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ATTRACTORS IN HYPERSPACE

Lev Kapitanski — Sanja Živanović Gonzalez

Abstract. Given a map Φ defined on bounded subsets of the (base) metric

space X and with bounded sets as its values, one can follow the orbits A,
Φ(A), Φ2(A), . . ., of nonempty, closed, and bounded sets A in X. This

is the system (Φ, X). On the other hand, the same orbits can be viewed

as trajectories of points in the hyperspace X] of nonempty, closed, and
bounded subsets of X. This is the system (Φ, X]). We study the existence

and properties of global attractors for both (Φ, X) and (Φ, X]). We give

very basic conditions on Φ, stated at the level of the base space X, that are
necessary and sufficient for the existence of a global attractor for (Φ, X).

Continuity is not among those conditions, but if Φ is continuous in a certain

sense then the attractor and the ω-limit sets are Φ-invariant. If (Φ, X) has
a global attractor, then (Φ, X]) has a global attractor as well. Every point
of the global attractor of (Φ, X]) is a compact set in X, and the union of

all the points of that attractor is the global attractor of (Φ, X).

1. Introduction

A global compact attractor represents the aggregate of long-term regimes in

a dissipative system. This important notion was introduced to describe regimes
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more general than a stable equilibrium or a periodic orbit, and to capture the in-

herent stability of the aggregate. The very definition of global attractor involves

the orbits of bounded sets, not just of individual points. To be more specific, let

X be a metric space representing the states of the system, and let S : X → X

be a map representing the one time-step evolution. We denote by (S,X) the

discrete time semi-dynamical system generated by iterations of S on X. The

global compact attractor of (S,X) is the minimal compact set K ⊂ X that at-

tracts all bounded sets B ⊂ X in the sense that for every bounded B and every

open neighbourhood U of K, Sn(B) ⊂ U for all sufficiently large n. Of a large

literature on the theory of global attractors we refer to [31], [46] as closest to our

approach (for the historic roots in ordinary and retarded differential equations

see [20], for the first global attractor in partial differential equations see [30],

see also [7], [47] for further developments and applications). In the case X is

a complete metric space and the map S is continuous and bounded, the nec-

essary and sufficient conditions for the existence of a global compact attractor

for (S,X) are known and can be stated as follows: one, there exists a bounded

global absorbing set (i.e. a bounded set B such that for any bounded set A,

Sn(A) ⊂ B for all sufficiently large n), and two, for every bounded sequence xk
in X and every increasing sequence of integers nk ↗ +∞, the sequence Snk(xk)

is relatively compact. The first property we associate with dissipativity, and the

second – with compactness.

The global attractor K (1)is invariant under S, i.e. S(K) = K, and it is the

maximal compact set with this property. This invariance is important, especially

in the case of irreversible processes, because on the attractor the trajectories can

be extended back in time, sometimes even extended uniquely as is the case with

the Navier–Stokes equations, see [30].

We should mention that although the discussion so far dealt with discrete

time systems, historically the theory was first developed for continuous time

systems. In fact, time can be any nontrivial additive subgroup of real numbers

(St2 ◦ St1 = St1+t2 is needed), and it is easy to see how to move from discrete

to this more general case.

A large source of examples of dissipative systems with global attractors is

the ordinary and partial differential equations describing real life dissipative pro-

cesses. For an evolution equation, the maps St : x 7→ St(x) give the solution at

time t for every initial condition x. The theory of global attractors has been

extended to multi-valued St starting from the paper [6] and advancing to more

general and more recent work [43], [15], see also references therein. The maps

St act from X to one or the other space of subsets of X and define a generalized

(1) From now on, we will incorporate compactness into this notion.
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semi-flow (in particular, St1+t2(x) ⊂ St2 ◦ St1(x)). Such generalized semi-flows

arise, e.g. as solution maps for differential inclusions.

The theory of global compact attractors for multi-valued semi-flows is devel-

oped within the conceptual framework that works in the single-valued case. The

global compact attractor is a compact set in X that attracts all bounded sets; its

existence is proved under some “dissipativity” and “compactness” assumptions

as in the single-valued case.

The iterated function systems (IFSs) is another fertile source of multi-valued

maps and attractors, see e.g. [22], [8], [9]. The setting is as follows. Consider

a finite number of maps fj : X → X, j = 1, . . . , N , and define the Hutchinson

(multi-valued) map F : x 7→ f1(x)∪ . . .∪ fN (x). Extend F to a map on the sets

as the closure of the union of the images of the set under all of fj ,

F (A) =
⋃
j

fj(A).

Originally, [22], each map fj was assumed to be a strict contraction, and the

focus was on the unique invariant compact set, i.e. K such that F (K) = K.

This invariant compact set is called the fractal (in the setting of IFSs), or, in

[9], the attractor, and the focus of the theory is on the structural properties of

the fractal (self-similarity, dimension, etc.). The contraction requirement can

be weakened to some extent, but not too much if the uniqueness of the fractal

viewed as an invariant compact is of importance.

In [42], the fractal was identified with the set that is the ω-limit set of its

neighbourhood; such sets were called attractors in [42]. It was noticed later (see,

e.g. [36], [3]) that the fractal, K, is the global attractor for the iterations of the

map F (i.e. K attracts every bounded set B; in fact, for contractions, Fn(B)

converges to K in the Hausdorff metric). However, the simple theory of global

attractors has not been applied to the IFSs until recently. In [24], as part of

a larger program, we prove the following result. Assume that, one, there is a

bounded global absorbing set B ⊂ X, i.e., for any bounded set A, Fn(A) ⊂ B

for all sufficiently large n, and two, each map fj is continuous, bounded, and ψ-

condensing with respect to some measure of noncompactness on X (again, these

are the dissipativity and compactness assumptions). Then the IFS has a global

compact attractor. This attractor, K, is the minimal compact set that attracts

all bounded sets, and it is the maximal compact set such that F (K) = K. A

measure of noncompactness (mnc) is a function on the sets that “measures” how

far those sets are from being compact. For example, the Hausdorff mnc of a set

A is the infimum of those ε > 0 for which there is a finite ε-net in X for A. Given

an mnc ψ, a map is ψ-condensing if it reduces the ψ-value of the sets except for

the compact sets on which ψ is 0. See Section 2 for details on mnc’s.
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We should mention relations as a separate instance of multi-valued maps.

A relation on X is a subset of X ×X. Every relation F defines a multi-valued

function x 7→ F (x) = {y ∈ X : (x, y) ∈ F}. For a set A ⊂ X its image under

F is F (A) = {y ∈ X : ∃x ∈ A such that (x, y) ∈ F} =
⋃
x∈A

F (x). Again, one

can study the dynamics of iterations of relations and its global attractors. For

compact X this has been done in [42].

A different notion of attractors for multifuctions was proposed in [32]. It

is based on a different notion of convergence of sets, namely, the Kuratowski-

Painlevé convergence. To describe this notion we need to define the lim inf and

lim sup for a sequence of subsets, An ⊂ X. Define

LiAn = {x : ∃ (xn), xn ∈ An for all sufficiently large n, and xn → x},

LsAn = {x : ∃ (xk), xk ∈ Ank
for some sequence nk ↗∞, and xk → x}.

Note that LsAn =
⋂
n

⋃
m≥n

Am. The sequence An ⊂ X is said to be Kuratowski–

Painlevé convergent to A if and only if the limits LiAn and LsAn exist and

LiAn = LsAn = A.

(As in [32], we write then A = LtAn.) This convergence, in general, is not

topological. For details on this see [12] and [13].

Now, let F : X → 2X be a multifunction (the images of points are sets). As

before, one defines F (A) =
⋃
x∈A

F (x). The attractor of the multifunction F in

the sense of Lasota and Myjak, [32], is a non-empty set C0 such that

C0 = LtFn(A)

for every non-empty, bounded set A ⊂ X; see [32, p. 323]. In [32], [33], this

notion is illustrated and discussed in connection with a class of IFSs called uni-

formly contractive (by the authors of [32]). This class is somewhat different from

hyperbolic IFSs. For a hyperbolic IFS, [32, Corollary 4.1] establishes the exis-

tence of the Lasota–Myjak attractor. In this case, of course, the Lasota–Myjak

attractor must coincide with the usual fractal, K, because Fn(A) → K in the

Hausdorff metric for every bounded A, see Section 5 and Lemma 2.2(i) below.

In general, the notion of the attractor in [32] is too restrictive even for single-

valued maps: if a map has several fixed points, it cannot have the Lasota–Myjak

attractor. Thus, the Lorenz attractor is not a Lasota–Myjak attractor. The

notion we adopt in this paper is more flexible. It has a long history in dynamical

systems and PDEs. In particular, the Lorenz attractor is a global attractor in

our setting.

All examples so far were of one-to-many maps (or multifunctions). In this

paper we deal with the maps defined from the start on the sets, allowing, in

principle, the set Φ(A) to be larger than the union of Φ({x}) when x runs
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through A. Here is a super simple example with a non-multifunction map Φ.

For future reference we call it Example ab. In Example ab, X is a two-point

set, X = {a, b}, with dX(a, b) = 1. The map Φ is defined on the subsets of X

as follows: Φ({a}) = Φ({b}) = {a} and Φ({a, b}) = {a, b}. Clearly, Φ({a, b}) 6=
Φ({a}) ∪ Φ({b}).

In our general approach, the maps are defined on all nonempty, bounded

subsets of the base space X with values in the same class of subsets. Each

map Φ generates orbits of bounded sets: A, Φ(A), Φ2(A), . . . When viewed at

the level of the space X, this is not a (semi-)dynamical system. However, this is

a valid and useful dynamical structure. We denote it (Φ, X). Another possibility

is to view the sets as points of a hyperspace. The collection of all nonempty,

bounded subsets of X is not a convenient choice of a hyperspace because of its

topological and metric properties. For us the hyperspace will be the collection of

all nonempty, closed, bounded subsets of X. This hyperspace will be denoted X].

The Hausdorff distance,

d](A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
,

makes (X], d]) a complete metric space (because (X, d) is assumed to be com-

plete). The hyperspace carries the inclusion partial order.

Consider a map Φ: X] → X] that respects the partial order. We are in-

terested in the dynamics generated by the iterations of Φ on X]. Denote this

semi-dynamical system by (Φ, X]). When does it possess a global attractor? Of

course, one could re-state the known results for the single-valued map Φ on X].

This would require checking, for example, the “compactness” conditions on Φ in

the hyperspace, which may be difficult and impractical, since in practice Φ may

be defined at the level of the base space X, as in the case of IFSs. Keeping this

in mind, we are looking for reasonable conditions on Φ at the base space level

and draw conclusions about the dynamics in the hyperspace.

The existence of a bounded global absorbing set inX] is a necessary condition

for the existence of a global compact attractor. If B is a global absorbing set

in X], the merger of the sets comprising B, B[ :=
⋃
C∈B

C, is a bounded subset

of X, and it is absorbing in the sense that for every A ∈ X] the inclusion

Φn(A) ⊂ B[ is true for all sufficiently large n. So, we make the assumption

about Φ that there is a closed, bounded set B ⊂ X that absorbs all closed,

bounded subsets of X. Now, to state the “compactness” property of Φ, we

assume there is a measure of noncompactness ψ on X, with just a few very basic

properties, so that ψ(Φn(A)) → 0 for any closed and bounded A ⊂ X. We say

then that Φ is asymptotically ψ-condensing. This property is not unreasonable.

We prove that if S : X → X is a continuous single-valued map such that the
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system (S,X) possesses a global attractor, then the multi-valued map S] defined

as S](A) =
⋃
x∈A

S(A) is asymptotically ψ-condensing for any mnc ψ.

Suppose Φ maps nonempty, bounded sets into nonempty, bounded sets and

preserves the partial order (inclusions). We prove that the existence of a bounded

global absorbing set together with the property of being asymptotically ψ-con-

densing for some mnc ψ, is necessary and sufficient for the system (Φ, X) to pos-

sess a global attractor. In the context of global attractors, if Φ is asymptotically

ψ-condensing for one mnc, it will automatically be asymptotically condensing

with respect to any mnc, as our Lemma 6.1 shows. Also, we prove that the exis-

tence of a global attractor for (Φ, X) implies the existence of a global attractor

for the discrete semi-dynamical system (Φ, X]).

Let K ⊂ X be the global attractor of (Φ, X) and let K ⊂ X] be the global

attractor of (Φ, X]). Every point of K is a compact subset of K and the merger

K[ is equal to K. In general, K is a proper subset of K], the space of all

nonempty, closed subsets of K. [For the Example ab mentioned above, K =

{a, b} and K = {{a}, {a, b}}, which is a proper subset of K].]

Notice that no continuity of Φ is mentioned, because we do not need conti-

nuity for the existence of the global attractor. (In fact, continuity is not needed

in the single-valued case either. We analyze this situation in Section 4. Also,

see [34] and a remark after Theorem 1 in [35].) However, without additional as-

sumptions, the attractor we get is not invariant under Φ. We cannot even claim

that Φ(K) ⊂ K. A reasonable choice of a sufficient condition for invariance,

Φ(K) = K, is this (Lemma 3.11): if An ∈ X] and An → A in X], and if A is

compact, then Φ(An) converges to Φ(A) in X]. As a corollary, we prove that if

a single-valued continuous and bounded map S : X → X gives rise to the system

(S,X) which has the global attractor K ⊂ X, then the system (S], X]) also has

a global attractor. In addition, if K is the attractor of (S], X]), then K[ = K

and K] = K (i.e. in this case, K is made of all nonempty closed subsets of K).

One should always think of how abstract assumptions could be verified in ap-

plications. Our requirement that Φ be asymptotically ψ-condensing, one would

think should hold true if Φ is ψ-condensing, i.e. ψ(Φ(A)) < ψ(A) for any non-

compact A, and ψ(Φ(A)) = ψ(A) = 0, if A is compact. This is what works in the

single-valued case. However, in the multi-valued case, we do not know whether

this is true without an additional assumption on Φ. One possible requirement

is this: for every A ∈ X], and for every compact subset L ⊂ Φ(A), there is

a compact subset L′ ⊂ A such that L ⊂ Φ(L′).

A slightly different assumption was used for similar purposes in [41]. Thus, if

Φ is ψ-condensing and has the above property, it is asymptotically ψ-condensing,

and we can use our results about global attractors. We discuss two weaker
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assumptions in Section 6. One of the assumptions applies directly to the IFSs

with condensing Sj .

We started this paper as an attachment to our paper [26] on variable time-

step dynamics with choice. One of the issues we discuss there is global attractors

for certain versions of IFSs. We wanted to include convergence in the hyperspace

and quickly realized that we needed to explain more and more results on the

convergence of sets, on measures of noncompactness, and on attractors for single-

valued maps, that we could not find at all or could find only parts of in dispersed

publications. We decided to write about a more general than IFSs subject – the

attractors of set-valued maps, and include all the auxiliary facts. We try to make

presentation self-contained and give the proofs especially when some pieces are

needed in the main part of the paper.

We would like to say again that we are not starting with a clean slate. Many

concepts and results of this paper have appeared previously in different contexts

and with different assumptions. The idea that it is important to follow the

dynamics of sets is very old, it has been used to define the global attractors for

semidynamical systems and dissipative processes ([20]) and to define fractals of

IFSs. Various extensions to the dynamics of sets (in the original state space)

generated by multifunctions have been discussed, e.g. in [45], [34], [37].

We hope we have managed to clarify, organize, and simplify the matter, and

prove new results that will stimulate further research.

In Section 2 we set some notation for the hyperspace, discuss measures of

noncompactness, and refresh some facts on the convergence of sets. Section 3

deals with the main subject of the paper – attractors of multi-valued maps. The

consequences of the results obtained in Section 3 for the attractor of the map

S] in the hyperspace are explained in Section 4. The results on attractors in

the hyperspace for IFSs are presented in Section 5. The multi-valued condensing

maps are compared with asymptotically condensing maps in Section 6.

2. Limits of sets. General notation and facts

• Throughout this paper, X is a complete metric space with metric d. We

use lower case letters to denote points in X and upper case letters to

denote subsets in X.

• For A ⊂ X, and x ∈ X, d(x,A) = inf
y∈A

d(x, y).

• Br(x0) is the open ball of radius r centered at x0, Br(x0) = {x ∈ X :

d(x, x0) < r}.
• Or(A) is the open r-neighbourhood of A,

Or(A) = {x ∈ X : d(x,A) < r} =
⋃
y∈A

Br(y).

• The closure of a set A in X is denoted A.
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• e(A,B) denotes the excess of A over B, i.e. e(A,B) = sup
x∈A

d(x,B).

• We say that the set B attracts the sets An if and only if e(An, B)→ 0.

• The Hausdorff distance between the sets A and B is

d](A,B) = max{e(A,B), e(B,A)}.

• X] is the space of nonempty, closed, bounded subsets ofX. We endowX]

with the Hausdorff metric d]. The symbols for set-theoretic operations

in X] will have ] attached to them.

• The points of X] will be denoted A, B, etc. The sets in X] will be

denoted A, B, etc. The symbol for the union of sets in X] is ]∪, the

symbol for the intersection is ]∩, and the closure of a subset in X] uses

over-line with the ]. Thus, we write A ]∪B, A ]∩B, and A
]
. For the

Hausdorff distance between the sets in X] we use the symbol d]], thus

d]](A1,A2) = max
{

sup
A∈A1

d](A,A2), sup
A∈A2

d](A,A1)
}

• Sometimes we identify the points in X] with one-point sets as in the

following example: A = ]
⋃
C∈A

C.

• The operation [ is used to make a set in X from a set in X] as follows:

A[ =
⋃
C∈A

C.

• The operation ] is used to make a set in X] out of a closed set in X as

follows:

A] = ]
⋃

C∈X], C⊂A

C.

The following facts are an easy exercise in the Hausdorff distance.

Lemma 2.1.

(a) d](A,B) = d](A,B); if d](A,B) = 0, then A = B.

(b) If B is a nonempty, closed, bounded set in X, then B] is a bounded set

in X] (though it need not be closed).

(c) If A is a nonempty, bounded subset of X], then A[ is a bounded subset

of X.

Given a sequence of sets An, one can define the so-called limit superior of

this sequence:

LsAn =
⋂
n

⋃
m≥n

Am.

This notion goes back to Painlevé and Hausdorff, as explained in [29, §29]. Even

if LsAn is not empty, it is not true, in general, that LsAn attracts An. However,

the construct itself is very useful.
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The assertions of the next lemma are well known and can be found, e.g. in

[29], [14], [12], [21]. We include the proofs for reader’s convenience.

Lemma 2.2. (a) If An ∈ X] and A ⊂ X are such that lim
n
d](An, A) = 0,

then A ∈ X] and

(2.1) A =
⋂
n

⋃
m≥n

Am = {x ∈ X : ∃nk ↗∞ ∃xk ∈ Ank
such that x = limxk}.

(b) The space (X], d]) is complete.

(c) If A ⊂ X is compact, then A] is compact in X].

Proof. Denote B =
⋂
n

⋃
m≥n

Am. Clearly, B is closed. Assume An ∈ X] and

An → A in the Hausdorff metric. If x ∈ A, then for every ε > 0 and for all

sufficiently large n, d(x,An) < ε, hence there exist xn ∈ An with d(x, xn) < ε.

This shows that A ⊂ B.

In the opposite direction, if x ∈ B, then there is mk ↗ +∞ and there

exist xmk
∈ Amk

such that xmk
→ x. Hence, d(x,Amk

) → 0 and we have

d(x,A) ≤ d(x,Amk
) + d](Amk

, A) → 0. Thus, x ∈ A. Since d](A,AN ) < 1 for

some N , and AN is bounded, A is bounded.

The proof of completeness of X] goes as follows (see [29, §33, IV]). Suppose

An is Cauchy in X] and form the set A =
⋂
n

⋃
m≥n

Am. Let N(k) be a strictly

increasing integer sequence such that d](An, Am) < 2−k when n,m ≥ N(k).

Clearly,

A ⊂
⋃

m≥N(k)

Am ⊂ O2−k+2AN(k).

In the opposite direction, fix an integer k > 0, pick any x0 ∈ AN(k), and then pick

successively xm ∈ AN(k+m), m = 1, 2, . . ., such that d(xm, xm+1) < 2−k−m+1.

Because xm is Cauchy, there exists x = limxm, which must belong to A, hence

A is not empty. At the same time, d(x0, x) < 2−k+1. Thus,

sup
x0∈AN(k)

d(x0, A) < 2−k+2.

The proof of Lemma 2.2(c) relies on the fact that if V = {x1, . . . , xN} ⊂ A is

an ε-net for A, then V ] is an ε-net for A]. That A] is closed when A is, follows

from the previous step, Lemma 2.2(b). �

Next, we introduce measures of noncompactness (mnc for short). For us, an

mnc ψ is a real-valued function defined on bounded subsets of X that measures

how far the sets are from being (relatively) compact. There are mnc’s associ-

ated with the names of Hausdorff, Kuratowski, Istrăţescu, Gol’denštein–Markus,

Sadovskii, and others, and there are methods of constructing new mnc’s. A very

good discussion of the properties of the common mnc’s and the methods to build
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new mnc’s is in [40]. For our purposes any of the standard mnc’s will do. For

example, the Hausdorff mnc defined as

χ(A) = inf{r > 0 : A ⊂ Or(Y ), for some finite set Y ⊂ X}

would work. The Kuratowski mnc defined as

α(A) = inf

{
r > 0 : A =

Nr⋃
i=1

Ai, where diam(Ai) ≤ r, 1 ≤ i ≤ Nr <∞
}

would work as well. However, all we need in this paper is an mnc with just a few

properties. Some results require even less, but we make a definition that serves

the whole paper (cf. [5]).

Definition 2.3. A function ψ defined on nonempty bounded subsets of X

with values in [0,+∞) is a measure of noncompactness on X if and only if

mnc(a) ψ(A) = 0 if and only if A is relatively compact;

mnc(b) If A1 ⊂ A2, then ψ(A1) ≤ ψ(A2);

mnc(c) ψ(A1 ∪A2) = max{ψ(A1), ψ(A2)};
mnc(d) ψ is Lipschitz continuous, i.e. there exists a constant cψ > 0 such

that

|ψ(A1)− ψ(A2)| ≤ cψ d](A1, A2).

Obviously, mnc(c) implies mnc(b). As a corollary of mnc(d), ψ(A) = ψ(A)

for any A. Also, the fact that ψ(B) is finite for every bounded B agrees with

mnc(iv) because, for any x ∈ B,

ψ(B) = ψ(B)− ψ({x}) ≤ cψ diam (B).

In what follows a weaker property than mnc(d) will do just as fine:

mnc(d∗) ψ is continuous in the Hausdorff metric and has a modulus of con-

tinuity, mψ, defined on some small interval [0, ε∗] as follows:

mψ(δ) = sup{|ψ(A)− ψ(B)| : bounded A,B such that d](A,B) ≤ δ}.

Definition 2.4. A multi-valued map Φ from the collection of nonempty

bounded subsets of X into itself is ψ-condensing (condensing with respect to the

mnc ψ) if and only if ψ(Φ(A)) ≤ ψ(A) for any bounded A, and ψ(Φ(A)) < ψ(A)

if ψ(A) > 0, i.e. if A is not compact. A single-valued map S : X → X is

ψ-condensing if and only if the multi-valued map S : A 7→ S(A) is ψ-condensing.

For applications it is good to know that examples of ψ-condensing single-

valued maps include all strict contractions (i.e. d(S(x), S(y)) ≤ γd(x, y) for some

γ ∈ [0, 1) and all x, y), and all compact maps X → X. Also, in a Banach space,

any map of the form strict contraction + compact is ψ-condensing for any ψ.

The following theorem is a version of the Kuratowski generalization of Can-

tor’s result, [29, §34]. The result is known, but we could not find one reference
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with both assertions. The first part is in [41, Theorem 3.1] and the second fol-

lows from [35, Proposition 3(viii)]. See analogous statements also in [37], [38]

(with weaker assumptions on mnc), and [17].

Theorem 2.5. Assume A1 ⊃ A2 ⊃ . . . is a nested sequence of nonempty,

closed, bounded subsets in X. Assume that ψ(An)→ 0 for some mnc ψ. Then,

(a) the set A =
⋂
n
An is nonempty and compact;

(b) An → A in X].

Proof. Any sequence {xk} such that xk ∈ Ak has the property ψ({xk}) = 0

because, for any n, {xk} ⊂ An except for a finite number of points, and hence

ψ({xk}) ≤ ψ(An)→ 0. Thus, any such sequence has a convergent subsequence,

which implies A is a nonempty compact.

Suppose An is not a Cauchy sequence in X]. Then there exist an ε0 > 0

and a monotone sequence kn ↗ 0, kn > n, such that d](An, Akn) > ε0. Because

An ⊃ Akn , for every n there exists xn ∈ An such that d(xn, Akn) > ε0.

The sequence xn cannot have a convergent subsequence, because if it had

and xnm
→ x∞, we would be able to find M such that d(xn`

, xnm
) < ε0/2 for

all `,m ≥ M , and this would imply d(xn`
, Akn`

) < ε0/2, a contradiction. But

we have just shown that {xn} is relatively compact. Therefore, An is Cauchy,

and An → A by Lemma 2.2. �

It is convenient to have a different description of the condition lim
n
ψ(An) = 0.

Lemma 2.6. Let A1 ⊃ A2 ⊃ . . . be a nested sequence of nonempty, closed,

and bounded sets. The following conditions are equivalent:

(a) lim
n
ψ(An) = 0.

(b) Every sequence xk, where xk ∈ Ank
, nk ↗ +∞, has a convergent subse-

quence.

Proof. Let the first condition be satisfied. For any n, {xk} ⊂ An except

for at most a finite number of xk’s. Hence, ψ({xk}) ≤ ψ(An), and therefore

ψ({xk}) = 0, which implies the second condition.

Now suppose the second condition is satisfied. Note that if a set C has a finite

ε-net Q ⊂ C, then d](C,Q) ≤ ε, and therefore, by the property mnc(d),

ψ(C) ≤ cψ ε.

If ψ(An) does not converge to 0, then there is subsequence nk and an ε > 0 such

that

ψ(Ank
) > cψ ε.

Hence, the sets Ank
do not have finite ε-nets. Take a point x1 ∈ An1 . There

exists x2 ∈ An2 such that d(x1, x2) > ε/2. There exists x3 ∈ An3 such that
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d(x3, {x1, x2}) > ε/2, and so on. The sequence {xn} is not totally bounded.

However, by construction, xk ∈ Ank
, and by assumption, the sequence {xk}

must have a convergent subsequence. A contradiction. �

From a different point of view, the interplay between the property lim
n
ψ(An)

= 0 and the existence of convergent subsequences is expressed in terms of the

properties of the more general mnc-like functions ψ in [38].

Lemma 2.7. Let A ⊂ X be compact and let Bn be a sequence of sets attracted

by A, i.e. lim
n
e(Bn, A) = 0. Then:

(a) The sequence Bn has a subsequence converging in the Hausdorff metric.

Its limit is a compact subset of A.

(b) ψ(Bn)→ 0.

(c) ψ
( ⋃
m≥n

Bm
)
→ 0.

(d) B =
⋂
n

⋃
m≥n

Bm is a nonempty compact.

(e)
⋃
m≥n

Bm → B in X].

Proof. To prove the first statement, choose a sequence nk ↗ +∞ such that

Bnk
⊂ O2−k(A). Because A is compact, we can define the sets

Ak = {y ∈ A : ∃x ∈ Bnk
such that d(x, y) = d(x,A)}.

Obviously, d](Bnk
, Ak) ≤ 2−k. Since A] is compact by Lemma 2.2(c), the se-

quence Ak has a convergent subsequence with a limit in A]. The corresponding

subsequence of Bnk
will have the same limit.

The second statement follows from the fact that every subsequence of {Bn}
has a subsequence that converges to a compact set. If Bnk

is that subsequence

and C is its compact limit, then ψ(Bnk
) = ψ(Bnk

)−ψ(C) ≤ cψd](Bnk
, C)→ 0.

The third statement follows from the second because A attracts the sets⋃
m≥n

Bm. The fourth and the fifth follow from Theorem 2.5. �

Next, we discuss the limits of sets under single-valued continuous maps. Let

S : X → X be a continuous single-valued map. Assume that S is a bounded map,

i.e. S maps bounded sets to bounded sets. Suppose An is a convergent sequence

in X], and A = limAn. The question is: Does the sequence of bounded sets

S(An) have a limit in some meaningful sense? and how is the limit related

to S(A)?

Lemma 2.8. Let An, A ∈ X] and An → A in X]. Let S : X → X be

a continuous, bounded map. Then:

(a) S(A) =
⋂
n

⋃
m≥n

S(Am)



Attractors in Hyperspace 211

(b) e(S(An), S(A)) = sup
yn∈S(An)

inf
y∈S(A)

d(yn, y)→ 0.

If, in addition, A is compact, then:

(c) S(A) =
⋂
n

⋃
m≥n

S(Am) and S(An)→ S(A) in X].

Proof. Since A = limnAn, we have A =
⋂
n

⋃
m≥n

Am. Consider the set

Ω =
⋂
n

⋃
m≥n

S(Am) and compare it with S(A). If z ∈ S(A), then z = S(x) where

x ∈
⋂
n

⋃
m≥n

Am, i.e. x = lim
k
xnk

with xnk
∈ Ank

. But then S(x) = lim
k
S(xnk

) by

continuity. This means that, first, the set Ω is not empty, and second, S(A) ⊂ Ω,

and hence, S(A) ⊂ Ω. On the other hand, if y ∈ Ω, then y = limk S(xnk
) for

some sequence xnk
∈ Ank

. Since Ank
→ A, we have d(xnk

, A) → 0. Since

A is closed, there are yk ∈ A such that d(xnk
, A) = d(xnk

, yk), and hence,

d(xnk
, yk)→ 0. Then d(S(xnk

), S(yk))→ 0 and as a result d(S(xnk
), S(A))→ 0.

Hence, y ∈ S(A). This implies Ω ⊂ S(A), and hence, S(A) = Ω.

The second statement follows from the fact that Ω attracts the sets S(An). If

this were not true, there would be an ε0 > 0 and a sequence xnk
∈ Ank

such that

d(S(xnk
),Ω) ≥ ε0. But then, choosing the sequence yk ∈ A as above, we would

have d(xnk
, yk)→ 0 and consequently d(S(xnk

), S(A))→ 0, a contradiction.

Now assume that A is compact. It remains to show that e(S(A), S(An))→ 0.

If this is not the case, there is an ε0 > 0 and a sequence xk ∈ A such that

d(S(xk), S(Ank
)) > ε0

for some nk ↗ ∞. We may assume that xk → x in A. However, since

Ank
→ A, there is a sequence yk ∈ Ank

such that d(xk, yk) → 0, and there-

fore d(S(xk), S(Ank
)) ≤ d(S(xk), S(yk))→ 0, a contradiction. �

3. Attractors for multivalued maps

In this section the main actor is a map Φ defined on nonempty bounded

subsets of X with values in subsets of X. The first two assumptions are these:

(Φ1) Φ maps bounded sets into bounded sets.

(Φ2) If A ⊂ B, then Φ(A) ⊂ Φ(B).

When working within X], we assume in addition that

(Φ1]) Φ maps X] into itself.

We consider two dynamics associated with the iterations of Φ. The first

dynamics is the dynamics of bounded subsets of X. We denote it by (Φ, X).

(Here we do not need the map Φ to be closed.)

Definition 3.1. K is the global attractor of the system (Φ, X) if and only if
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(a) K attracts every bounded set, i.e. e(Φn(B),K) → 0 for every bounded

B ⊂ X;

(b) K is compact;

(c) K is minimal with the properties (a) and (b).

Definition 3.2. B is a global absorbing set for (Φ, X) if and only if B is

bounded and, for every bounded A there exists N(A) ≥ 0 such that Φn(A) ⊂ B

for all n ≥ N(A).

For the system (Φ, X), the ω-limit set of A is defined as

(3.1) ω[(A) =
⋂
n

⋃
m≥n

Φm(A).

The second dynamics generated by the iterations of Φ is a discrete time

dynamics on X]. This semi-dynamical system will be denoted (Φ, X]) (and here

we assume Φ1]). For a set L ⊂ X], Φ(L) is the set ]
⋃
A∈L

Φ(A). When viewed on

X], Φ is a single-valued map; we can extend it to sets in X] in a natural fashion:

Φ(A) = ]
⋃
C∈A

Φ(C).

Then all the notions just discussed apply. In order to emphasize that the ω-limit

sets of (Φ, X]) lie in the hyperspace X], we use the notation ω]. Thus, the

ω-limit set of a bounded set L ⊂ X] is the following set:

ω](L) = {B ∈ X] : ∃nk ↗∞, ∃Ak ∈ L such that B = lim
k

Φnk(Ak)}.

An equivalent description is this:

(3.2) ω](L) = ]
⋂
n

]
⋃
m≥n

Φm(L)
]

.

We are interested in the ω-limit sets and attractors of these two dynamics.

Theorem 3.3. The system (Φ, X) has a global attractor if and only if the

following two conditions are satisfied.

(A1) There exists a global absorbing set.

(A2) For some mnc ψ, Φ is asymptotically condensing in the sense that

ψ(Φn(A))→ 0 for all A ∈ X].

Suppose K is the global attractor of (Φ, X) and let B be any global absorbing set.

Then K = ω[(B).

Proof. Suppose K is the global attractor of (Φ, X). Clearly, the 1-neigh-

bourhood of K is a global absorbing set. Let A be a bounded set. Then

lim
n
e(Φn(A),K) = 0. That Φ is asymptotically ψ-condensing (for any mnc ψ)

follows from Lemma 2.7(b).
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In the opposite direction, let B be a global absorbing set, and assume that Φ

is asymptotically ψ-condensing. Under these assumptions we prove the following

result.

Lemma 3.4. For any bounded A ⊂ X,

(a) ω[(A) is a nonempty, compact set in X;

(b) ω[(A) attracts A;

(c) ω[(A) = ω[(Φ(A)).

For any A ∈ X],

(d) ω](A) is a nonempty, compact set in X];

(e) ω](A) ⊂ (ω[(A))].

(f) If A ⊂ B, then (ω](A))[ ⊂ (ω](B))[ and ω[(A) ⊂ ω[(B).

Proof. Notice that, for any integer N ≥ 0,

ω[(A) =
⋂
n>N

⋃
m≥n

Φm(A) =
⋂
k≥1

⋃
m≥N+k

Φm(A) =
⋂
k≥1

⋃
`≥k

Φ`(ΦN (A)).

We see immediately that ω[(A) = ω[(ΦN (A)). Also, by changing indices in (3.1),

we obtain

ω[(A) =
⋂
n

∞⋃
k=0

Φn (Φk(A)) .

Since
⋃
k

Φ(Ak) ⊂ Φ
(⋃
k

Ak

)
due to monotonicity, we have

ψ

( ∞⋃
k=0

Φn(Φk(A))

)

= ψ

( ∞⋃
k=0

Φn(Φk(A))

)
≤ ψ

(
Φn
( ∞⋃
k=0

Φk(A)

))
= ψ(Φn(Γ))→ 0,(3.3)

because Γ =
∞⋃
k=0

Φk(A), the full trajectory of A, is bounded due to our as-

sumption (A1) and the boundedness of the map Φ. By Theorem 2.5, ω[(A)

is a nonempty compact, and
∞⋃
k=0

Φn(Φk(A)) → ω[(A) in X]. A quick conse-

quence of this is that ω[(A) attracts A. By Lemma 2.7(a), there is a sequence

nk ↗ ∞ such that Φnk(A) converges to a compact subset of ω[(A). This im-

plies nonemptiness of ω](A). On the other hand, any convergent subsequence of

{Φn(A)} will have its limit in ω[(A). This means that

ω](A) ⊂ (ω[(A))].

Being a closed subset of a compact set in X] (see Lemma 2.1) makes ω](A)

compact (in X]).
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That ω[(A) ⊂ ω[(B) is obvious. To show that (ω](A))[ ⊂ (ω](B))[, let

D ∈ ω](B). Then there exist nk ↗ ∞ such that D = lim
k

Φnk(B). Consider

the sequence {Φnk(A)}. This sequence has a convergent subsequence {Φnkl (A)}
whose limit C ∈ ω(A). But, since Φnkl (A) ⊂ Φnkl (B), we have C ⊂ D. Hence,

(ω](A))[ =
⋃

C∈ω](A)

C ⊂ (ω](B))[ =
⋃

D∈ω](B)

D. �

Proof of Theorem 3.3 (continuation). Consider the ω-limit set of the

global absorbing set, K = ω[(B). The ω-limit set of any bounded A is a subset

of K as the following computation shows:

ω[(A) =
⋂
k

⋃
`≥k

Φ`+N(A)(A) ⊂
⋂
k

⋃
`≥k

Φ`(B).

Hence, K attracts every bounded set. K is compact by Lemma 3.4(a). If M is

any compact set attracting every bounded set, then ω[(A) ⊂M for any bounded

A because for every ε > 0 ⋃
m≥n

Φm(A) ⊂ Oε(M)

for all large enough n thanks to assumption (A1). Thus, K = ω[(B) ⊂M , which

proves minimality of K and completes the proof of Theorem 3.3. �

We next turn to the dynamics in the hyperspace.

Theorem 3.5. Suppose system (Φ, X) has a global attractor and Φ satis-

fies (Φ1]). Then system (Φ, X]) has a global attractor as well. For any closed

global absorbing set B, K = ω](B]) is the global attractor of system (Φ, X]). Ev-

ery point of K is a compact subset of X. If K is the global attractor of (Φ, X),

then K[ = K and K ⊂] K].

Remark 3.6. The inclusion K ⊂] K] may indeed be strict. (Here is a trivial

example. Let X be the finite set {1, 2} with d(i, j) = 1 only if i 6= j. Define Φ by

the rule Φ(A) = X for any nonempty A ⊂ X. Then K is the point {1, 2} of the

three-point set X] while K = X and K] = X].) However, there are situations

where K = K], see Theorem 4.3 below.

The proof of Theorem 3.5 will rely on a few lemmas. We assume the condi-

tions (A1) and (A2) to be satisfied.

Lemma 3.7. Let L be a bounded subset of X]. Then ω](L) is a nonempty,

compact subset of X].

Proof. Recall that

(3.4) ω](L) = ]
⋂
n

]
⋃
m≥n

]
⋃
A∈L

Φm(A)
]

.
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This set is not empty because ω](A) is not empty for any A ∈ L by Lemma 3.4.

Next, if C ∈ ω](L), C = lim
k

Φnk(Ak) for some sequence of points Ak ∈ L. By

Lemma 3.4, for some subsequence m` = nk` of nk, the limit lim` Φm`(L[) exists

in X], and C is a compact subset (in X) of that limit. Hence, ω](L) is compact

as a closed subset of the compact set (ω[(L[))]. �

Lemma 3.8. Let L be a bounded subset of X]. For any sequence An ∈ L

and any sequence mn ↗ +∞, the sequence Φmn(An) has a convergent in X]

subsequence. Its limit is a compact set in X.

Proof. Denote M = ]
⋃
n
An, and consider the set (nonempty and compact)

ω[(M[) =
⋂
m

⋃
k≥m

Φk(M[).

The closed sets Φmn(An) are subsets of the sets
⋃
k≥m

Φk(M[), and the latter sets

converge to ω[(M[) (see (3.3) and Lemma 2.5). That the sequence Φmn(An) has

a convergent subsequence in X] then follows from Lemma 2.7(a). �

A few facts about ω-limit sets for (Φ, X]) can be established without addi-

tional assumptions.

Lemma 3.9. Let L and N be bounded subsets of X]. Then:

(a) If L ⊂ N then ω](L) ⊂ ω](N);

(b) ω](L ]∪N) = ω](L) ]∪ω](N);

(c) ω](L) attracts L, i.e. for any ε > 0, Φn(L) ⊂ O]ε(ω](L)) when n is large

enough;

(d) ω](L) ⊂ ω](B]);

(e) Every point of ω](L) is a compact subset of X.

Proof. The first three properties are valid for any semi-dynamical system

with non-empty ω-limit sets. The last assertion of the lemma can be proved as

follows. Every point C ∈ ω](L) is a limit of a sequence of the form Φnk(Ak),

where Ak ∈ L. Since the compact set ω[(L[) attracts L, C is compact by

Lemma 2.7. We can write C = lim
k

Φmk(ΦN (Ak)) where N is so large, that

ΦN (Ak) ∈ B] for all k. Hence C ∈ ω](B]). �

Proof of Theorem 3.5. It is clear that B] is an absorbing set for (Φ, X]).

Lemma 3.8 is the second ingredient needed to apply Theorem 4.1 and obtain the

existence of the global attractor for (Φ, X]). By Lemma 3.9, the ω-limit sets of

all bounded subsets of X] lie in K = ω](B]). Hence, K is the global attractor.

Every point C ∈ K is a limit of the form C = lim
k

Φnk(Ak) and therefore

C ⊂ ω[(A) where A =
⋃
m
Am. Since ω[(A) ⊂ K, we have C ⊂ K. Hence,
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K[ ⊂ K. To show that K[ = K, we proceed as follows. There is a sequence

nk ↗ ∞ such that the sets Φnk

( ⋃̀
Φ`(B)

)
converge in the Hausdorff metric

to some compact set C ∈ K, and C ⊂ K, of course. On the other hand,⋃
m≥n

Φm(B)→ K as n→∞. At the same time,
⋃̀

Φnk+`(B) ⊂ Φnk

( ⋃̀
Φ`(B)

)
implies K ⊂ C. �

In general, it is possible that (Φ, X]) has a global attractor and (Φ, X) has

not: take X to be an infinite dimensional Banach space and define Φ that maps

every bounded set to the fixed closed ball. However, the situation is different

if X has the property that every closed, bounded set is compact (e.g. if X is

a Montel space, see [19]).

Theorem 3.10. Suppose X has the property that every closed, bounded set in

X is compact. If Φ satisfies Φ1] and if system (Φ, X]) has the global attractor K,

then K = K[ is the global attractor for (Φ, X).

Proof. By Lemma 2.1(c), K[ is bounded. To see that it is closed, let (xk) ⊂
K[ be a convergent sequence with a limit x ∈ X. There exists a sequence (Ak)

such that xk ∈ Ak and Ak ∈ K. As K is compact, there exists a subsequence Akl
which converges to some A ∈ K. Since xkl → x and e(xkl , A) ≤ d](Akl , A)→ 0,

it follows that x ∈ A ⊂ K[. Hence, K[ is compact. To see that it attracts

all bounded sets is easy. In fact, every sequence Φnk(Ak) has a convergent

subsequence with limit C ∈ K, i.e. C ⊂ K[. But then e(Φnk(Ak),K[) → 0 as

k → ∞. Thus, (Φ, X) must have a global attractor. That this attractor is K[

follows from Theorem 3.5. �

In our setting, some familiar properties of ω-limit sets may require additional

assumptions on Φ. One such property concerns the ω-limit set of the closure

(in the Hausdorff metric) of a bounded set in X]. In order to have ω(L) =

ω(L
]
) we need some form of continuity of Φ in X]. Another important property

that requires continuity of Φ is the invariance of ω-limit sets, Φ(ω(L)) = ω(L).

It turns out that the continuity requirement needed for the latter property is

somewhat weaker than for the former. We state the requirements separately.

(Φ3a) If Ak, A ∈ X] and A is compact, then

Ak → A ⇒ Φ(Ak)→ Φ(A).

(Φ3b) If Ak, A ∈ X], then

Ak → A ⇒ Φ(Ak)→ Φ(A).

Lemma 3.11. Suppose Φ has properties (Φ1), (Φ2), and (Φ3a), and assume

that the hypotheses (A1) and (A2) are valid. Then, for any bounded set L ⊂ X],

Φ(ω](L)) = ω](Φ(L)) = ω](L).
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Proof. Any point B of ω](L) is a limit of the form B = lim Φmk(Ak),

where mk ↗ +∞ and Ak is a sequence in L. In addition, B is compact as a

subset of X. Using property (Φ3a) we obtain Φ(B) = lim Φmk+1(Ak). Note

that lim Φmk+1(Ak) is simultaneously a point of ω](L) and a point of ω](Φ(L)).

Thus,

Φ(ω](L)) ⊂ ω](L), Φ(ω](L)) ⊂ ω](Φ(L)).

On the other hand, the sequence Φmk−1(Ak) has a convergent subsequence by

Lemma 3.8. Working with this subsequence we obtain B = lim Φmk−1(Φ(Ak)) =

Φ(lim Φmk−1(Ak)), which proves the inclusions

ω](L) ⊂ ω](Φ(L)), ω](L) ⊂ Φ(ω](L)).

If C ∈ ω](Φ(L)), then C = lim Φmk(Φ(Ak)), and it is clear that C ∈ ω](L), and

we are done. �

Lemma 3.12. Suppose Φ has properties (Φ1), (Φ2), and (Φ3b), and assume

that the hypotheses (A1) and (A2) are valid. Then, for any bounded set L ⊂ X],

ω](L) = ω](L
]
).

Proof. By monotonicity, ω](L) ⊂ ω](L
]
). On the other hand, if B ∈

ω](L
]
), then B = lim

k
Φnk(Bk), where nk ↗ +∞ and Bk ∈ L

]
. For each Bk we

can write Bk = lim
`
Ak` , where Ak` ∈ L. Choose `k so that d](Φnk(Bk),Φnk(Ak`k))

< 2−k. The sequence Φnk(Ak`k) has a convergent subsequence, call its limit C.

For this subsequence,

d](B,C) ≤ d](B,Φnk(Bk)) + d](Φnk(Bk),Φnk(Ak`k)) + d](Φnk(Ak`k), C)→ 0.

By construction, C ∈ ω](L). �

Theorem 3.13. If Φ has properties (Φ1), (Φ2), and (Φ3a) and the assump-

tions (A1) and (A2) are satisfied, then the global attractor, K = ω](B]), of the

system (Φ, X]) is invariant under Φ, i.e. Φ(K) = K. This, in turn, implies

that K is the union (in X]) of bounded two-sided trajectories of Φ (a two-sided

trajectory is a sequence An, n ∈ Z, such that Φ(An) = An+1). Also, K is the

maximal Φ-invariant compact subset of X].

4. Attractors and hyperattractors for single-valued maps

In this section we derive a few corollaries for attractors of single-valued maps.

Let S : X → X be a single-valued map. We assume that S is bounded. We do

not assume it to be continuous for now. We will write (S,X) for both the semi-

dynamical system on X generated by the iterations of S in the traditional sense

and the semi-dynamical system on the bounded subsets of X as discussed in the

previous section. The hypotheses (Φ1) and (Φ2) are obviously satisfied for the
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map Φ(A) = S(A). As an immediate corollary of Theorem 3.3 and Lemma 2.6,

we obtain this result.

Theorem 4.1. Suppose S is a bounded map. For the system (S,X) to possess

a global attractor it is necessary and sufficient that the following two conditions

be satisfied:

(a) there exists a global absorbing set;

(b) for every bounded sequence {xk} and every strictly increasing integer

sequence nk, the sequence Snk(xk) has a convergent subsequence.

The invariance properties of the attractor and the ω-limit sets require conti-

nuity of the map S.

Proposition 4.2. Let S be a bounded map such that (S,X) possesses a global

attractor. If, in addition, S is continuous, then S(ω[(A)) = ω[(A) for any

bounded A. Also, S(K) = K, and the global attractor K is the maximal S-inva-

riant compact.

Proof. If x ∈ ω[(A), then x = lim
k
Snk+1(xk) for some xk ∈ A and some

nk ↗ ∞. There is a convergent subsequence of Snk(xk), and its limit lies

necessarily in ω[(A). The equation lim
k
Snk+1(xk) = S

(
lim
k
Snk(xk)

)
proves

ω[(A) = S(ω[(A)). There cannot be a compact S-invariant set larger than K

because K wouldn’t be able to attract it, which it must do. �

We now move to the hyperspace.

Theorem 4.3. Suppose S : X → X is a bounded map such that the discrete

semi-dynamical system (S,X) possesses a global attractor.

(a) If the map S is closed, then the system (S,X]) possesses a global attrac-

tor.

(b) If the map S is continuous, then the semi-dynamical system generated

by the map

(4.1) S] : A 7→ S(A)

on the space X] possesses a global attractor.

(c) If the map S is continuous, if K is the global attractor of (S,X), and if

K is the global attractor of (S], X]), then

S(K) = K, S](K) = K, K = K[, K = K].

Proof. The first statement follows from Theorem 3.5. To prove the second

statement, we first notice that for a continuous S the following equality holds

for all bounded A and all n ≥ 1:

(4.2) S]
n
(A) = Sn(A).
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Now consider the system (S], X]) with a single-valued map S] : X] → X]. This

system has a global absorbing set: take B], where B = O1(K) and K is the

global attractor of (S,X). In addition, if Ak is a bounded sequence in X] and

nk ↗∞, the sequence S]nk(Ak) has a convergent subsequence. Indeed, consider

the bounded set A =
⋃
k

Ak and the corresponding compact set ω[(A). Since

ω[(A) attracts A, i.e. e(Sn(A), ω[(A)) → 0, we have e(Snk(Ak), ω[(A)) → 0

as well. By Lemma 2.7(a), the sequence Snk(Ak) = S]nk(Ak) (we have used

(4.2)) has a convergent subsequence in X]. The existence of a global attractor

for (S], X]) now follows from Theorem 4.1.

Let S be continuous. Then S(K) = K by Proposition 4.2. Lemma 2.8 shows

that S] has the property (Φ3a), and Theorem 3.13 implies the invariance of the

attractor K under S]. The fact that S](K) = K means that (a) for every A ∈ K,

S(A) ∈ K; and (b) for every A ∈ K there exists a B ∈ K such that A = S(B).

This implies that the set K0 = K[ is invariant under S. Indeed,

K0 =
⋃
A∈K

A =
⋃
B∈K

S(B) = S

( ⋃
B∈K

B

)
= S(K0).

K0 is compact by Lemma 2.2(c). Since every invariant compact is an element

of K, K0 is maximal, and hence K0 = K by Proposition 4.2. Now, consider the

set K]. It is clear that S(K]) ⊂ K]. In the opposite direction, if A ∈ K], then

B = {y ∈ K : S(y) ∈ A} is compact and S(B) = A. Thus, K] is S]-invariant.

Every A ∈ K is a compact subset of K[ = K, and hence A ∈ K]. Thus K] = K.

The theorem is proved. �

5. Example: IFS

Let (X, d) be a complete metric space and let Sj be a family of maps X → X

indexed by a compact metric space J with a metric dJ. The hypotheses on the

maps Sj are these.

(H1) Each map Sj is bounded and continuous.

(H2) There is a mnc ψ on X such that each map Sj is ψ-condensing.

(H3) For every closed, bounded set A ⊂ X, the maps Sj , when restricted to

A, depend uniformly continuously on j. More precisely, given a closed,

bounded A, for every ε > 0 there exists δ(A; ε) > 0 such that

sup
x∈A

d(Sj1(x), Sj2(x)) ≤ ε

provided dJ(j1, j2) ≤ δ(A; ε).

(NB) If J is a finite set, (H3) is satisfied automatically.

(H4) There exists a closed, bounded absorbing set B ⊂ X such that for every

closed, bounded A ⊂ X there exists N(A) > 0 such that Sjn ◦ . . . ◦
Sj1 (A) ⊂ B, for any n ≥ N(A) and any choice of jk ∈ J.
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Define the map Φ: X] → X] as follows:

(5.1) Φ(A) =
⋃
j∈J

Sj(A).

Lemma 5.1. The map Φ is ψ-condensing, i.e. ψ(Φ(B)) ≤ ψ(B) with strict

inequality when B is not compact.

Proof. Let B ∈ X]. Set ε = 1/2 and let δ0 = δ(B; ε0) be as in (H3).

Denote by J(δ0) = {j01 , . . . , j0R} a finite δ0-net in J. Using the property mnc(d)

of ψ, we estimate

(5.2)

∣∣∣∣ψ( ⋃
j∈J

Sj(B)

)
− ψ

( ⋃
j′∈J(δ0)

Sj′

)∣∣∣∣
≤ cψ d]

( ⋃
j∈J

Sj(B),
⋃

j′∈J(δ0)

Sj′(B)

)
≤ cψ ε0.

Using the properties mnc(b) and mnc(c) of ψ, we obtain

ψ(Φ(B)) = ψ

( ⋃
j∈J

Sj(B)

)
(5.3)

≤ ψ
( ⋃
j′∈J(δ0)

Sj′(B)

)
+ cψ ε

0 = ψ(Sj0(B)) + cψ ε
0,

for some j0 ∈ J(δ0) such that

ψ(Sj0(B)) = max
j′∈J(δ0)

ψ(Sj′(B)).

Similarly, we can find j1 ∈ J(δ1) ⊂ J such that

ψ(Φ(B)) ≤ ψ(Sj1(B)) + cψ ε
1.

Proceeding in this fashion, let jk ∈ J be the sequence of indices such that for

every k ≥ 0, we have

ψ(Φ(B)) ≤ ψ(Sjk(B)) + cψ ε
k.

Since J is a compact set, we can find a convergent subsequence jkl → j∗ ∈ J.

Then we have

ψ(Sjk(B)) + cψ ε
k → ψ(Sj∗(B))

as k →∞. Therefore,

ψ(Φ(B)) ≤ ψ(Sj∗(B)) ≤ ψ(B).

The second inequality follows from the assumption (H2), and this inequality is

strict if B is not compact. �

Lemma 5.2. The map Φ has the property (Φ3a).
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Proof. The following inequality (its proof is straightforward) will be useful.

Let N1 and N2 be two subsets of X]. Then

(5.4) d]
(
N[

1,N
[
2

)
≤ d]](N1,N2).

Let An be a sequence in X] converging to A. We have

d](Φ(An),Φ(A)) = d]
(⋃
j∈J

Sj(An),
⋃
k∈J

Sk(A)

)
(5.5)

= d]
( ⋃
j∈J

Sj(An),
⋃
k∈J

Sk(A)

)
.

Pick an ε > 0. For all sufficiently large n, An will lie in the closed 1-neigh-

bourhood of A; call this neighbourhood V . Thanks to (H3), there is a finite

δ(V ; ε)-net in J, call it Jε, such that

inf
j′∈Jε

sup
x∈V

dX(Sj(x), Sj′(x)) ≤ ε

for any j ∈ J. This implies, in particular, that for any closed set C ⊂ V and for

any j there is a j′ ∈ Jε such that d](Sj(C), Sj′(C)) ≤ ε. Indeed, for j′ closest

to j, we have

sup
x∈C

inf
y∈C

d(Sj(x), Sj′(y)) ≤ sup
x∈C

d(Sj(x), Sj′(x)) ≤ ε,

and the same is true with the roles of x and y interchanged.

We use this information to obtain

d]
( ⋃
k∈J

Sk(C),
⋃
k′∈Jε

Sk′(C)

)
≤ ε,

for any closed set C ⊂ V . Thus, we have

(5.6) d]
( ⋃
j∈J

Sj(An),
⋃
k∈J

Sk(A)

)
≤ d]

( ⋃
k∈Jε

Sk(An),
⋃
k′∈Jε

Sk′(A)

)
+ 2ε.

In view of (5.4), we have

d]
( ⋃
k∈Jκ

Sk(An),
⋃

k′∈Jκ

Sk′(A)

)
≤ d]](Mn,M),

where

Mn = ]
⋃
k∈Jκ

Sk(An), M = ]
⋃
k∈Jκ

Sk(A).

Now,

(5.7) d]](Mn,M) ≤ sup
k∈Jκ

d](Sk(An), Sk(A)).

Since the set Jε is finite, there is a k∗ ∈ Jε such that

(5.8) sup
k∈Jε

d](Sk(A), Sk(An)) = d](Sk∗(A), Sk∗(An))
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for infinitely many n. If A is compact, by Lemma 2.8(c), for any k,

d](Sk(A), Sk(An))→ 0.

Combining this with (5.5)–(5.8), we conclude that d](Φ(An),Φ(A))→ 0, proving

the property (Φ3a). �

Theorem 5.3. Assume that the maps Sj satisfy the hypotheses (H1) through

(H4). Let Φ be defined by formula (5.1). Then the semi-dynamical system

(Φ, X]) possesses a global attractor. This attractor, K, is the minimal com-

pact set in X] that attracts all bounded subsets of X]. In addition, Φ(K) = K,

and K is the maximal compact subset of X] with this property.

Proof. From its definition (5.1), the map Φ has the properties (Φ1) and

(Φ2). The hypothesis (H4) guarantees the property (A1) for Φ. The property

(Φ3a) is proved in Lemma 5.2. Assumption (A2), i.e. the fact that Φ is asymp-

totically ψ-condensing, follows from Lemmas 5.1 and 6.3 that we prove in the

next section. Now, all the claims follow from Theorem 3.13. �

The map Φ will have the property (Φ3b) if we impose in addition the following

assumption on all Sj :

(H5) For every closed, bounded set V ⊂ X and for every j ∈ J, the map

Sj is uniformly continuous on V , i.e. for every ε > 0, there exists

a δ = δ(j, V, ε) > 0 such that d(Sj(x), Sj(y)) < ε provided x, y ∈ V and

dX(x, y) < δ.

Lemma 5.4. Assume that (H5) is satisfied. If An is a sequence in X] con-

verging to A ∈ X], then Sj(An)→ Sj(A) for any j ∈ J. As a corollary, the map

Φ has the property (Φ3b).

The proof is straightforward and we omit it.

6. On asymptotically condensing maps

We start by showing that the hypothesis (A2) does not depend on the par-

ticular choice of the mnc.

Lemma 6.1. Suppose Φ has the properties (Φ1), (Φ2), and the assumption

(A1) is satisfied. If Φ is asymptotically condensing with respect to some mnc ψ0,

then Φ is asymptotically condensing with respect to any mnc ψ.

Proof. The assumptions guarantee that for every A ∈ X], the set ω[(A) =⋂
n

⋃
m≥n

Φm(A) is a nonempty compact, see Lemma 3.4. The proof of that lemma

relies on the fact that ψ0

( ⋃
m≥n

Φm(A)
)
→ 0. By Lemma 2.6, this is equiva-

lent to the fact that any sequence of points of the form xk ∈
⋃

m≥nk

Φm(A) has
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a convergent subsequence. This statement is not attached to any mnc. We use

Lemma 2.6 to conclude that ψ
( ⋃
m≥n

Φm(A)
)
→ 0 for any given ψ with the prop-

erties mnc(a)–mnc(d). Thanks to mnc(b) it follows that ψ(Φn(A))→ 0, and we

are done. �

For applications, it is important to have a collection of sufficient conditions

for a map to be asymptotically condensing. It is clear, that if Φ maps bounded

sets into compact sets, it is asymptotically condensing. Another example is

a single-valued contraction.

Lemma 6.2. Any (single-valued) strict contraction S : X → X is asymptoti-

cally ψ-condensing.

Proof. Let q < 1 be the contraction constant of S. By the Banach fixed

point theorem, there exists a unique z ∈ X such that S(z) = z, and moreover,

z = lim
n
Sn(x) for any x ∈ X. In fact, {z} is the global attractor of (S,X)

because, given a bounded set A,

e(Sn(A), z) = sup
x∈A

d(Sn(x), z) = sup
x∈A

d(Sn(x), Sn(z)) ≤ qn e(A, z)→ 0,

and similarly, e(z, Sn(A)) = inf
x∈A

d(z, Sn(x)) ≤ qnd(z,A) → 0. Thus, Sn(a) →
{z}, and by Lemma 2.7, ψ(Sn(A))→ 0. �

In the single-valued setting, compact maps and strict contractions are exam-

ples of a more general class of condensing maps. Recall that a map, S : X → X,

is ψ-condensing if ψ(S(A)) ≤ ψ(A) for any bounded A, with strict inequality if

ψ(A) > 0. The proof of the fact that ψ-condensing implies asymptotically ψ-

condensing for single-valued maps may be found in [1, Lemmas 1.6.10, 1.6.11] for

mnc’s having properties mnc(a)–mnc(d), see [1, Remark 1.6.13]. In his PhD the-

sis, Massatt considered multi-valued maps and more general mnc’s. The result

below is a variation on his result, cf. [41, Theorems 4.1 and 4.2].

We consider a multi-valued map Φ: X] → X]. We assume that Φ is ψ-

condensing with respect to some mnc ψ with the properties mnc(a)–mnc(d).

Thus, ψ(Φ(B))≤ψ(B) for any bounded B, and the inequality is strict if ψ(B)>0.

In addition, we require one of the following two properties (“compact sets” in

(Φ4a) are replaced by “finite sets” in (Φ4b)).

(Φ4a(b)) For every D ∈ X], there is a sequence of sets Bn ⊂ Φn(D), n =

1, 2, . . ., such that

(1) d](Bn,Φ
n(D))→ 0;

(2) for n = 1, 2, . . ., for every compact set (b: finite set) L ∈ Bn
there is a compact set (b: finite set) L′ ⊂ Bn−1 such that

(6.1) L ⊂ Φ(L′).
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A ready example of a map that satisfies (Φ4b) is the Hutchinson–Barnsley

map.

Lemma 6.3. Under the hypotheses (H1) through (H4) of Section 5, the Hutch-

inson–Barnsley map Φ(D) =
⋃
J

Sj(D) has the property (Φ4b).

Proof. Indeed, define

Φ̂(A) =
⋃
J

Sj(A)

and notice that Φn(D) = Φ̂n(D) due to the continuity of each map Sj . Clearly,

Φ has the property (Φ4b) with the choice Bn = Φ̂n(D). �

Proposition 6.4. Let Φ satisfy the assumptions (Φ1), (Φ2), (Φ4a) or (Φ4b),

and (A1). Assume that Φ is ψ-condensing. Then

ψ(Φn(D))→ 0 for every D ∈ X].

Proof. We work with assumption (Φ4a). The same proof works with (Φ4b),

just change the “compact sets” to “finite sets”.

Our goal is to show that any sequence of the form xk ∈ Φnk(D) has a conver-

gent subsequence, i.e. ψ({xk}) = 0. Once this is done, we see that any sequence

of the form yk ∈
⋃

`≥mk

Φ`(D) has a convergent subsequence. By Lemma 2.6, this

implies ψ
( ⋃
`≥m

Φ`(D)
)
→ 0, and hence, ψ(Φm(D))→ 0, as stated.

We can replace the sequence xk ∈ Φnk(D) by a sequence x′k ∈ Bnk
⊂ Φnk(D)

such that d(x′k, xk)→ 0.

Now, instead of sequences x′k ∈ Bnk
we consider sequences in the hyperspace

X], which have the following form:

Y =

∞
]
⋃
n=0

Y (n),

where each Y (n) is either an empty set or a compact subset of Bn, with the

assumption that Y (n) is nonempty for infinitely many n. We will prove that for

each such Y the set Y[ ⊂ X is relatively compact.

To begin with, due to assumption (A1), each set Y[ lies in the absorbing set

B except, maybe, for a finite number of compact subsets. Hence, thanks to the

properties mnc(a) and mnc(c), ψ(Y[) ≤ ψ(B) <∞, and there is a finite number

a = sup
Y

ψ(Y[).

If Ym, m = 0, 1, . . ., is a sequence for which the corresponding values ψ(Y[m)

approach a, the sequence

Z = ]
⋃
m

Z(m) := ]
⋃
m

⋃
0≤k≤m

Yk(m)
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delivers the maximum value a, ψ(Z[) = a, because, except for a finite number of

compact sets, each set (Ym)[ is a subset of Z[.

We now prove that ψ(Z[) = 0. To this end, consider each nonempty Z(n),

where n is large enough so that Z(n) ⊂ B. By (Φ4) there is a compact set

L(n− 1) ⊂ Bn−1 such that Φ(L(n− 1)) ⊃ Z(n). This defines a new sequence L.

Except for a finite number of compacts, Z[ ⊂ Φ(L[). As a result, since Φ is

ψ-condensing,

a = ψ(Z[) ≤ ψ(Φ(L[)) ≤ ψ(L[) ≤ a,

and hence, ψ(Φ(L[)) = ψ(L[), which implies ψ(L[) = 0, and then a = 0. Our

claim is proved. �
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Berlin, 1990.

[5] J.M. Ayerbe Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures

of Noncompactness in Metric Fixed Point Theory, Oper. Theory Adv. Appl. vol. 99,
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