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ON THE ASYMPTOTIC BEHAVIOR

OF STRONGLY DAMPED WAVE EQUATIONS

Yunlong Du — Xin Li — Chunyou Sun

Abstract. This paper is devoted to the asymptotic behavior of the semi-

linear strongly damped wave equation with forcing term only belongs
to H−1. Some refined decompositions of the solution have been presented,

which allow to remove the quasi-monotone condition f ′(s) > −k. The

asymptotic regularity and existence of a finite-dimensional exponential at-
tractor are established under the usual assumptions.

1. Introduction

We consider the following strongly damped wave equation on a bounded

domain Ω ⊂ R3 with smooth boundary ∂Ω:

(1.1)


utt −∆ut −∆u+ f(u) = g in Ω× R+,

(u(0), ut(0)) = (u0, v0),

u|∂Ω = 0,

where g ∈ H−1 is time-independent, f ∈ C1(R) with f(0) = 0 and satisfies the

following conditions:

(1.2) |f ′(s)| ≤ C0(1 + |s|4) for all s ∈ R
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and

(1.3) lim inf
|s|→∞

f(s)

s
> −λ1,

λ1 is the first eigenvalue of −∆ on H1
0 (Ω).

The global well-posedness of (1.1)–(1.3) in the natural energy phase space

H1
0 (Ω)× L2(Ω) was well known, for example, see [1], [2], [12]:

Lemma 1.1 ([1], [2], [12]). Let Ω ⊂ R3 be a smooth domain, g ∈ H−1 be

independent of time, f ∈ C1(R) with f(0) = 0 and satisfy (1.2)–(1.3). Then,

for every T > 0 and every (u0, v0) ∈ H1
0 (Ω) × L2(Ω), (1.1) has a unique weak

solution

u ∈ C([0, T ], H1
0 (Ω)), ut ∈ C([0, T ], L2(Ω)) ∩ L2([0, T ], H1

0 (Ω)),

and the solution operator defines a continuous semigroup {S(t)}t≥0 on H1
0 (Ω)×

L2(Ω). Moreover, {S(t)}t≥0 satisfies the following Lipschitz continuity: for any

z1, z2 ∈ H1
0 (Ω)× L2(Ω) and any t ≥ 0,

(1.4) ‖S(t)z1 − S(t)z2‖H1
0 (Ω)×L2(Ω) ≤ ec1t‖z1 − z2‖H1

0 (Ω)×L2(Ω),

where the constant c1 depends only on the size of ‖zi‖H1
0 (Ω)×L2(Ω).

The asymptotic behavior of solutions to equation (1.1) has been the object

of extensive studies via attractors, e.g. see [1], [2], [4], [5], [9], [10], [12], [13],

[17], [19] and the references therein, especially, the first result concerning ex-

istence of a global attractor in the critical case was proved by Carvalho and

Cholewa [2] whereas fractal dimension of the global attractor in the critical case

was estimated by Cholewa et al. [5].

Recently, asymptotic regularity for dissipative equations has been paid more

attention, especially for the strongly damped wave equation, e.g. see [3]–[5], [9],

[12], [13], [15] and so on for the relative results of (1.1).

For the case g ∈ L2(Ω), the authors in [12] have proved that the global

attractor is bounded in H2(Ω) × H1(Ω), and based on such regularity results,

by using of the abstract framework developed in [6], they obtained further the

existence of exponential attractor. In [13], the authors have proved that the

global attractor is bounded in H2(Ω)×H2(Ω) as g ∈ L2(Ω) when the nonlinearity

f( · ) satisfies lim inf
|s|→∞

f ′(s) > −λ1, and the authors in [13] also pointed out further

that one can prove the regularity of attractor when f( · ) only satisfies (1.2) and

(1.3), which have been realized recently in [16], [19]. In [9], the authors have

studied a more general case, that is, a quasi-linear equation and the growth of

nonlinear term can large than 5 under some additional structural conditions,

also some asymptotic regularity and the existence of exponential attractor have

been established.
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For the case g ∈ H−1, the corresponding results are not so abundant as that

for g ∈ L2(Ω).

We know that the solution of the elliptic equation

(1.5)

−∆u+ f(u) = g ∈ H−1,

u|∂Ω = 0,

in general only belongs to H1
0 (Ω) when f( · ) satisfies (1.2) and (1.3). So, as

g ∈ H−1, we cannot expect any higher regularity for the first component u

of (u, v) in attractor than H1
0 (Ω).

In [15], the author has proved some asymptotic regularity for the solution

of (1.1) under the following additional conditions: f ∈ C2 with

|f ′′(s)| ≤ C(1 + |s|3) for all s ∈ R,(1.6)

f ′(s) ≥ −k for all s ∈ R.(1.7)

The quasi-monotone condition (1.7) can simplify the proof largely when we con-

sider the long-time behavior, removing such condition has been seen as a “non-

trivial progress” to some extent; For example, we see that the following “good”

(smooth and linear growth) nonlinear function satisfies (1.2), (1.3) and (1.6),

but not (1.7):

f(v) =
λ1

2
v · sin v, for all v ∈ R.

Hence, our first main purpose of this paper is to remove the quasi-monotone

condition (1.7) and establish a same asymptotic regularity as that in [15]. That

is, in Section 3, by using of some refined properties of the stationary solution

of (1.5) and combining with some skillful decomposition of (1.1) (see [18] for

another application to nonclassical diffusion equation), we prove the following

asymptotic regularity:

Theorem 1.2 (Asymptotic regularity). Let f ∈ C2(R) and satisfy (1.3) and

(1.6), g ∈ H−1 and {S(t)}t≥0 be the semigroup generated by the weak solution

of (1.1) in the natural energy space H = H1
0 (Ω)×L2(Ω). Then, for each positive

constant σ < 1/2, there exist a subset Bσ, positive constant ν and a continuous

increasing function Qσ( · ) : R+ → R+ such that: for any bounded set B ⊂ H,

(1.8) distH(S(t)B, Bσ) ≤ Qσ(‖B‖H)e−νt for all t ≥ 0,

where Bσ satisfying

Bσ = {z ∈ H : ‖z − (φ(x), 0)‖H1+σ(Ω)×Hσ(Ω) ≤ Λσ <∞}



164 Y. Du — X. Li — Ch. Sun

for some positive constant Λσ; and φ(x) is the unique solution of the following

elliptic equation

(1.9)

−∆φ+ f(φ) + (3l + C0)φ = g(x)− gη(x) in Ω,

φ|∂Ω = 0,

where the constants l, C0 come from (3.1) and (1.2) respectively, gη ∈ L2(Ω)

such that ‖g − gη‖H−1 < η < (C0 · C ′6)−1/4/4. The constant Λσ and Qσ( · )
may depend on σ, but ν is independent of σ; C0 comes from (1.2) and C ′ is the

embedding constant of H1
0 (Ω) ↪→ L6(Ω).

Our second purpose is to establish the existence of a finite-dimensional ex-

ponential attractor for equation (1.1) when g ∈ H−1.

For the case g ∈ L2(Ω), the existence of an exponential attractor has been

obtained in several papers recently, e.g. Cholewa, Czaja and Mola [5], Pata

and Squassina [12], Yang and Sun [19], Kalantarov and Zelik [9] and so on. In

these papers, due to g ∈ L2, the asymptotic regularity of solutions can arrive

H2(Ω)×H2(Ω), consequently the nonlinear term f(u) will belong to L∞(Ω) by

the embedding H2(Ω) ↪→ L∞(Ω), hence, the criterion for the existence of an

exponential attractor devised in [6], [11] can be verified easily.

For the case g ∈ H−1, as mentioned previously, the first component u of

global attractor will only bounded in H1
0 (Ω). Hence the nonlinear term f(u) only

belongs to H−1, this brings some essential difficulties in verifying the criterion

for the existence of exponential attractor; for example, the method in [12], [19]

can not directly apply to this case and further argument is needed. In order to

overcome this difficulty, in [15], the author required f( · ) satisfy some additional

conditions which hold for the standard polynomial nonlinearities f(τ) = τ |τ |4 +

lower order terms.

In Section 4, based on the asymptotic regularity result Theorem 1.2 and

some asymptotical regular decomposition, we prove the existence of exponential

attractor under the same conditions as in Theorem 1.2, that is:

Theorem 1.3 (Exponential attractor). Under the assumptions of Theo-

rem 1.2, there exists a set E, which is compact in H1
0 (Ω)×L2(Ω) and satisfies

the following conditions:

(a) E is positively invariant, i.e. S(t)E ⊂ E for all t ≥ 0;

(b) dimF (E , H1
0 (Ω) × L2(Ω)) < ∞, i.e. E has finite fractal dimension in

H1
0 (Ω)× L2(Ω);

(c) there exist an increasing function Q̃ : R+ → R+ and α > 0 such that for

any subset B ⊂ H with ‖B‖H ≤ R there holds

distH1
0 (Ω)×L2(Ω)(S(t)B, E) ≤ Q̃(R)e−αt for all t ≥ 0;
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(d) E = (φ(x), 0) + Eσ with Eσ bounded in H1+σ(Ω) × Hσ(Ω) (σ < 1/2),

where φ(x) is the unique solution of (1.9).

Remark 1.4. Moreover, combining with the estimates about ‖∇ut(t)‖ and

‖utt(t)‖ given in Pata, Zelik [13], as that in Yang, Sun [19], we indeed can prove a

stronger attraction for the second component ut(t) of (u(t), ut(t)). For example,

we can improve the attraction in Theorem 1.3(c) to be distH1
0 (Ω)×H1

0 (Ω)(S(t)B, E)

provided that t > 0.

2. Preliminaries and notation

We first recall a Gronwall-type inequality, which will be used in the proof of

Theorem 1.2, for the proof please see [8]:

Lemma 2.1. Let Λ: R+ → R+ be an absolutely continuous function satisfying

d

dt
Λ(t) + 2 εΛ(t) ≤ h(t)Λ(t) + k,

where ε > 0, k ≥ 0 and
∫ t
s
h(τ) dτ < ε(t − s) + m for all t ≥ s ≥ 0 and some

m ≥ 0. Then,

Λ(t) ≤ Λ(0)eme−εt +
kem

ε
, for all t ≥ 0.

Next we recall a criterion for the existence of exponential attractor that

established in [6, Theorem 2.8]:

Lemma 2.2 ([6]). Let X and Y be two Banach spaces such that Y is compactly

embedded into X and let B be a bounded closed subset of Y . Operator S : B → B

satisfies that following condition: there exist positive constants ε and K such that

‖Sh1 − Sh2‖Y ≤ (1− ε)‖h1 − h2‖Y +K‖h1 − h2‖X for all h1, h2 ∈ B.

Then the semigroup {Sn}∞n=1 defined on B has an exponential attractorM in Y ,

that is, M satisfying the following properties:

(a) M is compact in Y and its fractal dimension in Y is finite, i.e.

dimF (M, Y ) <∞;

(b) M is semi-invariant with respect to S, i.e. SM ⊂M ;

(c) M attracts B exponentially, i.e. there exist C, κ > 0 such that

distY (SnB,M) ≤ Ce−κn for all n ∈ N.

Here Sn is the n times iteration of S, and distY ( · , · ) means the Hausdorff

semi-distance in Y .

In the following we give the notation that we will use throughout this paper:
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(1) A = −∆ with domain D(A) = H2(Ω) ∩H1
0 (Ω), and consider the family

of Hilbert spaces D(As/2), s ∈ R with the standard inner products and

norms, respectively,

〈 · , · 〉D(As/2) = 〈As/2 · , As/2 · 〉 and ‖ · ‖D(As/2) = ‖As/2 · ‖.

Especially, 〈 · , · 〉 and ‖ · ‖ denote the L2(Ω) inner product and norm

respectively;

(2) Hs = D(A(1+s)/2)×D(As/2), s ∈ [0, 1]; Especially, H = H0;

(3) ξu(t) = (u(t), ut(t)) for any t ≥ 0;

(4) Q( · ), Qi( · ) : [0,∞) 7→ [0,∞), i = 1, 2, . . . are continuous increasing

functions;

(5) C, ci (i = 1, 2, . . .) denote the general positive constant, which may

different from line to line.

3. Asymptotic regularity

We first list some properties associated with the assumptions of (1.2)–(1.3),

which will be used later in the decomposition of equation (1.1) for removing (1.7).

• From (1.3), we have that: there exist M1 > 0 and λ with 0 < λ < λ1,

such that f(s)s ≥ −λs2 for all |s| ≥M1;

• From (1.2) and f(0) = 0, we have |f(s)s| ≤ C0(1 + |s|4)s2 for all s ∈ R,

where C0 is the constant in (1.2);

• Take

(3.1) l = 1 + C0(1 +M4
1 ) + λ,

then

(3.2) f(s)s+ ls2 ≥ s2 for all s ∈ R;

• From (1.2) and (3.1), we have that: for any s ∈ R,

(3.3) f ′(s) + l ≥ −C0|s|4.

3.1. Decomposition of the equations. Since the injection i : L2(Ω) ↪→
H−1 is dense, we know that for every g ∈ H−1 and any η ∈ (0, 1), there is

a gη ∈ L2(Ω) which depends on g and η such that

(3.4) ‖g − gη‖H−1 < η.

Hereafter we always assume that f( · ) satisfies (1.3) and (1.6), η ∈ (0, (C0 ·
C ′6)−1/4)/4.

Now, we decompose the solution u(t) of (1.1) corresponding to initial data

(u0, v0) as follows:

(u(t), ut(t)) = S(t)ξu(0) = Kη(t)ξu(0) +Dη(t)ξu(0),
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where Kη(t)ξu(0) = (wη(t), wηt (t)) and Dη(t)ξu(0) = (zη(t), zηt (t)) solve the

following equations respectively,

(3.5)

wtt −∆wt −∆w + f(u)− f(z) = gη + (3l + C0)z in Ω× R+,

w(x, t)|∂Ω = 0, ξw(0) = (0, 0),

and

(3.6)

ztt −∆zt −∆z + f(z) + (3l + C0)z = g − gη in Ω× R+,

z(x, t)|∂Ω = 0, ξz(0) = ξu(0),

where the constant l comes from (3.1).

Then, we decompose further the solution zη(x, t) of (3.6) as zη(x, t) =

vη(x, t) + φη(x), where φη(x) is the unique solution of (1.9), and vη(x, t) solves

the following equation

(3.7)


vtt −∆vt −∆v + f(zη)− f(φη) + (3l + C0)v = 0 in Ω× R+,

v|∂Ω = 0,

ξv(0) = ξu(0)− (φη(x), 0).

3.2. A priori estimates. At first, from (3.2), for the solution φ(x) = φη(x)

of (1.9) we have that

(3.8) ‖φ‖H ≤ ‖g − gη‖H−1 ≤ η.

Secondly, for the solution of (3.6) we have the following estimates:

Lemma 3.1. There exists an increasing function Q1( · ) such that for any

bounded set B ⊂ H, the following estimate holds:

(3.9) ‖Dηξu(0)‖H ≤ e−c1tQ1(‖B‖H) + c2‖g − gη‖H−1 , for all ξu(0) ∈ B,

where the positive constant c1, c2 depend on ‖B‖H, but are independent of η.

Proof. Set f0( · ) = f( · ) + (3l+C0) · . Then, from (3.2), we see that f0( · )
satisfying all conditions required in [19, Lemma 3.2], consequently the proof is

same as the proof for [19, Lemma 3.2]. �

Denote h( · ) = f( · )+(3l+C0) · , then we have the following a priori estimate:

Lemma 3.2. Let η < min{1, (C0 ·C ′6)−1/4/(4(1 + c2))}, then for any bounded

set B ⊂ H, there exists T1 = T1(‖B‖H, η) > 0 such that the corresponding

solutions of (1.9) and (3.7) satisfy the following estimate:

1

2
‖∇v(t)‖2 + 2〈h(v(t) + φ)− h(φ), v(t)〉 − 〈h′(φ)v(t), v(t)〉 ≥ 0 as t ≥ T1,

where φ and v are the solutions of (1.9), (3.7) correspondingly, and C ′ is the

embedding constant of H1
0 (Ω) ↪→ L6(Ω).
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Proof. From (3.3) we have that

h′(s) ≥ 2l + C0 − C0|s|4 for all s ∈ R,

therefore,

2〈h(v(t) + φ) − h(φ), v(t)〉

≥ 2(2l + C0)‖v(t)‖2 − 2C0

∫
Ω

|rv(t) + φ|4|v(t)|2 dx

≥ (4l + 2C0)‖v(t)‖2 − 2C024

∫
Ω

(|v(t)|4 + |φ|4)|v(t)|2 dx

≥ (4l + 2C0)‖v(t)‖2 − 32C0 · C ′6(‖∇v(t)‖4 + ‖∇φ‖4)‖∇v(t)‖2.

On the other hand, from (1.2) we have |h′(s)| ≤ C0(1 + |s|4) + 3l+C0, and then

〈h′(φ)v(t), v(t)〉 ≤ C0‖v(t)‖2 + C0C
′6‖∇φ‖4‖∇v(t)‖2 + (3l + C0)‖v(t)‖2.

Hence, from (3.8) and (3.9), by taking η small enough (e.g. η ≤ (C0 · C ′6)−1/4/

(4(1 + c2))) and T large enough (e.g. e−c1TQ1(‖B‖H) ≤ η), we have that

1

2
‖∇v(t)‖2 + 2〈h(v(t) + φ)− h(φ), v(t)〉 − 〈h′(φ)v(t), v(t)〉

≥ 1

2
‖∇v(t)‖2 + l‖v(t)‖2 − 33C0C

′6(‖∇v(t)‖4 + ‖∇φ‖4)‖∇v(t)‖2 ≥ 0

for all t ≥ T . �

Consequently, as η < (C0 ·C ′6)−1/4/(4(1 + c2)), similar to Pata and Zelik [14]

and Sun [15], for the solution of (3.7) we have:

Lemma 3.3. Let η < (C0 · C ′6)−1/4/(4(1 + c2)), then there exist positive

constant k1 and increasing function Q2( · ) such that for any bounded set B ⊂ H,

the following estimate holds:

(3.10) ‖(v(x, t), vt(x, t))‖H ≤ Q2(‖B‖H)e−k1t, for all t ≥ 0, ξv(0) ∈ B.

Proof. At first, applying the usual multiplier method (e.g. see [2], [12]) we

can obtain that there is a constant M = M(‖B‖H) such that

(3.11) ‖(v(x, t), vt(x, t))‖H ≤M for all t ≥ 0, ξv(0) ∈ B.

Now, similar to [14], for ε ∈ (0, 1) to be determined later, define the functional

Λ(t) = ‖∇v(t)‖2+‖vt(t)‖2+ε‖∇v(t)‖2+2〈h(z)−h(φ), v〉+2ε〈vt, v〉−〈h′(φ)v, v〉.

Then, from Lemma 3.2 and by taking ε small enough, we have

Λ(t) ≥ 1

4
‖ξv(t)‖2H for all t ≥ T1, ξv(0) ∈ B,



Strongly Damped Wave Equations 169

where T1 = T1(‖B‖H,η) is given in Lemma 3.2. Therefore, same as that in [15,

Lemma 4.3], multiplying (3.7) by vt(t) + εv(t) we have that (note that zt = vt
and φt ≡ 0)

d

dt
Λ(t) + εΛ(t) + Γ +

ε

2
‖∇v(t)‖2 = 2〈

(
h′(z)− h′(φ)

)
zt, v〉,

where

Γ = 2‖∇vt(t)‖2 +
ε

2
‖∇v(t)‖2 − 3ε‖vt‖2 − 2ε2〈vt, v〉 − ε2‖∇v‖2 + ε〈h′(φ), v2〉.

It is easy to see that Γ ≥ 0 as ε small enough, and from (1.6) we have

2〈(h′(z)− h′(φ))zt, v〉 ≤
ε

2
‖∇v‖2 +

c

ε
‖∇zt‖2Λ,

where the constant c depends only on ‖B‖H+‖∇φ‖. Hence, applying Lemma 2.1

and noticing Λ(T1) ≤ Q′2(‖Dη(T1)B‖H), we have that

‖(v(x, t), vt(x, t))‖H ≤ Q′′2(‖Dη(T1)B‖H)e−k
′
1t, for all t ≥ T1, ξv(0) ∈ B,

which, combining with (3.11), implies the estimate (3.10) immediately. �

Remark 3.4. Note that the constant k1 in Lemma 3.3 depends on both

‖B‖H and η (through T1).

3.3. Proof of Theorem 1.2. After obtained Lemma 3.3, applying the

methods introduced in [7], [12], [20], the remainder of the proof are completely

same as that in [15, Lemmas 4.4–4.8] (Note that in [15], the quasi-monotone

condition (1.7) only be used to establish the a priori estimate [15, Lemma 4,3]).

More precisely, we can finish our proof by the following steps:

Step 1. At first, about the solution of equation (3.5), by the usual multiplier

method, we can deduce the following estimates: For every bounded subset B ⊂ H
and any σ ∈ [0, 1/2), there exist positive constant νσ (which depends only on

‖B‖H and σ) and an increasing function Qσ,‖gη‖( · ) such that

(3.12) ‖Kη(t)ξu(0)‖Hσ = ‖(wη(t), wηt (t))‖Hσ ≤ Qσ,‖gη‖(‖B‖H)eνσt,

for all t ≥ 0, ξu(0) ∈ B.

Step 2. Secondly, based on Lemma 3.3 and the estimate (3.12), we can

decompose the solution ξu(t) = (u(t), ut(t)) of (1.1) as following: for any ε > 0,

u(t) = v1(t) + w1(t), for all t ≥ 0,

where v1(t) and w1(t) satisfy the following estimates:

(3.13)

∫ t

s

‖∇v1(τ)‖2 dτ ≤ ε(t− s) + Cε for all t ≥ s ≥ 0,

and

(3.14) ‖A(1+σ)/2w1(t)‖2 ≤ Kε for all t ≥ 0,
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with the constants Cε and Kε depending on ε, ‖ξu(0)‖H and ‖g‖H−1 .

Step 3. Finally, follows the idea of Zelik [20], the estimates (3.13)-(3.14) allow

us to overcome the difficulty brings by the critical nonlinearity and obtain that

‖Kη(t)ξu(0)‖2Hσ = ‖(wη(t), wηt (t))‖2Hσ ≤ J‖B‖H,‖gη‖,σ

for all t ≥ 0 and ξu(0) ∈ B, for some positive constant J‖B‖H,‖gη‖,σ; and then we

can obtain the exponential estimate (1.8) by applying the attraction transitivity

lemma devised in [7]. The details are similar to that in [12], [15]. �

4. Exponential attractor

The main purpose of this section is to construct an exponential attractor of

{S(t)}t≥0 in H by the abstract method devised in [6], [11].

We first give a decomposition results about u(t), which will be used to con-

struct the exponential attractor, its proof are similar as the proof of Theorem 1.2

(or see [15, Lemma 4.9] for a outline of its proof), here we omit it.

Lemma 4.1. Under the assumption of Theorem 1.2, for each σ ∈ [0, 1/2) and

for any bounded (in Hσ) subset B1 ⊂ Hσ, if the initial data ξu(0) ∈ φ(x) + B1,

then the solution u(t) of (1.1) also satisfies a similar estimate, more precisely,

we have

‖S(t)ξu(0)− (φ(x), 0)‖2Hσ = ‖(u(t), ut(t))− (φ(x), 0)‖2Hσ ≤ KB1,σ,

for all t ≥ 0, ξu(0) ∈ φ(x) + B1, where the constant KB1,σ depends only on the

Hσ-bound of B1 and σ.

For each fixed σ ∈ (0, 1/2), denote

(4.1) Bσ =
⋃
t≥1

S(t)Bσ

H
,

where Bσ is the set obtained in Theorem 1.2. Then, from Lemma 4.1 we know

that ‖Bσ − (φ(x), 0)‖Hσ <∞.

For any two initial data ξui(0) ∈ Bσ and the corresponding solution

(ui(t), uit(t)) = S(t)ξui(0), i = 1, 2

set (ũ(t), ũt(t)) = S(t)ξu1
(0)− S(t)ξu2

(0), then (ũ(t), ũt(t)) solves the following

problem:

(4.2)


ũtt −∆ũt −∆ũ+ f(u1)− f(u2) = 0,

ξũ(0) = ξu1(0)− ξu2(0),

ũ|∂Ω = 0.

Then we have the following result about the solution of (4.2), which is a key

step in constructing the exponential attractor:



Strongly Damped Wave Equations 171

Lemma 4.2. Let σ ∈ (2/5, 1/2) be fixed and Bσ be defined by (4.1). Then

there exist a time t∗ > 0 and positive constant K such that for any two initial

data ξui(0) ∈ Bσ, i = 1, 2, the following estimate holds:

‖S(t∗)ξu1(0)−S(t∗)ξu2(0)‖Hσ ≤
1

2
‖ξu1(0)−ξu2(0)‖Hσ+K‖ξu1(0)−ξu2(0)‖H,

where both t∗ and K depend only on the bounds ‖Bσ − (φ(x), 0)‖Hσ and σ.

Proof. Multiplying (4.2) by Aσ(ũt + αũ) and integrating oven Ω (where

α ∈ (0, λ1) is a small constant which will be determined later), we obtain that

d

dt
(‖Aσ/2(ũt + αũ)‖2 + (1 + α)‖A(1+σ)/2ũ‖2)(4.3)

+ 2‖A(1+σ)/2ũt‖2 + 2α‖A(1+σ)/2ũ‖2

≤ 2α‖Aσ/2ũt‖2 + 2α2‖Aσ/2ũ‖‖Aσ/2ũt‖

+ 2

∫
Ω

(f(u2)− f(u1)) ·Aσũt dx+ 2α

∫
Ω

(f(u2)− f(u1)) ·Aσũ dx.

Note that for any ϕ ∈ D(A(1+σ)/2) we have ‖A(1+σ)/2ϕ‖2 ≥ λ1‖Aσ/2ϕ‖2, so

we can take α small enough such that, for all ϕ1, ϕ2 ∈ D(A(1+σ)/2),

(4.4) 2α‖Aσ/2ϕ1‖2 + 2α2‖Aσ/2ϕ1‖‖Aσ/2ϕ2‖

≤ ‖A(1+σ)/2ϕ1‖2 + α‖A(1+σ)/2ϕ2‖2

and

(4.5) α‖Aσ/2ϕ1‖ ≤
1

2
‖A(1+σ)/2ϕ1‖.

In the following, we fixed α such that (4.4)–(4.5) hold, and begin to estimate

the nonlinear term. At first, from (1.2) we have

|f(u2)− f(u1)| ≤ C0(1 + |u1 + (1− θ)u2|4)|u1 − u2|(4.6)

= C0(1 + |u1 + (1− θ)u2|4)|ũ|,

where θ ∈ (0, 1) depends on t, u1 and u2.

Now, applying the regular decomposition Lemma 4.1, for any ε > 0, we can

decompose ui(t) (t ≥ 0 and i = 1, 2) as ui = uiε + φε with

(4.7) ‖uiε(t)‖H1+σ ≤Mσ,ε <∞, for all t ≥ 0, ξui ∈ Bσ,

and

(4.8) ‖φε‖ ≤ ε,
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where the constant Mσ,ε depends only on the bounds ‖Bσ − (φ(x), 0)‖Hσ and ε.

Therefore, by using of (4.6) and Hölder inequality, we have

2

∫
Ω

(f(u2) − f(u1)) ·Aσũt dx(4.9)

≤ 2C0

∫
Ω

(1 + |u1
ε + (1− θ)u2

ε + φε|4)|ũ| · |Aσũt| dx

≤C(‖ũ‖‖Aσũt‖+ ‖φε‖4L6 · ‖ũ‖L6/(1−2σ)‖Aσ/2ũt‖L6/(1+2σ)

+ ‖uiε‖4L12/(1−σ)‖ũ‖ · ‖Aσ/2ũt‖L6/(1+2σ)).

Hence, noticing that 12/(1− σ) ≤ 6/(1− 2σ) for each σ ∈ (2/5, 1/2), then apply-

ing Cauchy–Schwarz inequality and Sobolev embedding H1+σ(Ω) ↪→ L6/(1−2σ),

H1(Ω) ↪→ L6(Ω), we can deduce from (4.7)–(4.9) that

2

∫
Ω

(f(u2) − f(u1)) ·Aσũt dx(4.10)

≤C(Cε‖ũ‖2 + ε‖A(1+σ)/2ũt‖2

+ ε‖A(1+σ)/2ũ‖‖A(1+σ)/2ũt‖+M4
ε,σ‖ũ‖ · ‖A(1+σ)/2ũt‖)

≤Cε,Mε,σ‖ũ‖2 + ε · C(‖A(1+σ)/2ũt‖2 + ‖A(1+σ)/2ũ‖2).

Similarly, we can obtain that

(4.11) 2α

∫
Ω

(f(u2)− f(u1)) ·Aσũ dx

≤ αCε,Mε,σ‖ũ‖2 + ε · αC(‖A(1+σ)/2ũt‖2 + ‖A(1+σ)/2ũ‖2).

Consequently, insetting (4.10)–(4.11) into (4.3) and also using (4.4)–(4.5), we

obtain

d

dt
(‖Aσ/2(ũt + αũ)‖2 + (1 + α)‖A(1+σ)/2ũ‖2)(4.12)

+ ‖A(1+σ)/2ũt‖2 + α‖A(1+σ)/2ũ‖2

≤Cα,ε,σ,Mε,σ
‖ũ‖2 + ε · Cα(‖A(1+σ)/2ũt‖2 + ‖A(1+σ)/2ũ‖2)

for all t > 0. Note that α is fixed, and so we can take ε small enough such that

ε · Cα(‖A(1+σ)/2ũt‖2 + ‖A(1+σ)/2ũ‖2) ≤ 1

2
(‖A(1+σ)/2ũt‖2 + α‖A(1+σ)/2ũ‖2).

Hence, we finally deduce that (using the embedding ‖ · ‖ ≤ C‖A1/2 · ‖):

(4.13)
d

dt
Eũ(t) + CαEũ(t) ≤ Cα,ε,σ,Mε,σ

‖ũ‖2 for all t > 0,

where Eũ(t) is defined as

(4.14) Eũ(t) = ‖Aσ/2(ũt(t) + αũ(t))‖2 + (1 + α)‖A(1+σ)/2ũ(t)‖2,
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which satisfying (notice α ∈ (0, λ1))

(4.15) cα,λ1
(‖Aσ/2ũt(t)‖2 + ‖A(1+σ)/2ũ(t)‖2) ≤ Eũ(t)

≤ Cα,λ1(‖Aσ/2ũt(t)‖2 + ‖A(1+σ)/2ũ(t)‖2),

where the positive constants cα,λ1
and Cα,λ1

are independent of t and ũ. Then

apply the Gronwall lemma to (4.13), we can obtain that

(4.16) Eũ(t) ≤ e−CαtEũ(0) + Cα,ε,σ,Mε,σe
−Cαt

∫ t

0

eCαs‖ũ(s)‖2 ds,

which, combining with (4.15) and the Lipschitz continuity (1.4), implies that

‖Aσ/2ũt(t)‖2 + ‖A(1+σ)/2ũ(t)‖2 ≤ e−Cαt · Cα,λ1

cα,λ1

· (‖Aσ/2ũt(0)‖2 + ‖A(1+σ)/2ũ(0)‖2) + Cα,ε,σ,Mε,σ ·
e2c1t − 1

2c1 · cα,λ1

‖ξũ(0)‖2H.

Hence, we can finish our proof by taking t∗ as a time which satisfies

2

√
e−Cαt∗ · Cα,λ1

cα,λ1

<
1

2

and taking K as

K2 = Cα,ε,σ,Mε,σ
· e

2c1t
∗ − 1

2c1 · cα,λ1

. �

Set B̂σ = Bσ − (φ(x), 0) ⊂ Hσ, and define the shift operator T on B̂σ as

follows:

(4.17)

T : B̂σ → B̂σ,
T (ξu(0)− (φ(x), 0)) := S(t∗)(ξu(0))− (φ(x), 0), for all ξu(0) ∈ Bσ.

Then, we can see that T satisfies all of conditions in Lemma 2.2 with X = H,

Y = Hσ (σ ∈ (2/5, 1/2)) and B = B̂σ ⊂ Y . Hence, we know that the semigroup

{Tn}∞n=1 has an exponential attractor M̂ ⊂ B̂σ which satisfying

(4.18)


M̂ is compact in Hσ and dimF (M̂,Hσ) <∞,
TM̂ ⊂ M̂,

∃ c, κ > 0, distHσ (Tn(B̂σ),M̂) ≤ ce−κn for any n ∈ N.

Now, setM = M̂+(φ(x), 0), then from (4.17)–(4.18) we can see thatM⊂Bσ
satisfying

(4.19)


M is compact in Hσ and dimF (M,Hσ) <∞,
S(t∗)M⊂M,

∃ c, κ > 0, distHσ (S(nt∗)(Bσ),M) ≤ ce−κn for any n ∈ N,
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which certainly implies that

(4.20)


M is compact in H and dimF (M,H) <∞,
S(t∗)M⊂M,

∃ c0, κ > 0, distH
(
S(nt∗)(Bσ),M

)
≤ c0e−κn for any n ∈ N.

In order to passing from the discrete semigroup {S(nt∗)}∞n=1 to the continu-

ous case {S(t)}t≥0, we need the following Lipschitz continuity:

Lemma 4.3. The mapping (t, ξu(0)) 7→ ξu(t) is Lipschitz continuous on

[0, t∗]× Bσ.

Proof. For any ξui(0) ∈ Bσ, ti ∈ [0, t∗], i = 1, 2, we have

‖S(t1)ξu1(0)− S(t2)ξu2(0)‖H
≤ ‖S(t1)ξu1(0)− S(t1)ξu2(0)‖H + ‖S(t1)ξu2(0)− S(t2)ξu2(0)‖H.

This first term has been estimated, e.g., see [12, Theorem 2]; for the second term,

we have

‖S(t1)ξu2(0)− S(t2)ξu2(0)‖H ≤
∣∣∣∣ ∫ t2

t1

∥∥∥∥ ddt (S(t)ξu2(0))

∥∥∥∥
H

∣∣∣∣
≤
∥∥∥∥ ddt (S(t)ξu2

(0))

∥∥∥∥
L∞(0,t∗;H)

|t1 − t2|,

and note that
∥∥ d
dt (S(t)ξu2(0))

∥∥
L∞(0,t∗;H)

has been estimated in [13]. �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. By using of the attraction transitivity lemma

devised in Fabrie et al. [7] and taking E =
⋃

t∈[0,t∗]

S(t)M (where M is given

in (4.20)), then we can verify from (1.8), (4.20) and the Lipschitz continuity

given in Lemma 4.3 directly that E is an exponential attractor of {S(t)}t≥0 in H
and satisfies all conditions in Theorem 1.3. �
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