of the original problem (3.3).

References
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