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CRITICAL POINT APPROACHES TO QUASILINEAR
SECOND ORDER DIFFERENTIAL EQUATIONS
DEPENDING ON A PARAMETER

SHAPOUR HEIDARKHANI — JOHNNY HENDERSON

ABSTRACT. In this paper, we make application of some three-critical points
results to establish the existence of at least three solutions for a bound-
ary value problem for the quasilinear second order differential equation on
a compact interval [a,b] C R,

{ —u = (A\f(@,u) + g(x,u))h(z,u’) in (a,b),
u(a) = u(b) =0,

under appropriate hypotheses. We exhibit the existence of at least three
(weak) solutions.

1. Introduction

There is a wide literature that deals with the existence of multiple solutions
to two-point boundary value problems. Conditions that guarantee the existence
of multiple solutions to differential equations are of interest because physical pro-
cesses described by differential equations can exhibit more than one solution. For
example, certain chemical reactions in tubular reactors can be mathematically
described by a nonlinear two-point boundary value problem with the interest in
seeing if multiple steady-states to the problem exist. For a treatment of chemical
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reactor theory and multiple solutions see [2, Section 7] and references therein,
and for additional approaches to the existence of multiple solutions to boundary
value problems, see [5], [22], [23] and references therein.

It is worth mentioning that in a very interesting paper [29], Ricceri obtained a
three-critical points theorem and in [28] gave a general version of the theorem to
extend the results for a class of more extensive equations. Many works have been
carried out in discussing the existence of multiple solutions for BVPs by these
Ricceri’s results, and we cite, for example, the papers [1], [7], [17], [21] and [25].
In [7] Bonanno illustrated the Ricceri’s three-critical points theorem [29] for the
existence of three (classical) solutions in the the Sobolev space W, 2([0,1]) for
the following two-point boundary value problem

{ u’" + Af(u) =0 in (0,1),
u(0) = u(l) =0,

where f:R — R is a continuous function and A\ is a positive parameter, while
in [17] Candito extended the results to the following nonautonomous two-point
boundary value problem

{ v’ + Af(z,u) =0 1in (a,b),
u(a) = u(b) =0,

where f:[a,b] x R — R is a continuous function and X is a positive parameter.
Livrea in [25] extended the results of [7], [17], and established multiplicity results
for the following ordinary Dirichlet problem

{ u” + Af(z,u)h(v') =0 in (a,b),
u(0) =u(l) =0,

where f:[0,1] x R — R and h:R — ]0, +oo[ are two continuous functions and
A>0.

In particular, based on Ricceri’s three-critical points theorem, revisited in [27],
the paper [21] deals with the existence of at least three (weak) solutions for
the following double-eigenvalue problem with eigenvalues A > 0 and g > 0 on
a bounded interval (a,b) in R (a < b),

{ u + (Mf(tu) + g(u)h(t,u') = pp(t, w)h(t,u) in (a,b),
u(a) = u(b) =0,

where f:[a,b] x R — R is a continuous function, g:R — R is a Lipschitz con-
tinuous function with g(0) = 0, h:[a,b] x R — R is a bounded and continuous
function, with m := infh > 0, and p:[a,b] x R — R is an L!-Carathéodory
function.



QUASILINEAR SECOND ORDER DIFFERENTIAL EQUATIONS 179

Consider the following quasilinear two-point boundary value problem

{ —u” = (Mf(z,u) + g(z,u)h(z,u') in (a,b),

1.1
(L) u(a) = u(b) =0,

where [a,b] C R is a compact interval, f:[a,b] x R — R is an L!-Carathéodory
function, g: [a,b] x R — R is a continuous function such that there exists a con-
stant L > 0 provided

|g('7t1) _g('th)‘ < L|t1 _t2|

for all ¢1,t2 € R satisfying g(-,0) =0, h:[a,b] x R — ]0, +o0[ is a bounded and
continuous function, with m :=inf h > 0, and X is a positive parameter.
Employing, two critical points theorems (Theorems 1.2 and 1.3), we establish
the existence of at least three distinct (weak) solutions in W, ?([a,b]) to the
problem (1.1) (Theorems 2.1 and 2.2).
We mean by a (weak) solution of problem (1.1), any u € Wy(|a,b]) such
that

for every v € Wy*([a, b]).
A special case of Theorem 2.2 is the following theorem.

THEOREM 1.1. Let f:R — R be a continuous function and h: R — 10, +00[ be
a bounded and continuous function, with m :=inf h > 0. Put F(t) = f(f f(&)de
for each t € R. Assume that F(d) > 0 for some d > 0 and F(§) > 0 in [0,d] and

Then, there is \* > 0 such that for each A > X* the problem
—u”" = Af(w)h(u') in (a,b),
{ u(a) = u(b) =0,

=0.

admits at least three classical solutions.

Actually, our main results, Theorems 2.1 and 2.2, assure the existence of three
solutions to the problem (1.1) under appropriate hypotheses involving a test
function w, while in Corollaries 2.3, 2.4, 2.6 and 2.7 a convenient choice of w
makes the assumptions clearer, if less general.

Our analyses are based on the following three-critical points theorems (see
also [6], [26]-]29] for related results) to transfer the existence of three solutions
of the problem (1.1) into the existence of critical points of the Euler functional;
in the first one the coercivity of the functional ® — AW is required, while in the
second one a suitable sign hypothesis is assumed.
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THEOREM 1.2 ([13, Theorem 2.6]). Let X be a reflexive real Banach space,
let : X — R be a sequentially weakly lower semicontinuous, coercive and con-
tinuously Gateaux differentiable whose Gateauz derivative admits a continuous
inverse on X*, and let V: X — R be a sequentially weakly upper semicontinu-
ous and continuously Gateauz differentiable functional whose Gateaux derivative
is compact. Assume that there existr € R and up € X with 0 < r < ®(uq), such
that:

W (u1)
a su U(u) <r ,
(@) u€¢*1(]r—)oo,r]) ) ®(u1)
D(uq) r ,
A, =
(b) for each A € A, T(ur)’ _— V) the functional

ueP—1(]—o0,r])
D — AV is coercive.
Then, for each A € A, the functional ® — AV has at least three distinct critical
points in X.

THEOREM 1.3 ([8, Theorem 3.3], see also [3]). Let X be a reflexive real Ba-
nach space, : X — R be a convex, coercive and continuously Gateaux differen-
tiable functional whose derivative admits a continuous inverse on X*, ¥: X — R
be a continuously Gateaux differentiable functional whose derivative is compact,
such that

(a) i&fq) = ®(0) = ¥(0) = 0;
(b) for each A > 0 and for every wui, us which are local minimum for the
functional ® — AU and such that ¥(uy) > 0 and ¥(uz) > 0, one has

inf ¥ 1- > 0.
Jof Wlsu + (1= s)us) >

Assume that there are two positive constants ri, 7o and v € X, with 2r; <
D (V) < ro/2, such that

sup \Il(u)
(12) u€d—1(]—oo,r1[) < g\IJ(E)
. " 39(v)’
sup W (u)
(1 3) ued—1(]—o0,ra[) < E\I/(@)
. o 30(v)
Then, for each
3B(@) r r2/2
>\ —
€ l2w@ ™ { sip  W(w)  sup  W(w) [ |
u€@=1(J=o00,r1) ued=(]—o0,r[)

the functional ® — AV has at least three distinct critical points which lie in
O~ (]—o00,73[).
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For other basic notations and definitions, and for a thorough account on the
subject, we refer the reader to [9]-[12], [14], [15], [18]-[20], [24].

The outline of the paper is organized as follows: in the forthcoming section,
we shall present the statements of our results, proofs of the corollaries and an
example to illustrate the results. Section 3 consists the proofs of our main results.

We recall that a function f:[a,b] x R — R is said to be L!-Carathéodory if

(a) = — f(x,t) is measurable for every t € R,
(b) t — f(z,t) is continuous for almost every x € [a, b],
(c) for every o > 0 there exists a function I, € L'([a,b]) such that

sup |f(z,t)] <l,(xz) forae. z € [a,b].
ltl<e

2. Main results

Let f:]a,b] x R — R be an L!-Carathéodory function, g:[a,b] x R — R be
a continuous function such that there exists a constant L > 0 provided

(21) |g('7t1)7g(',t2)| §L|t17t2| for all tl,tQ ER

satisfying ¢g(-,0) = 0. Let h:[a,b] x R — ]0,400[ be a bounded and continuous
function with m := inf h > 0. Denote M := sup h and suppose that the constant
L > 0 satisfies LM (b — a)? < 4.

We introduce the functions F: [a,b] xR — R, H:[a,b] xR — R and G: [a, b] x
R — R respectively, as follows

t
F(z,t) :/ f(z, &) d¢ for all (z,t) € [a,b] X R,
0
t T
H(x,t) :/ / h(:ﬂl 5 dédr for all (x,t) € [a,b] x R,
0 JO )
G(z,t) = — /tg(x,f) d¢ for all (z,t) € [a,b] x R.
0

We now formulate our main results.

THEOREM 2.1. Assume that there exist a positive constant r and a function
w e Wy *([a,b]) such that:

b
(a) / G, w(z)) + H(z, v (z))] dz > 7,

1 /b
(b) ;/ sup F(x,t)dx
a —a)r —a)r
te [_\/47211?15:(1;7)(1)2 ’\/4722/11\(/;7(1772)2}

</ " (e w(a)) de /] (G i) + Hizow ()] de,
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. F(x,t)  4—LM(b—a)?
1
(©) msup =5 < 5310 —apr

b
. / sup F(x,t)dx

tel— 2M(b—a)r 2M (b—a)r
4—LM(b—a)2’\/ 4—LM(b—a)?

uniformly respect to x € [a, b].

Then, for each

/ab[G(x,w()+wa dx//wa
/ / sup F(m,t)d:c[

2M(b—a)r 2M(b—a)r
4 LM(b—a)2’\/ 4—LM(b—a)?

A€ A =

the problem (1.1) admits at least three distinct weak solutions in Wy ([a, b]).

THEOREM 2.2. Suppose that f:]0,1]xR—R satisfies the condition f(x,t) >0
for all z € [0,1] and t > 0. Assume that there exist a function w € Wy ([a, b])
and two positive constants r1 and ro with

b o
o < / (Gl w)) + H(a, o/ (@) do < 72

such that:

b
(a) —

sup F(x,t)dx
T Ja elo 2M (b—a)ry 2M (b—a)ry
€ 4—LM((b—a)2’\/ 4a—LM(b—a)?

<§AVWmm»m/Lﬁww4»+Huw<mm,

1 b

sup F(x,t)dx
T2 Ja el 2M (b—a)ry 2M (b—a)ry
4—LM(b—a)2’\/ 4—LM(b—a)?

< ;/01 F(m,w(x))dx/ /ab[G(x,w(x)) + H(z,w'(z))] dx.

Then, for each

)\G}z/ab[G(x,w( ) + H(z,w'(z da:// (z,w(x))dz, O |,
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where

b
61:2’““1{T1//L/‘ sup F(z,t)dz,
¢ e [_\/ 2M(b—a)ry \/ 2M(b—a)ry }

4—LM(b—a)2’\[ 4—LM(b—a)?

b
7’22// sup F(x,t)dx},
¢ e [,\/ 2M (b—a)ry \/ 2M(b—a)rs }

4—LM(b—a)2’\/ 4—LM(b—a)2

the problem (1.1) admits at least three non-negative weak solutions vt, vZ, v3
such that

2M (b — a)ry

@ <A TG — a2

for each x € [a,b], j =1,2,3.

Let us first give particular consequences of Theorems 2.1 and 2.2for a fixed
test function w.

COROLLARY 2.3. Assume that there exist four positive constants ¢, d, i1 and
v with p+ v < b—a such that:

a+p d d b—v
(a) K3 ::/ [G(ax(x—a)) +H(x, )} dx + G(z,d)dx
a M H atp
b 2
d d 2c
+‘/b_y [G(w,y(b—x)>+H<x,_l/):| dw>7M(b—a]>’
_ b
(b) M/ sup F(z,t)dx < Xs
2c a e e K1
te |:_\/4—L1\/I‘:(b—a)2 ’\/4—LMC(b—a)2:|
where

a+p d b—v b d
K, ::/ F(m,(m—a)) dx—i—/ F(x,d)dx-i—/ F<$,(b—$)> dz,
a K atp b—v v

(c) limsup F(i’ 2
lt—+oo ¢
4—LM(b—a)? [P
< 4([)(&)02)/ sup F(I,t) dx

4c2 4c2
te {_\/47141\/1(1)7(1)2 ’\/4—LA{(b—a)2:|

uniformly with respect to x € [a,b].

Then, for each

b
AGAQ::1?,202/M(b—a)/ sup F(m,t)dxl
2 a

_ 4c2 4c2
te[ \/4—LAI(b—a)2 ’\/4—L1\l(b—a)2:|
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the problem (1.1) admits at least three distinct weak solutions in Wy ([a, b]).

PrOOF. Owing to our hypotheses,
Theorem 2.1 are satisfied by choosing

d

;(95 - a)
(2.2) w(z) =4 d

Yo

and r = 2¢2/(M(b—a)). Hence, the

rem 2.1.

we observe that all the assumptions of

ifa<z<a+y,
ifa+p<ax<b-—uy,
ifb—v<az<h,

conclusion follows directly from Theo-
|

COROLLARY 2.4. Let f:]a,b] x R—R satisfies the condition f(xz,t) >0 for
all z € [a,b] and t > 0. Assume that there exist five positive constants c1, ca, d,

wand v with p+ v < b—a such that:

4c? c3
—1 K<—2
@ o—w T < mp—a
M(b— b 2 K.
(b) M/ sup F(z,t)de < =22,
201 a 102 102 3 K1
te |:_\/4—L1\/I(};—a)2’\/4—LM(}77¢1)2_
M(b— b 1K
(c) 7( 5 e) / sup F(x,t)dz < 7—2,
2(32 a 202 102 3 Kl
te |:7\/4—LJ\4($7—0.)2’\/4—LZ\/[(2b—a)2_

where Ky and Ko are given as in assumptions (a) and (b) in Corol-

lary 2.3, respectively.

Then, for each X € |3K1/(2K3), O, where

262 b
Oy :=min{ ——— / sup F(x,t)dx,
{M(b‘“)/ a 2 2
te |:7\/4—LM(b—a)2 ’\/4—LM(b—a,)2J
3 b
sup F(x,t)dx p,
M(b - a) /a 4(;% 4c§

such that

2
4cs

@<\ TG ae

-V

the problem (1.1) admits at least three non-negative weak solutions v',

V=i

4—LM((b—a)2’\ 4a—LM(b—a)2

1 2

v?, v

v

for each x € [a,b], j =1,2,3.

PROOF. Proceeding the same way as in the proof of Corollary 2.3, we achieve

the stated assertion by applying Theorem 2.2 with w as given in (2.2), r; =

2¢2/(M(b—a)) and ro = 2¢2 /(M (b — a)).

O
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REMARK 2.5. Other candidates for the test function w in (2.2) can be con-
sidered for other versions of the statement. For example, in (2.2), one can choose
p=v = (b—a)/4 which is a particular case.

Let f and F be as before, and let g: R — R be a Lipschitz continuous function
with the Lipschitz constant L > 0, i.e.
|9(t1) — g(t2)| < L|ty — t2| for all 1,1, €R,

satisfying g(0) = 0. Let h: R — ]0, +oo[ be a bounded and continuous function
with m := infh > 0. Denote M := suph and suppose that the Lipschitz
constant L > 0 satisfies LM (b — a)? < 4. We introduce the functions H:R — R
and G:R — R respectively, as follows

H(t):/t/Th(ld)d(SdT for all ¢t € R,

o Jo

G(t)_—/tg(ﬁ)dg for all t € R.
0

Then, we have the following results as consequences of Corollaries 2.3 and 2.4,
respectively:

COROLLARY 2.6. Assume that there exist four positive constants ¢, d, u and
v with p+ v < b— a such that Assumption (c)

(a) F(x,t) >0 for each (z,t) € ([a,a+ p] U[b—v,b]) x [0,d],

(b) K; = u-cfl—V/OdG(t)dt+(bauV)G(d)+uH<Z)+VH<2i>
b >ﬁ’
(c) % / sup F(x,t) dx

402 402
te |:_\/4—LM(b—a)2 ’\/4—L1v1(b—a)2:|

Then, for each

b—v
K3 / F(z,d)dx,
a+pu

b
QCQ/M(Z)—CL)/ sup F(x,t)da:[
te |:7\/4—L1\z/11(22b—n,)2 ’\/4—L]él(zi—a,)2:|

{ —u = (Af(z,u) + g(w)h(w') in (a,b),
u(a) = u(b) =0,

)\EAgI:

the problem

(2.3)



186 SH. HEIDARKHANI — J. HENDERSON
admits at least three distinct weak solutions in Wy ([a, b]).

PROOF. Since 0 < w(z) < d for each z € [a,b] where w is given as in (2.2),
the condition (a) ensures that

a+p b
/ F(x,w(x))d:v—l—/bi F(z,w(zx))dx > 0.

So,
b b—v
/ F(:c,w(x))de/ F(z,d)dz.
a atp
Hence, with g(z,t) = g(t) and h(z,t) = h(t) for all (z,t) € [a,b] x R, from
Corollary 2.3 we have the conclusion. O

COROLLARY 2.7. Let f:]a,b] x R — R satisfies the condition f(x,t) >0 for
all x € [a,b] and t > 0. Assume that there exist five positive constants ci, ca, d,
w and v with 4+ v < b—a such that

4c? c3
@ o—w << p—a
_ b
(b) M/ sup F(x,t)dx
2ct @

4c% 4cf
te |- A-LM(b—a)2’\ 4a—LM(b—a)2

2 b—v
< — F(z,d)dx,
3K /a+u ( )
_ b
(c) &QQ)/ sup F(z,t)dx

4(,%
te[— 4— LM(b a)2’\ 4—LM(b—a)2 ]

1 b—v
< — F(z,d)dx
3K3/a+u ( )

where K3 is given as in Assumptions (b) in Corollary 2.6.

Then, for each
3 b—v
€:|K3// F(x,d)dl’,@;g
2 atp
where

©®; := mi L /b F( t)d
3 1= min M(b—a) i [ \/ = sup = Z, X,

4— LM(b a)2’\/4 LM(b u.)ZJ

F(z,t)d
b_a // 4L (I’ ) I},
te[~ \/4 LM(b a)2’ \/

a— LM(b a)2 ]
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the problem (2.3) admits at least three non-negative weak solutions vt, vZ, v3

such that

. 4c2
|7 (x)] < HWM for each x € [a,b], j =1,2,3.

ProOF. Following the same way as in the proof of Corollary 2.6, we achieve
the stated assertion by applying Corollary 2.4. ]

Let us now present an application of Corollary 2.6.

EXAMPLE 2.8. Let [a,b] = [0,1]. Choose ¢ = 1,d = 2, p = v = 1/4,
flz,t) = ()7 Lem=t" (v — t1), g(t) = ¢+ for all z € [0,1] and ¢ € R where
t* = max{t,0} and

89 e~ V3(e3 — ¢2)
V> 10858 G s —gim
is a real number, and h(t) = 1/(2 + sint) for each ¢t € R. Note that

Fla.) 0 for all (z,t) € [0,1] x R™,
x,t) =
t7e*t for all (z,t) € [0,1] x (RT U{0}),

H(t) =t*+t—sint forallteR,

0 forallt € R™,
Gt) =4
-3 for all t € RT U {0},

and L = M = 1, clearly assumption (a) in Corollary 2.6 is fulfilled, and
a straightforward computation shows that K3 = 89/3, so assumption (b) in
Corollary 2.6 is satisfied. Moreover, for any fixed

89 e V3(e3 — €2)
"YO > 10g2\/§,/3 E 63/4 . e1/4

we see that

1
5(6 _ 1)\/§'Yoe—\/§ < %(63/4 o 61/4)2’706_2.

Therefore, with any v > ~o Assumption (¢) in Corollary 2.6 is satisfied. In
particular, since

F(x,t)
2

lim sup =0,

‘t|~>+00
Assumption (c¢) in Corollary 2.6 is satisfied. So, Corollary 2.6 is applicable to
the boundary value problem

{ = [A(u+)’Y—1e$—u+ (v —ut) 4+ ut](2 + sinu/) 7,
u(0) = u(l) =0,

for each X € |89¢2/(3(e3/4 — e1/4)27),2¢V3/(v/3" (e — 1))].
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Now, we consider a special situation of the results. Set g(t) = 0 for all
t € R. Then, we have the following consequences from Corollaries 2.6 and 2.7,
respectively.

COROLLARY 2.9. Assume that there exist four positive constants ¢, d,
and v with g+ v < b — a such that the assumption (a) in Corollary 2.6 holds.

Furthermore, suppose that:

o on(E)eon(2)

b—v
F(z,d)dx
v Mb—a) / " ap Flat) < /“+“

2c2 te[—c,c] /1,H<d> _|_VH<_ d)}
I v

. F(z,t) 1 b
(¢) limsup < / sup F(z,t)dx
[t| =400 t2 (b - a)CQ a t€[—c,

uniformly with respect to x € [a,b].
Then, for each

,uH(d>—|-1/H<—d) 9
n v 2c
)\ S A4 = b—v ) b
/ F(z,d)dx M(b— a)/ sup F(z,t)
a+p a t€[—c,]

the problem

—u”" = Af(z,uw)h(uv') n (a,b),

(2.4) f(x,u)h(u’) in (a,b)
u(a) = u(b) =0,

admits at least three distinct weak solutions in Wy ([a, b]).

COROLLARY 2.10. Suppose that f:[a,b] x R — R satisfies the condition
f(z,t) > 0 for all x € [a,b] and t > 0. Assume that there exist five positive
constants c1, ca, d, p and v with p+ v < b — a such that:

o sty () () it

M(b—a) [° 2
(b) (7260/ sup F(I,t) dxr < - ’
2ct a t€[—ci,e1 ] 3 MH<d> +vH| — d)
i 14

M(b—a) [° 1
(c) M/ sup F(z,t)dr < = +p .
2c;5 a t€[—ca,ca ] 3 MH(d> + Z/H< - d)
w 14
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e
AE | = s Y , 04

2 b—v
/ F(z,d)dz

Then, for each

+u
where
2¢2 3
O, ‘= min i M(b—a) - M —a) 7
sup F(z,t)dz / sup F(z,t)dx
a t€[—ci, c1] a tE€[—ca,ca]

the problem (2.4) admits at least three non-negative weak solutions vt, vZ, v3

such that
|/ (z)| < ey for each x € [a,b], j =1,2,3.

The following result is a consequence of Corollary 2.10.

COROLLARY 2.11. Let f:R — R be a non-negative continuous function such
that

t

lim —f( )

t—0t ¢

6 1

—0, ¢ <3 de.
| r@de<s [ e

Then, for every \ € ]12/]01 Ji63) d§,36/f06 (&) d€] the problem

{ —u" = Af(u) in (0,1),
u(0) =u(l) =0,

admits at least three non-negative classical solutions v', vZ, v3 such that

|v/(z)] < 6 for each x €[0,1], j =1,2,3.

PROOF. Choose a =0, b= 1. Set f(x,t) = f(t) for all z € [0,1] and t € R,
and h=1. Put d =1 and ¢y = 6. Therefore, by a simple computation we have

ot () +on(-7) )

1
2 b—v = 1 )
/ e, d) da /O 1(€) de

+p

c

M(b — a) _ 36
b - 6 :
/ sup  Fla,t)da / F(€) de
a t€] 0

—c2,c2]
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Moreover, since hm+ f(t)/t =0, there is a positive constant ¢; < 1 such that

t—0
2
1

<—5 s
d
f(&)d¢ /Of(g)dg

L r@a< g [ r@a ma
| J

Hence, it is easy to see that all assumptions of Corollary 2.10 are satisfied, and
the conclusion follows. ]

REMARK 2.12. We would like to stress that our results generalize previous
works. Specifically, Corollaries 2.9 and 2.10 extend Theorem 1 in [25], separately
in the setting [a,b] = [0,1] and 2¢/(M (b — a)) = r. In this respect, it is worth
remarking that the growth condition

t
/0 Fla,€) de <L+ 1)),

with 7 > 0 and 0 < s < 2 assumed in Theorem 1 in [25], is stronger than our
substitute assumptions. Taking h = 1, Corollaries 2.9 and 2.10 extend Theorem 2
of Bonanno [7] and Theorem 1 of Candito [17].

REMARK 2.13. The weak solutions of the problem (1.1) where f is contin-
uous, by using standard methods, belong to C?([a, b]). Namely, in this case, the
classical and the weak solutions of the problem (1.1) coincide.

We end this section by proving Theorem 1.1.

Proor oF THEAOREM 1.1. Fix

v o HUd/(b —a)) + H(-4d/(b — a))
' 2F (d)

H(t):/ot/OTh(l(s)dédr

for each t € R. Taking into account that lign i(r)lfF(&)/f2 = 0, there is {¢m }men C

A > for some d > 0

where

10, 4+o0[ such that lim ¢, =0 and

m——+oo
sup F(£)
<cm
I = ——()
m—>+oo c7n
In fact, one has
sup F'(§)
. lél<em o P, &
lim ———= lim ——- =0,
m— oo an m——+00 f?m an
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where F'(&.,, ) = sup F(§). Hence, there is € > 0 such that
l¢l<e

sup F
\£\§pE B < min 4F(d) 2

7 M(ba)2<H(b4_da> +H<b4_da>);AM(b—a)2

and
b—a 4d 4d
< —=|M|{H| —— H| —
() (- 5)
where M := sup h. From Corollary 2.9 the conclusion follows. (]

3. Proofs of the main results

ProOF OoF THEOREM 2.1. We proceed by applying Theorem 1.2 for X =
Wom([aa b]) equipped with the norm

Jull = (Jﬁﬂu%xMde)lﬂ,

and the functionals ®, ¥: X — R given by

b
(3.1) @wyi/w@wu»+H@w@mw

and

b
(3.2) MMz/F@me

for each u € X. It is well known that J is a Gateaux differentiable functional
and sequentially weakly lower semicontinuous whose Gateaux derivative at the
point u € X is the functional ¥/(u) € X*, given by

b
vwwsz@mwwww

for every v € X. We claim that ¥': X — X* is a compact operator. Indeed, for
fixed v € X, assume u,, — u weakly in X as n — +o00. Then u,, — u strongly
in C([a,b]). Since f(x, ) is continuous in R for every = € [a,b], we get that
f(z,un) — f(x,u) strongly as n — 4o00. By the Lebesgue control convergence
theorem, ¥’ (u,) — ¥’'(u) strongly, which means that ¥’ is strongly continuous,
then it is a compact operator. Hence the claim holds true.
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Moreover, @ is a Gateaux differentiable functional whose Gateaux derivative
at the point u € X is the functional ®'(u) € X*, given by

b
QI>’(U)(v):/ [H' (2, (2))v" (z) — g(@, u(x))v(z)] dz

:/abK/Oul(x) h(;T) dr ) (2) — gz, u(@))o(@)| da

for every v € X. Furthermore, ® is a Lipschitzian operator. Indeed, for any

u,v € X, taking (2.1) into account since

(3.3) max |u(z)| < M

z€[a,b] - 2 ||UH

for each u € X, it follows that

12 (u) = @' (v)[|x+ = sup [(@'(u) — @' (v), w)|

[lw[|<1
R L R
< sup / / ———d7||w'(x)| dx
wli<tJa | Ju) (@, 7T)

b
+ sup / 19(z, u(x)) = g(z, v(@))||lw(z)

[lw|[<1

1 L
<|—4+=(b-0a)? — ]|
_(m+4<b a>)|u o

In particular, ® is continuously Gateaux differentiable. Bearing (2.1) in mind,

dx

and using (3.3), we obtain

(® () — B (v), 1 — v) = / ’ ( / u(()) . (; S dT> (W (z) — o/ (z)) dz

—/ (9(z, u(z)) — g(z,v(2)))(u(z) - v(z)) dz

> (57— 50 @)l ol?
for u,v € X. Due to the assumption LM (b — a)? < 4, it follows that @’
is a strongly monotone operator, so ®' is uniformly monotone and we obtain
(®')71: X* — X exists and is continuous. Using again that @’ is uniformly
monotone, we get that ® is convex and continuous, and so is sequentially weakly
lower semicontinuous.
Choose u; = w, from (3.1) and assumption (a) in Theorem 2.1, we obtain
0 < r < ®(uy). Moreover, since h is bounded away from zero and g is continuous
and satisfies (2.1) with g(-,0) =0, from (3.1) we see that

(3.4) ®(u) > ;(]\1/[ - %(b - a)2> [[ul|> for all u € X,
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which yields

={ueXr§<]\1;—j(b—a>2)||u|2 <rf

2M(b—a)r

C X: <4/———— for all

_{ue lu(z)] < T=LM{b—a)? or a xe[a,b]},

that leads to
b
sup U(u) = sup / F(x,u(x))dzx
ued—1(]—o0,r]) u€®-1(]—o0,r]) Ja
b
< / sup F(z,t)dx.

te|— 2M(b—a)r 2M(b—a)r
4—LM(b—a)2’\/ 4—LM(b—a)?

Therefore, assumption (b) in Theorem 2.1 implies that

b
sup U(u) < / sup F(z,t)dx
) a

u€d—1(]—oco,r el 2M(b—a)r 2M(b—a)r
4—LM(b—a)2’\/ 4—LM(b—a)?

b
/ F(z,w(x))dz W (w)

<r =r

b
/ G, w(z)) + H(z, v (z))] dz

namely, assumption (a) of Theorem 1.2 is fulfilled.

Furthermore, due to assumption (c) in Theorem 2.1, there exist two constants
v,1n € R with

1 b
v < 7/ sup F(z,t)dx
"Ja 2M (b—a)r 2M (b—a)r
te _\/4—L]M(b—a)2 ’\/4—LM(b—a)2
such that
2M (b — a)? 9
mF(fE,t) § '}/t + n fOr a.e. r € [a7b].

Fix v € X. Then

35 Flou) < o EMO-—o?

= 2M(b—a)? (Y|u(z)* +n) for ae. z € [a,b].
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Now, in order to prove the coercivity of the functional ® — AW, first we assume
that v > 0. So, for any fixed A € Ay, from (3.1)-(3.5), we have

b

b
D(u) — A\ (u) = / [G(z,u(z)) + H(z,u'(z))] dx — )\/ F(z,u(x))dzx

171 L
S R O 2
(37— 50-0?)lul

—M4 LMb—a / (e do 2;4]\(4()(3(1)) .
z;(l— b—a2>||u||2

e L B M2 (L DY
0P - L

L A-LM(b—a)? LM(b a)?

(1 - ’yr// sup F(x,t) dx) [ |2
2M (b—a)r \/ 2M (b—a)r }

4 LM(b—a)2’\/ 4a—LM(b—a)?

4— LMb—a TN

2M (b —a) b
sup F(x,t)dx

te|— 2M(b—a)r 2M(b—a)r
4—LM(b—a)2’\ 4—LM(b—a)?

b

and thus
lim  (®(u) — AV (u)) = o0,

llull—-+o0
which means that the functional & — AW is coercive. On the other hand, if

v < 0, Clearly, we get | Hlim (®(u) — A¥(u)) = +o0o. Both cases lead to
ul|——+oo

the coercivity of functional ® — AW. So, assumption (b) of Theorem 1.2 is
satisfied. Now, we can apply Theorem 1.2. Hence, by using Theorem 1.2, taking
into account that the weak solutions of (1.1) are exactly the solutions of the
equation ®'(u) — A¥'(u) = 0, the problem (1.1) admits at least three distinct
weak solutions. ]

PROOF OF THEOREM 2.2. Let X, ® and V¥ be as in the proof of Theorem 2.1.
Let us apply Theorem 1.3 to our functionals. Obviously, ® and ¥ satisfy the
condition (a) of Theorem 1.3.

Now, we show that the functional ® — AU satisfies the Assumption (b) of
Theorem 1.3. Let u* and u** be two local minima for & — AU. Then u* and
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u** are critical points for ® — AW, and so, they are weak solutions for the prob-
lem (1.1). Since f(z,t) > 0 for all (z,t) € [a,b] x (RT U{0}), from the Weak
Maximum Principle (see for instance [16]) we deduce u*(x) > 0 and vw**(z) > 0
for every z € [a,b]. So, it follows that su* + (1 — s)u** > 0 for all s € [0, 1], and
that f(x, su* + (1 — s)u**) > 0, and consequently, ¥(su* + (1 — s)u**) > 0 for
all s € [0,1]. Moreover, from the condition

b ry
2r; < / [G(z,u(x)) + H(x,u' (z))] dz < 5

we observe 2r; < ®(w) < r9/2. Note that

O (]—o00,m[) = {ueX lu(z)] < mfor aullace[a,b]}7
we have
sup U(u) = sup / F(x,u(x
u€®=1(]—00,r1) u€P~1(]—o0,r1)
< / sup F(z,t)dx.

el 2M (b—a)ry 2M(b—a)ry
4—LM(b—a)2’\/ 4—LM(b—a)2

Therefore, owing to the assumption (a) of Theorem 2.2, we infer

1 1
— sup U(u) = — sup / F(z,u(x))dzx
Tl ued—1(]—o0,r1]) Tl ued=1(]—oo,r1[)

b
/ sup F(x,t)dx
a 2M (b—a)r 2M (b—a)r
< te |:7\/4—L1\4(b—a§2 ’\/4—LM(b—a§2:| 2 \Il(w)

b
/ (G, u(@)) + H(z, v/ (2))] do

As above, bearing the assumption (b) of Theorem 2.2 in mind, we deduce

1 1 b
— sup U(u) =- sup / F(z,u(x))dx
T2 ued—1(]—o0,r2]) T2ue®-1(]—00,ra[) Ja
1 b
<— sup F(z,t)dx

T2 _ 2M (b—a)ry 2M (b—a)ry
te 4—LM(b—a)2’\/ 4—LM(b—a)2

So, the assumptions (1.2) and (1.3) in Theorem 1.3 are satisfied. Hence, by using
Theorem 1.3, taking into account that the weak solutions of the problem (1.1)
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are exactly the solutions of the equation ®'(u) — A¥’(u) = 0, the problem (1.1)

admits at least three distinct weak solutions in X. O
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