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ON IMPULSIVE SEMIDYNAMICAL SYSTEMS:

MINIMAL, RECURRENT AND ALMOST PERIODIC MOTIONS

Everaldo M. Bonotto — Manuel Z. Jimenez

Abstract. This paper concerns results about minimal, recurrent and al-
most periodic motions in impulsive semidynamical systems. In the first

part, we investigate general properties of minimal sets. In the sequel, we

study some relations among minimal, recurrent and almost periodic mo-
tions. Some important results from the classical dynamical systems theory

are generalized to the impulsive case, as Birkhoff’s theorem for instance.

1. Introduction

Impulsive differential equations describe the evolution of systems where the

continuous development of a process is interrupted by abrupt changes of state.

The reader may find some important results and applications of impulsive sys-

tems in the papers [1]–[3], [12], [16]–[18], for instance.

In the last years, the action of impulses on impulsive semidynamical systems

has been intensively investigated. The study of this theory started by V. Rozko

on the paper [22] published in 1972. In [22] and [23], Rozko studied a class of

almost periodic motions in pulsed system and the theory of stability in terms

of Lyapunov for impulsive systems. Later on, Saroop Kaul continued the study

in impulsive systems presenting several important results as recursiveness and

theory of stability, see [19]–[21]. In 2004 several important results due Ciesielski
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were published in this area. In [13] and [14], Ciesielski proves results which con-

cern the continuity of the function which describes the time of reaching impulse

points, invariancy and stability. In [15] is presented theorems of isomorphisms of

impulsive systems. Results which deal with asymptotic stability, flows of charac-

teristic 0+, theorem of Poincaré–Bendixson, Poisson stability, LaSalle’s principle,

functional of Lyapunov and dissipative systems may be found in [5]–[11].

However, many results from the classical continuous dynamical systems the-

ory have not been studied for discontinuous systems. In particular, results which

deal with minimal, recurrent and almost periodic motions still need to be inves-

tigated when the system is perturbed by abrupt changes. The aim of this paper

is to establish general properties of minimal sets and show results which relate

minimal, recurrent and almost periodic motions. In the next lines we describe

the organization of the paper and the main results.

We start by presenting a summary of the basis of semidynamical systems with

impulse effects. In Section 2, we give some basic definitions and notations about

impulsive semidynamical systems. In Section 3, we present some additional

definitions and results that will be very useful in this paper. Section 4, concerns

the main results of this paper. In the sequel, we mention some of these results.

It is well know that every nonempty compact invariant set contains a compact

minimal set, see Theorem 4.4 (Chapter III) in [4] for instance. We provide suffi-

cient conditions to obtain a similar result for impulsive semidynamical systems.

The result is presented in Theorem 4.13.

The version of Birkhoff’s theorem is presented in Theorem 4.17. Given an

impulsive system, we show that every point of a minimal set that is not an impul-

sive point is recurrent. Also, we show that in complete metric spaces the closure

of any recurrent trajectory is compact and minimal under some conditions, see

Theorem 4.18.

For continuous dynamical systems, it is known that an almost periodic point

which possesses the closure of its trajectory compact is a recurrent point. We also

have this result for impulsive systems and it is presented in Theorem 4.23. In [4],

for the continuous case, the authors use the uniform continuity of the trajectories

to obtain the proof. Since we do not have uniform continuity for impulsive

systems we point out another type of proof that can be used for continuous

systems.

In Theorem 4.24, we consider a complete metric space and we suppose that

the positive orbit of a point together with its impulsive points form a minimal

set. Then we present conditions for this point to be eventually periodic. And

in Theorem 4.25, we establish conditions for an eventually periodic point to be

periodic.



On Impulsive Semidynamical Systems 123

2. Preliminaries

Let X be a metric space and R+ be the set of non-negative real numbers. The

triple (X,π,R+) is called a semidynamical system, if the function π : X×R+ → X

is continuous with π(x, 0) = x and π(π(x, t), s) = π(x, t + s), for all x ∈ X and

t, s ∈ R+. We denote such system simply by (X,π). For every x ∈ X, we

consider the continuous function πx : R+ → X given by πx(t) = π(x, t) and we

call it the motion of x.

Let (X,π) be a semidynamical system. Given x ∈ X, the positive orbit of x

is given by π+(x) = {π(x, t) : t ∈ R+}. For t ≥ 0 and x ∈ X, we define

F (x, t) = {y ∈ X : π(y, t) = x} and, for ∆ ⊂ [0,+∞) and D ⊂ X, we define

F (D,∆) =
⋃
{F (x, t) : x ∈ D and t ∈ ∆}.

Then a point x ∈ X is called an initial point if F (x, t) = ∅ for all t > 0.

An impulsive semidynamical system (X,π;M, I) consists of a semidynamical

system, (X,π), a nonempty closed subset M of X such that for every x ∈ M ,

there exists εx > 0 such that

F (x, (0, εx)) ∩M = ∅ and π(x, (0, εx)) ∩M = ∅,

and a continuous function I : M → X whose action we explain below in the

description of the impulsive trajectory of an impulsive semidynamical system.

The setM is called the impulsive set and the function I is called impulse function.

We also define

M+(x) =

(⋃
t>0

π(x, t)

)
∩M.

Let (X,π;M, I) be an impulsive semidynamical system. We define the func-

tion φ : X → (0,+∞] by

φ(x) =

s if π(x, s) ∈M and π(x, t) /∈M for 0 < t < s,

+∞ if M+(x) = ∅.

This means that φ(x) is the least positive time for which the trajectory of x

meets M . Thus for each x ∈ X, we call π(x, φ(x)) the impulsive point of x.

The impulsive trajectory of x in (X,π;M, I) is an X−valued function π̃x
defined on the subset [0, s) of R+ (s may be +∞). The description of such

trajectory follows inductively as described in the following lines.

If M+(x) = ∅, then π̃x(t) = π(x, t) for all t ∈ R+ and φ(x) = +∞. However,

if M+(x) 6= ∅, there is the smallest positive number s0 such that π(x, s0) = x1 ∈
M and π(x, t) /∈M , for 0 < t < s0. Then we define π̃x on [0, s0] by

π̃x(t) =

π(x, t), 0 ≤ t < s0,

x+
1 , t = s0,
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where x+
1 = I(x1) and φ(x) = s0. Let us denote x by x+

0 .

Since s0 < +∞, the process now continues from x+
1 onwards. If M+(x+

1 ) = ∅,
then we define π̃x(t) = π(x+

1 , t− s0) for s0 ≤ t < +∞ and φ(x+
1 ) = +∞. When

M+(x+
1 ) 6= ∅, there is the smallest positive number s1 such that π(x+

1 , s1) =

x2 ∈ M and π(x+
1 , t − s0) /∈ M , for s0 < t < s0 + s1. Then we define π̃x on

[s0, s0 + s1] by

π̃x(t) =

π(x+
1 , t− s0), s0 ≤ t < s0 + s1,

x+
2 , t = s0 + s1,

where x+
2 = I(x2) and φ(x+

1 ) = s1, and so on. Notice that π̃x is defined on each

interval [tn, tn+1], where t0 = 0 and tn+1 =
∑n
i=0 si, n = 0, 1, . . . Hence π̃x is

defined on [0, tn+1].

The process above ends after a finite number of steps, whenever M+(x+
n ) = ∅

for some n. Or it continues infinitely, if M+(x+
n ) 6= ∅, n = 0, 1, . . ., and in this

case the function π̃x is defined on the interval [0, T (x)), where T (x) =
∞∑
i=0

si.

Let (X,π;M, I) be an impulsive semidynamical system. Given x ∈ X, the

impulsive positive orbit of x is defined by the set

π̃+(x) = {π̃(x, t) : t ∈ [0, T (x))}.

Analogously to the non-impulsive case, an impulsive semidynamical system

satisfies the following standard properties: π̃(x, 0) = x for all x ∈ X and

π̃(π̃(x, t), s) = π̃(x, t + s), for all x ∈ X and for all t, s ∈ [0, T (x)) such that

t+ s ∈ [0, T (x)). See [5] for a proof of it.

For details about the structure of these types of impulsive semidynamical

systems, the reader may consult [8], [5], [10] and [13], [14], [15], [19], [20].

3. Additional definitions and results

Let us consider a metric space X with metric d. By B(x, δ) we mean the

open ball with center at x ∈ X and radius δ > 0. Given A ⊂ X, let B(A, δ) =

{x ∈ X : d(x,A) < δ} where d(x,A) = inf{d(x, y) : y ∈ A}. By Ac we denote

the complement of the set A in X.

Let (X,π) be a semidynamical system. Any closed set S ⊂ X containing x

(x ∈ X) is called a section or a λ-section through x, with λ > 0, if there exists

a closed set L ⊂ X such that

(a) F (L, λ) = S;

(b) F (L, [0, 2λ]) is a neighbourhood of x;

(c) F (L, µ) ∩ F (L, ν) = ∅, for 0 ≤ µ < ν ≤ 2λ.
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The set F (L, [0, 2λ]) is called a tube or a λ-tube and the set L is called a bar.

Let (X,π;M, I) be an impulsive semidynamical system. We now present the

conditions TC and STC for a tube.

Any tube F (L, [0, 2λ]) given by a section S through x ∈ X such that S ⊂
M ∩ F (L, [0, 2λ]) is called TC-tube on x. We say that a point x ∈ M fulfills

the Tube Condition and we write (TC), if there exists a TC-tube F (L, [0, 2λ])

through x. In particular, if S = M ∩ F (L, [0, 2λ]) we have a STC-tube on x and

we say that a point x ∈M fulfills the Strong Tube Condition (we write (STC)),

if there exists a STC-tube F (L, [0, 2λ]) through x.

The following theorem concerns the continuity of φ which is accomplished

outside M for M satisfying the condition TC.

Theorem 3.1 [13, Theorem 3.8]. Consider an impulsive semidynamical sys-

tem (X,π;M, I). Assume that no initial point in (X,π) belongs to the impulsive

set M and that each element of M satisfies the condition (TC). Then φ is con-

tinuous at x if and only if x /∈M .

Now, consider an impulsive semidynamical system (X,π;M, I) and A ⊂ X.

We define

π̃+(A) =
⋃
x∈A

π̃+(x) and π̃(A, t) =
⋃
x∈A

π̃(x, t)

for each t ≥ 0. If π̃+(A) ⊂ A, we say that A is positively π̃-invariant. And, a set

A is I-invariant if I(x) ∈ A for all x ∈ A ∩M .

The limit set of A ⊂ X in (X,π;M, I) is given by

L̃+(A) =
{
y ∈ X : there exist sequences {xn}n≥1 ⊂ A and {tn}n≥1 ⊂ R+

such that tn
n→+∞−−−−−→ +∞ and π̃(xn, tn)

n→+∞−−−−−→ y
}
.

The prolongational limit set of A ⊂ X is given by

J̃+(A) =
{
y ∈ X : there are sequences {xn}n≥1 ⊂ X and {tn}n≥1 ⊂ R+

such that d(xn, A)
n→+∞−−−−−→ 0, tn

n→+∞−−−−−→ +∞ and π̃(xn, tn)
n→+∞−−−−−→ y

}
and the prolongation set of A ⊂ X is given by

D̃+(A) =
{
y ∈ X : there exist sequences {xn}n≥1 ⊂ X and {tn}n≥1 ⊂ R+

such that d(xn, A)
n→+∞−−−−−→ 0 and π̃(xn, tn)

n→+∞−−−−−→ y
}
.

If A = {x} we set L̃+(x) = L̃+({x}), J̃+(x) = J̃+({x}) and D̃+(x) = D̃+({x}).
In the sequel, we mention some auxiliary results that will be very useful later

in this paper. For each x ∈ X, the motion π̃(x, t) is defined for every t ≥ 0, that

is, [0,+∞) denotes the maximal interval of definition of π̃x.
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Lemma 3.2 [5, Lemma 3.2]. Given an impulsive semidynamical system (X,π;

M, I), suppose w ∈ X \M and {zn}n≥1 is a sequence in X which converges to w.

Then, for any t ≥ 0 there is a sequence {εn}n≥1 ⊂ R such that εn
n→+∞−−−−−→ 0 and

π̃(zn, t+ εn)
n→+∞−−−−−→ π̃(w, t).

Lemma 3.3 [10, Lemma 3.3]. Given an impulsive semidynamical system

(X,π; M, I), suppose w ∈ X \M and {zn}n≥1 is a sequence in X which con-

verges to w. Then, for any t ≥ 0 such that t 6=
k∑
j=0

φ(w+
j ), k = 0, 1, . . ., we have

π̃(zn, t)
n→+∞−−−−−→ π̃(w, t).

Lemma 3.4 [10, Lemma 3.1]. Let (X,π;M, I) be an impulsive semidynamical

system and x ∈ X. Suppose φ(x+
j ) <∞ for every j = 0, 1, . . . Then

π̃+(x) = π̃+(x) ∪ L̃+(x) ∪ {xj : j = 1, 2, . . .},

where xj = π(x+
j−1, φ(x+

j−1)), j = 1, 2, . . ., and π̃+(x) is the positive orbit of x

with respect to π̃. Note that if φ(x+
j ) < +∞, j = 0, 1, . . . , k and φ(x+

k+1) = +∞
then

π̃+(x) = π̃+(x) ∪ L̃+(x) ∪ {xj : j = 1, . . . , k + 1}.

A point x ∈ X is called stationary or rest point with respect to π̃, if π̃(x, t) =

x for all t ≥ 0, it is a periodic point with respect to π̃, if π̃(x, t) = x for some

t > 0 and x is not stationary, and x is an eventually periodic point with respect

to π̃, if π̃(x, t) is periodic for some t ≥ 0. The set π̃+(x), x ∈ X, is said to be

eventually periodic if π̃(x, t) is an eventually periodic point for all t ≥ 0.

A point x ∈ X \M is positively Poisson π̃-stable if x ∈ L̃+(x), see Defini-

tion 3.2 and Theorem 3.1 in [10].

Theorem 3.5 [10, Theorem 3.3]. Let (X,π;M, I) be an impulsive semidy-

namical system and suppose X is a complete metric space. Let x ∈ X \M be

positively Poisson π̃-stable and not an eventually periodic point. Then the set

L̃+(x)− π̃+(x) is dense in L̃+(x).

4. The main results

Throughout this section we shall consider an impulsive semidynamical system

(X,π;M, I), where (X, d) is a metric space. Moreover, we shall assume the

following additional hypotheses:

(H1) No initial point in (X,π) belongs to the impulsive set M and each ele-

ment of M satisfies the condition (STC), consequently φ is continuous

on X \M (see Theorem 3.1).

(H2) M ∩ I(M) = ∅.
(H3) For each x ∈ X, the motion π̃(x, t) is defined for every t ≥ 0, that is,

[0,+∞) denotes the maximal interval of definition of π̃x.
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4.1. Minimal sets. In [20], Kaul defines the concept of minimality for a set

A in an impulsive semidynamical system (X,π;M, I) in the following way:

A is minimal in (X,π;M, I) if A = π̃+(x) for all x ∈ A \M.

However, in the classical theory of continuous dynamical systems, a set A in

a dynamical system (X,π) is called minimal if A is nonempty, closed, invariant

and it does not contain any proper subset with these properties, see Definition 3.1

(Chapter III) from [4]. As consequence, it follows that a nonempty set A ⊂ X is

minimal if and only if π+(x) = A for every x ∈ A, see Theorem 3.2 (Chapter III)

in [4].

Thus, we define the concept of minimality for impulsive semidynamical sys-

tems as presented in [4] and we show that the definition from Kaul is equivalent

to our definition.

Definition 4.1. A set A ⊂ X is minimal in (X,π;M, I) if the following

conditions hold:

(a) A \M 6= ∅;
(b) A is closed;

(c) A \M is positively π̃-invariant;

(d) A does not contain any proper subset satisfying (a), (b) and (c).

Remark 4.2. Given an impulsive semidynamical system (X,π;M, I), we

suppose that there is a point x ∈ X \M such that I(π(x, φ(x))) = x. Then

A = π(x, [0, φ(x)]) is minimal in (X,π;M, I).

In the sequel, we show that the definition given by Kaul, [20], is equivalent

to Definition 4.1. But before that we present an auxiliary result.

Proposition 4.3. Let (X,π;M, I) be an impulsive semidynamical system.

Then the set L̃+(x) \M is positively π̃-invariant for all x ∈ X.

Proof. Suppose L̃+(x) \M is nonempty. Let y ∈ L̃+(x) \M and t ≥ 0 be

arbitrary. Then there is a sequence {tn}n≥1 ⊂ R+ with tn
n→+∞−−−−−→ +∞ such that

π̃(x, tn)
n→+∞−−−−−→ y. Since y /∈ M we may assume that {π̃(x, tn)}n≥1 ⊂ X \M .

Then by Lemma 3.2, there is a sequence {εn}n≥1 ⊂ R with εn
n→+∞−−−−−→ 0 such

that

π̃(x, tn + t+ εn) = π̃(π̃(x, tn), t+ εn)
n→+∞−−−−−→ π̃(y, t).

Note that {tn + t+ εn}n≥1 ⊂ R+ with tn + t+ εn
n→+∞−−−−−→ +∞. Then π̃(y, t) ∈

L̃+(x)\M because I(M)∩M = ∅ (see hypothesis (H2)). Since t ≥ 0 is arbitrary

the result is proved. �

Theorem 4.4. A set A ⊂ X is minimal in (X,π;M, I) if and only if A =

π̃+(x) for all x ∈ A \M .
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Proof. First, let us suppose that A is minimal. Let x ∈ A\M be arbitrary.

Since A \M is positively π̃-invariant, we have π̃+(x) ⊂ A, and since A is closed

it follows that

π̃+(x) ⊂ A = A.

Note that π̃+(x)\M 6= ∅, π̃+(x) is closed and π̃+(x)\M is positively π̃-invariant

(by Proposition 4.3 and Lemma 3.4). By minimality of A we have π̃+(x) = A.

Now, let us show the sufficient condition. Let B ⊂ A such that B \M 6= ∅, B
is closed and B \M is positively π̃-invariant. If b ∈ B \M then b ∈ A\M and we

have A = π̃+(b). Since B \M is positively π̃-invariant, we get B ⊂ A = π̃+(b) ⊂
B = B, and consequently A = B. Hence, A is minimal in (X,π;M, I). �

We have another way to characterize minimal sets under an additional hy-

pothesis, see the next theorem.

Theorem 4.5. Let A ⊂ X and suppose L̃+(x) \M 6= ∅ for all x ∈ A. Then

A is minimal in (X,π,M, I) if and only if A = L̃+(x) for all x ∈ A \M .

Proof. Let us show the necessary condition. Let x ∈ A \M be arbitrary.

By Theorem 4.4 we have π̃+(x) = A. Then L̃+(x) ⊂ A. Since L̃+(x) \M 6= ∅,
L̃+(x) is closed, L̃+(x) \M is positively π̃-invariant (Proposition 4.3) and A is

minimal, we have L̃+(x) = A.

Now, let us show the sufficient condition. Suppose that A is not minimal,

then there is a proper subset B of A such that B \ M 6= ∅, B is closed and

B \M is positively π̃-invariant. Given b ∈ B \M , it follows that b ∈ A \M .

By hypothesis we have A = L̃+(b). Since B \M is positively π̃-invariant, we get

B ⊂ A = L̃+(b) ⊂ B = B. Therefore, A = B and it is a contradiction. Then A

is minimal and the theorem follows. �

By the proof of Theorem 4.5, we have the following result.

Theorem 4.6. Let A ⊂ X be a minimal set and x ∈ A \M be a point such

that L̃+(x) \M 6= ∅. Then A = L̃+(x).

Let x ∈ X. The trajectory of x is continuous provided that π̃+(x) is minimal.

See the next result.

Lemma 4.7. Let (X,π;M, I) be an impulsive semidynamical system. If π̃+(x)

is minimal then π̃+(x) = π+(x).

Proof. We need to show that φ(x) = +∞. Suppose that φ(x) < +∞. Set

x1 = π(x, φ(x)) ∈M . Then x1 ∈ π̃+(x). By minimality of π̃+(x) we have π̃+(x)

closed. Then x1 ∈ π̃+(x). But it is a contradiction because π̃(x, (0,+∞))∩M = ∅
for all x ∈ X as I(M) ∩M = ∅. Therefore, φ(x) = +∞. �
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Given a continuous dynamical system it is known that every nonempty com-

pact invariant set contains a compact minimal set, see Theorem 4.4 (Chapter III)

in [4] for instance. In the next lines, we are going to present conditions to obtain

this result for impulsive systems. For that we start by defining a special type of

minimality in (X,π;M, I).

Definition 4.8. A set A ⊂ X is I−minimal in (X,π;M, I) if the following

conditions hold:

(a) A \M 6= ∅;
(b) A is closed;

(c) A \M is positively π̃- invariant;

(d) I(A ∩M) ⊂ A;

(e) A does not contain any proper subset satisfying the four properties

above.

Definition 4.9. The impulsive set M satisfies a special tube condition, we

write SSTC, if M satisfies the condition STC and for any x ∈ M and for any

λ-tube F (L, [0, 2λ]) through x we have the condtion: if z ∈ F (L, µ), 0 ≤ µ ≤ λ,

then there is w ∈ S = M ∩ F (L, [0, 2λ]) such that π(w, λ− µ) = z.

Lemma 4.10 below gives sufficient conditions for a limit set to be I-invariant.

Lemma 4.10. Let (X,M ;M, I) be an impulsive semidynamical system, M

satisfies SSTC and assume that there exists ε0 > 0 such that π(M, [0, ε0]) ∩
I(M) = ∅. Then I(L̃+(x) ∩M) ⊂ L̃+(x), x ∈ X.

Proof. Suppose that L̃+(x) ∩M 6= ∅ for some x ∈ X. Let a ∈ L̃+(x) ∩
M . Then there is a sequence {tn}n≥1 ⊂ R+ such that tn

n→+∞−−−−−→ +∞ and

π̃(x, tn)
n→+∞−−−−−→ a. Since M satisfies the condition STC, there exists a STC-tube

F (L, [0, 2λ]) through a given by a section S ⊂M such that S = M∩F (L, [0, 2λ]).

We may assume λ < ε0. Since the tube is a neighbourhood of a, there is η > 0

such that

B(a, η) ⊂ F (L, [0, 2λ]).

Let A1 = F (L, (λ, 2λ]) ∩B(a, η) and A2 = F (L, [0, λ]) ∩B(a, η).

Let {π̃(x, tnk
)}k≥1 be any subsequence of {π̃(x, tn)}n≥1. We claim that there

is a number ` > 0 such that {π̃(x, tnk
)}nk≥` ⊂ A1. In fact, suppose the contrary.

For convenience we assume that {π̃(x, tnk
)}k≥1 ⊂ A2. Let yk = π̃(x, tnk

), k =

1, 2, . . . By the properties of a tube, there is sk ∈ [0, λ] such that F (yk, sk) ⊂ S

for each k = 1, 2, . . ., that is,

π(F (yk, sk), sk) = yk,

k = 1, 2, . . . Let k0 > 0 such that tnk
− sk > 0 for all k ≥ k0. Since π̃(x, t) /∈

+∞⋃
n=1

F (yn, sn) for all t > 0, because I(M)∩M = ∅ by hypothesis (H2), there are
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t′k ∈ (tnk
− sk, tnk

] and wk ∈ M such that I(wk) = π̃(x, t′k) for k ≥ k0. Also,

note that

I(wk) = π̃(x, t′k) ∈ F (L, [0, λ]) for k ≥ k0.

Since F (L, [0, λ]) ⊂ π(M, [0, ε0]) we have I(wk) ∈ π(M, [0, ε0]) ∩ I(M) for all

k ≥ k0, which contradicts the hypothesis.

Hence, we may assume {π̃(x, tn)}n≥1 ⊂ A1. Thus we have

µn = φ(π̃(x, tn))
n→+∞−−−−−→ 0 and I(π(π̃(x, tn), µn))

n→+∞−−−−−→ I(a),

that is,

π̃(x, tn + µn)
n→+∞−−−−−→ I(a).

Therefore, I(a) ∈ L̃+(x) and the result is proved. �

The next theorem gives a characterization for I-minimal sets.

Theorem 4.11. Let (X,M ;M, I) be an impulsive semidynamical system, M

satisfies SSTC and assume that there exists ε0 > 0 such that π(M, [0, ε0]) ∩
I(M) = ∅. Then a set A ⊂ X is I-minimal if and only if A = π̃+(x) for all

x ∈ A \M .

Proof. It is enough to use Lemma 4.10 and the proof of Theorem 4.4. �

Corollary 4.12. Let (X,M ;M, I) be an impulsive semidynamical system,

M satisfies SSTC and assume that there exists ε0 > 0 such that π(M, [0, ε0]) ∩
I(M) = ∅. Then A is I-minimal if and only if A is minimal.

Follow below the result that gives conditions for a compact set to contain

a minimal set.

Theorem 4.13. Let (X,M ;M, I) be an impulsive semidynamical system, M

satisfies SSTC and assume that there exists ε0 > 0 such that π(M, [0, ε0]) ∩
I(M) = ∅. Let F ⊂ X be a compact set such that F \M is a nonempty positively

π̃-invariant set and F is I-invariant. Then F contains a minimal set.

Proof. We are going to show that F contains an I-minimal subset. The

proof follows by Zorn’s Lemma. Consider the family

σ = {B ⊂ F : B \M 6= ∅, B is compact,

B \M is positively π̃-invariant and B is I-invariant}.

Note that σ 6= ∅ because F ∈ σ.

Given B1, B2 ∈ σ, we define the partial ordering relation “≤” by inclusion,

that is, B1 ≤ B2 if and only if B1 ⊆ B2. Let σ∗ = {Bλ}λ∈Λ be a total ordered

subset of σ by relation ≤. Note that
n⋂
i=1

Bλi
6= ∅, for any Bλ1

, . . . , Bλn
∈ σ∗. Set

J =
⋂
λ∈Λ

Bλ. We claim that J ∈ σ. In fact, note that:
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(i) J 6= ∅.
Indeed, suppose that J = ∅, then F ⊂

⋃
λ∈Λ

Bcλ. By compactness of F there are

λ1, . . . , λn ∈ Λ such that F ⊂
n⋃
i=1

Bcλi
. Since Bλi

⊂ F for all i = 1, . . . , n, we have

n⋂
i=1

Bλi
⊂ Bcλi

for all i = 1, . . . , n. Then
n⋂
i=1

Bλi
= ∅, which is a contradiction.

Hence, J 6= ∅.
(ii) J ⊂ F and J is compact.

(iii) J \M 6= ∅.
In fact, suppose that J \M = ∅. Then J =

⋂
λ∈Λ

Bλ ⊂ M . Let x ∈ J , then

x ∈ Bλ ∩M for all λ ∈ Λ. Since each Bλ is I-invariant we have I(x) ∈ Bλ \M
for all λ ∈ Λ. Consequently, I(x) ∈ J \M which is a contradiction. Hence,

J \M 6= ∅.
(iv) J \M is positively π̃-invariant.

In fact, let x ∈ J \M =
⋂
λ∈Λ

(Bλ \M). Then x ∈ Bλ \M for all λ ∈ Λ and since

Bλ \M is positively π̃-invariant we have

π̃(x, t) ∈ Bλ \M for all t ≥ 0 and all λ ∈ Λ.

Thus

π̃(x, t) ∈
⋂
λ∈Λ

(Bλ \M) = J \M for all t ≥ 0.

Since x ∈ J \M is arbitrary, it follows that J \M is positively π̃-invariant.

(v) J is I-invariant.

Let x ∈ J ∩M , then x ∈ Bλ ∩M for all λ ∈ Λ. Since each Bλ is I-invariant we

have I(x) ∈ Bλ for all λ ∈ Λ, that is, I(x) ∈ J .

In conclusion, J =
⋂
λ∈Λ

Bλ ∈ σ.

On the other hand, if B ∈ σ∗ then J ⊆ B. Thus by Zorn’s Lemma it

follows that σ admits a minimal element that is the I-minimal subset of F . By

Corollary 4.12 this I-minimal set is a minimal set. �

Theorem 4.14. Let (X,M ;M, I) be an impulsive semidynamical, M sa-

tisfies condition SSTC system and assume that there exists ε0 > 0 such that

π(M, [0, ε0]) ∩ I(M) = ∅. Let x ∈ X be such that π̃+(x) is compact and L̃+(x) \
M 6= ∅. Then L̃+(x) contains a compact minimal set.

Proof. Since π̃+(x) is compact it follows that L̃+(x) is nonempty and com-

pact. By hypotheses, we have L̃+(x) \M 6= ∅. Since L̃+(x) \M is positively

π̃-invariant and L̃+(x) is I-invariant (Lemma 4.10), it follows by Theorem 4.13

that L̃+(x) contains a minimal set. �
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4.2. Almost periodic and recurrent motions. In this section, we define

the concepts of almost periodic and recurrent motions in impulsive semidynam-

ical systems. Then we establish results which encompass these concepts.

Definition 4.15. A point x ∈ X is said to be π̃−recurrent if for every ε > 0

there exists a T = T (ε) > 0, such that for every t, s ≥ 0, the interval [0, T ]

contains a number τ > 0 such that

d(π̃(x, t), π̃(x, s+ τ)) < ε.

A positive orbit π̃+(x) is said to be π̃-recurrent if x ∈ X is π̃-recurrent.

Remark 4.16. If x ∈ X is π̃-recurrent then given ε > 0 there is T = T (ε) > 0

such that π̃+(x) ⊂ B(π̃(x, [t, t+ T ]), ε), for all t ≥ 0.

The next result gives sufficient conditions for a point to be π̃-recurrent.

Theorem 4.17. Let (X,π;M, I) be an impulsive semidynamical system and

A ⊂ X be a compact minimal set. If x ∈ A \M , then x is π̃-recurrent.

Proof. Suppose that x is not π̃-recurrent. Then there are ε > 0 and se-

quences {Tn}n≥1, {sn}n≥1, {tn}n≥1 ⊂ R+ such that Tn
n→+∞−−−−−→ +∞ and

(4.1) d(π̃(x, tn), π̃(x, sn + τ)) ≥ ε for all τ ∈ [0, Tn], n = 1, 2, . . .

Since x ∈ A \M and A \M is positively π̃-invariant, we have

{π̃(x, tn)}n≥1 ⊂ A \M ⊂ A and

{
π̃

(
x, sn +

Tn
2

)}
n≥1

⊂ A \M ⊂ A.

By compactness of A, we may assume without loss of generality that

π̃(x, tn)
n→+∞−−−−−→ a ∈ A, π̃

(
x, sn +

Tn
2

)
n→+∞−−−−−→ b ∈ A.

Case 1. b /∈ M . Let t ≥ 0 be fixed and arbitrary. First, suppose that

t 6=
k∑
j=0

φ(b+j ) for all k = 0, 1, 2, . . . In this case, by continuity of π and I, there

is δ > 0 such that if d(y, b) < δ then

(4.2) d(π̃(y, t), π̃(b, t)) <
ε

3
.

On the other hand, one can find a number n0 ∈ N such that

Tn0

2
> t,

d(π̃(x, tn), a) <
ε

3
, for all n ≥ n0,

d

(
π̃

(
x, sn +

Tn
2

)
, b

)
< δ, for all n ≥ n0.

(4.3)
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Using (4.1), (4.2) and (4.3) we obtain

d(π̃(b, t), a) ≥ d
(
π̃(x, tn0

), π̃

(
x, sn0

+
Tn0

2
+ t

))
− d
(
π̃(b, t), π̃

(
π̃

(
x, sn0

+
Tn0

2

)
, t

))
− d(π̃(x, tn0

), a) > ε− ε

3
− ε

3
=
ε

3
.

Since the choice of t is arbitrary, we have

(4.4) d(π̃(b, t), a) >
ε

3
for all t ≥ 0 such that t 6=

k∑
j=0

φ(b+j ), k = 0, 1, 2, . . .

Now, suppose that there exists k ∈ N such that t =
k∑
j=0

φ(b+j ). We can take

a sequence {λn}n≥1 of positive real numbers such that

λn
n→+∞−−−−−→

k∑
j=0

φ(b+j ) with

k∑
j=0

φ(b+j ) < λn <

k+1∑
j=0

φ(b+j ).

Using (4.4) we have

d(π̃(b, λn), a) >
ε

3
for n = 1, 2, . . . ,

so

d

(
π̃

(
b,

k∑
j=0

φ(b+j )

)
, a

)
≥ ε

3
,

since π̃ is continuous from the right.

Therefore, we can conclude that d(π̃(b, t), a) ≥ ε/3 for all t ≥ 0, which implies

that a /∈ π̃+(b). This is a contradiction since A is minimal.

Case 2. b ∈M . Since M satisfies the condition STC, there exists a STC-tube

F (L, [0, 2λ]) through b given by a section S. Since the tube is a neighbourhood

of b, there is η > 0 such that B(b, η) ⊂ F (L, [0, 2λ]). Denote H1 and H2 by

H1 = F (L, (λ, 2λ]) ∩B(b, η) and H2 = F (L, [0, λ]) ∩B(b, η).

Consider wn = π̃(x, sn + Tn/2) and recall that wn
n→+∞−−−−−→ b. Here, we need to

analyse two cases: when {wn}n≥1 admits subsequence in H1 and when {wn}n≥1

admits subsequence in H2.

(a) Suppose that the sequence {wn}n≥1 admits a subsequence {wnr}r≥1

in H1. In this case we have φ(wnr )
r→+∞−−−−−→ 0. Then

π̃

(
x, snr +

Tnr

2
+ φ(wnr

)

)
r→+∞−−−−−→ I(b).

Since A \M is positively π̃−invariant and x ∈ A \M we have I(b) ∈ A = A.

Consider the motion π̃(I(b), t). Since I(M) ∩M = ∅ we have I(b) /∈ M . By

following the ideas of Case 1 we conclude that d(π̃(I(b), t), a) ≥ ε/3 for all t ≥ 0,

which implies that a /∈ π̃+(I(b)), which is a contradiction because A is minimal.
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(b) Suppose now that the sequence {wn}n≥1 admits a subsequence {wns
}s≥1

in H2. Consider 0 < λ < φ(b). Since wns

s→+∞−−−−−→ b, we have

π̃

(
x, sns

+
Tns

2
+ λ

)
s→+∞−−−−−→ π̃(b, λ).

Since x ∈ A\M and A\M is positively π̃-invariant, we get b1 = π̃(b, λ) ∈ A = A.

Note that b1 /∈M since I(M) ∩M = ∅. Considering the motion π̃(b1, t), we use

again the proof of Case 1 and we obtain a contradiction.

This shows that x ∈ A \M is π̃-recurrent and the theorem is proved. �

Theorem 4.18 presents conditions for a point outside of the set M to admit

the closure of its positive orbit minimal.

Theorem 4.18. Let (X,π;M, I) be an impulsive semidynamical system where

X is a complete metric space and x ∈ X. If π̃+(x) is π̃-recurrent then π̃+(x) is

compact. Furthermore, if x /∈M then π̃+(x) is minimal.

Proof. First, let us show that π̃+(x) is compact. Let ε > 0 be given. Since

π̃+(x) is π̃-recurrent there is T = T (ε) > 0 such that

(4.5) d(π̃(x, t), π̃(x, [0, T ])) <
ε

2
for all t ≥ 0.

Let y ∈ π̃+(x), then there is a sequence {yn}n≥1 ⊂ π̃+(x) such that

(4.6) yn
n→+∞−−−−−→ y.

Let yn = π̃(x, tn) with tn ∈ R+, n = 1, 2, . . . Using (4.5) we have

d(yn, π̃(x, [0, T ])) <
ε

2
, n = 1, 2, . . .

When n→ +∞, we get

(4.7) d(y, π̃(x, [0, T ])) ≤ ε

2
.

On the other hand, since π̃(x, [0, T ]) is compact it is totally bounded, that is,

there are points x1, . . . , xn ∈ π̃(x, [0, T ]) such that

(4.8) π̃(x, [0, T ]) ⊂
n⋃
i=1

B

(
xi,

ε

2

)
.

By compactness there is z ∈ π̃(x, [0, T ]) such that

(4.9) d(y, z) = d(y, π̃(x, [0, T ])).

By (4.8) there is xi ∈ π̃(x, [0, T ]) for some i ∈ {1, . . . , n} such that

(4.10) d(z, xi) <
ε

2
.

Thus using (4.7), (4.9) and (4.10) we obtain

d(y, xi) ≤ d(y, z) + d(z, xi) <
ε

2
+
ε

2
= ε.
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Then π̃+(x) ⊂
n⋃
i=1

B(xi, ε), which means that π̃+(x) is totally bounded. Since

X is complete it follows that π̃+(x) is compact.

Now, let us show the second part of the theorem. Suppose x /∈ M . We

are going to show that π̃+(x) is minimal. Suppose to the contrary that there

is a proper subset A ( π̃+(x) such that A \M 6= ∅, A is closed and A \M is

positively π̃−invariant.

It is clear that x /∈ A because A \ M is positively π̃-invariant and A is

closed. Thus d(x,A) = d > 0. Choose 0 < ε < d/2. Since x is π̃-recurrent

there is T = T (ε) > 0 such that for every t, s ∈ R+ there is τ ∈ [0, T ] with

d(π̃(x, t), π̃(x, s+ τ)) < ε.

Choose q ∈ A \M . Since A is closed and A \M positively π̃-invariant, we

have π̃+(q) ⊂ A. Then

(4.11) d(x, π̃(q, t)) ≥ d(x,A) = d > 2ε for all t ≥ 0.

On the other hand, since q ∈ π̃+(x) and q /∈ M it follows that q ∈ π̃+(x) or

q ∈ L̃+(x).

First, suppose that q ∈ π̃+(x). Then q = π̃(x, s) for some s > 0. By (4.11)

we have d(x, π̃(x, s + t)) > 2ε for all t ≥ 0. It is a contradiction because x is

π̃-recurrent.

Second, suppose that q ∈ L̃+(x). Then there is a sequence {λn}n≥1 ⊂ R+

such that λn
n→+∞−−−−−→ +∞ and π̃(x, λn)

n→+∞−−−−−→ q. By π̃−recurrency of x there

is rn ∈ [0, T ] such that

(4.12) d(x, π̃(x, λn + rn)) <
ε

2
,

for all n = 1, 2, . . . We may assume rn
n→+∞−−−−−→ r ∈ [0, T ].

Since rn
n→+∞−−−−−→ r, π̃(x, λn)

n→+∞−−−−−→ q and q /∈ M it follows by the proof of

Lemma 3.6 (Case 1) from [7] that π̃(x, λn + rn)
n→+∞−−−−−→ π̃(q, r) if r 6=

k∑
j=0

φ(q+
j )

for all k ∈ N. And, if r =
k∑
j=0

φ(q+
j ) for some k ∈ N, then

π̃(x, λn + rn)
n→+∞−−−−−→ q+

k+1 = π̃(q, r) or π̃(x, λn + rn)
n→+∞−−−−−→ qk+1.

When n approaches +∞, it follows by (4.12) and by the above convergencies

that

(4.13) d(x, π̃(q, r)) ≤ ε

2

or

(4.14) d(x, qk+1) ≤ ε

2
.
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If (4.13) occurs it follows by (4.11) that 2ε < d(x, π̃(q, r)) ≤ ε/2, which is

a contradiction.

If (4.14) occurs, we take a sequence {λn}n≥1 ⊂ R+ such that 0 < λn < φ(q+
k )

and λn
n→+∞−−−−−→ φ(q+

k ). Then by (4.11) we have

d

(
x, π̃

(
q,

k−1∑
j=−1

φ(q+
j ) + λn

))
= d(x, π(q+

k , λn)) > 2ε,

where φ(q+
−1) = 0. Then d(x, qk+1) = lim

n→+∞
d(x, π(q+

k , λn)) ≥ 2ε which contra-

dicts (4.14). Therefore, π̃+(x) is minimal. �

The next definition concerns the concept of relatively dense sets, see Defini-

tion 3.11 (Chapter III) from [4].

Definition 4.19. A set D ⊂ R+ is called relatively dense if there is a number

L > 0 such that

D ∩ (α, α+ L) 6= ∅ for all α ≥ 0.

Next, we present a result which relate the concept of recurrence with rela-

tively dense sets.

Theorem 4.20. Let (X,π;M, I) be an impulsive semidynamical system and

π̃+(x) be compact for some x ∈ X \M . The positive orbit π̃+(x) is π̃-recurrent

if and only if for each ε > 0 the set Kε = {t ∈ R+ : d(x, π̃(x, t)) < ε} is relatively

dense.

Proof. Let us show the necessary condition. Given ε > 0 there is T =

T (ε) > 0 such that

d(π̃(x, t), π̃(x, [α, α+ T ])) < ε

for all t ≥ 0 and for all α ≥ 0. In particular, d(x, π̃(x, [α, α + T ])) < ε, for all

α ≥ 0. Then

Kε ∩ [α, α+ T ] 6= ∅ for all ε > 0.

Therefore, Kε is relatively dense and L = T in this case.

Now, let us show the sufficient condition. Suppose that Kε is relatively dense

for all ε > 0. We are going to show that π̃+(x) is π̃-recurrent. Since π̃+(x) is

compact it is enough to show that π̃+(x) is minimal, see Theorem 4.17. Suppose

that π̃+(x) is not minimal, then there is a proper subset A ( π̃+(x) such that

A \M 6= ∅, A is closed and A \M is positively π̃-invariant.

Note that x /∈ A because A \M is positively π̃-invariant and A is closed.

Thus d(x,A) = d > 0. Choose 0 < ε < d/2. Then there is T = T (ε) > 0 such

that

(4.15) Kε ∩ [α, α+ T ] 6= ∅ for all α ≥ 0.
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Take q ∈ A \M . Since A \M is positively π̃-invariant, we have π̃+(q) ⊂ A.

Then d = d(x,A) ≤ d(x, π̃(q, t)), for all t ≥ 0. Hence,

(4.16) d(x, π̃(q, t)) > 2ε for all t ≥ 0.

Since q ∈ π̃+(x) and q /∈ M , it follows that q ∈ π̃+(x) or q ∈ L̃+(x) (see

Lemma 3.4).

First, suppose that q ∈ π̃+(x). Then q = π̃(x, s) for some s > 0. Then by

(4.16) we have d(x, π̃(x, s+ t)) > 2ε for all t ≥ 0. Thus Kε ∩ [s, s+T ] = ∅ which

contradicts (4.15).

Now suppose that q ∈ L̃+(x). Then there is a sequence {λn}n≥1 ⊂ R+ such

that λn
n→+∞−−−−−→ +∞ and π̃(x, λn)

n→+∞−−−−−→ q. By hypothesis, for each λn, there

is ηn ∈ [0, T ] such that

(4.17) d(x, π̃(x, λn + ηn)) < ε,

n = 1, 2, . . . We may assume without loss of generality that ηn
n→+∞−−−−−→ η. Since

π̃(x, λn)
n→+∞−−−−−→ q and q /∈ M it follows by the proof of Lemma 3.6 (Case 1)

from [7] that π̃(x, λn + ηn)
n→+∞−−−−−→ π̃(q, η) if η 6=

k∑
j=0

φ(q+
j ) for all k ∈ N. If

η =
k∑
j=0

φ(q+
j ) for some k ∈ N then

π̃(x, λn + ηn)
n→+∞−−−−−→ q+

k+1 = π̃(q, η) or π̃(x, λn + ηn)
n→+∞−−−−−→ qk+1.

When n approaches +∞ in (4.17) we get

(4.18) d(x, π̃(q, η)) ≤ ε

or

(4.19) d(x, qk+1) ≤ ε.

If (4.18) occurs it follows by (4.16) that 2ε < d(x, π̃(q, η)) ≤ ε, which is a con-

tradiction.

However, if (4.19) occurs, we take a sequence {µn}n≥1 ⊂ R+ such that

0 < µn < φ(q+
k ) and µn

n→+∞−−−−−→ φ(q+
k ). Then by (4.16) we have

d

(
x, π̃

(
q,

k−1∑
j=−1

φ(q+
j ) + µn

))
= d(x, π(q+

k , µn)) > 2ε

where φ(q+
−1) = 0. It implies that d(x, qk+1) = lim

n→+∞
d(x, π(q+

k , µn)) ≥ 2ε,

which contradicts (4.19).

Therefore, π̃+(x) is minimal and by Theorem 4.17 it follows that π̃+(x) is

π̃-recurrent. �
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Definition 4.21. A point x ∈ X is said to be almost π̃-periodic if for every

ε > 0, there exists a T = T (ε) > 0 such that for every α ≥ 0, the interval

[α, α + T ] contains a number τ = τ(α) > 0 such that d(π̃(x, t), π̃(x, t + τ)) < ε

for all t ≥ 0.

Lemma 4.22. If x ∈ X is almost π̃-periodic, then every point y ∈ π̃+(x) is

also almost π̃-periodic.

Proof. Let x ∈ X be almost π̃-periodic and ε > 0 be given. Then there is

T = T (ε) > 0 such that for all α ≥ 0 the interval [α, α + T ] contains a number

τ = τ(α) > 0 such that

(4.20) d(π̃(x, t), π̃(x, t+ τ)) < ε for all t ≥ 0.

Take y ∈ π̃+(x), then y = π̃(x, s) for some s ≥ 0. For each α ≥ 0 consider the

number τ > 0 chosen above, then by (4.20) we have

d(π̃(y, t), π̃(y, t+ τ)) = d(π̃(π̃(x, s), t), π̃(π̃(x, s), t+ τ))

= d(π̃(x, s+ t), π̃(x, s+ t+ τ)) < ε,

for all t ≥ 0. Therefore, for all α ≥ 0 the interval [α, α + T ] contains a number

τ = τ(α) > 0 such that d(π̃(y, t), π̃(y, t+ τ)) < ε for all t ≥ 0, that is, y ∈ π̃+(x)

is almost π̃-periodic. �

The next result shows sufficient conditions for an almost π̃-periodic point to

be π̃-recurrent.

Theorem 4.23. Let (X,π;M, I) be an impulsive semidynamical system and

π̃+(x) be compact for some x ∈ X \ M . If x is almost π̃-periodic then x is

π̃-recurrent.

Proof. Given ε > 0, there is T = T (ε) > 0 such that for every α ≥ 0 the

interval [α, α+ T ] contains a number τ = τ(α) > 0 such that

d(π̃(x, t), π̃(x, t+ τ)) < ε for all t ≥ 0.

Consider Kε = {s ∈ R+ : d(x, π̃(x, s)) < ε}. We have

Kε ∩ [α, α+ T ] 6= ∅ for all α ≥ 0.

Since ε > 0 is arbitrary it follows by Theorem 4.20 that x is π̃-recurrent. �

In Theorems 4.24 and 4.25, given x ∈ X we suppose that φ(x+
k ) < +∞ for

all k = 0, 1, . . . Thus the sequence {xk}k≥1 represents all the impulsive points,

xk+1 = π(x+
k , φ(x+

k )), k = 0, 1 . . . These theorems deal with the relation between

periodic and eventually periodic motions. If φ(x+
k ) = +∞ for some k ∈ N the

results hold.
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Theorem 4.24. Let (X,π;M, I) be an impulsive semidynamical system. Sup-

pose that X is complete and L̃+(x) \M 6= ∅ for some x ∈ X \M . If π̃+(x) ∪
{xk}k≥1 is minimal then x is eventually periodic.

Proof. Suppose that x ∈ X is not eventually periodic. Since π̃+(x) ∪
{xk}k≥1 is minimal and L̃+(x) \M 6= ∅ it follows by Theorem 4.6 that π̃+(x) ∪
{xk}k≥1 = L̃+(x). Consequently, x ∈ L̃+(x), that is , x is positively Poisson

π̃-stable. Then by Theorem 3.5 we have

L̃+(x)− π̃+(x) = L̃+(x).

Thus {xk}k≥1 = L̃+(x) which is a contradiction since L̃+(x)\M 6= ∅. Therefore,

x is eventually periodic. �

Theorem 4.25. Let (X,π;M, I) be an impulsive semidynamical system and

x ∈ X \M be such that x ∈ L̃+(x). If x is eventually periodic then x is periodic.

Proof. Since x is eventually periodic there is t ≥ 0 such that π̃(x, t) is

periodic. Thus there is T > 0 such that π̃(x, t+ T ) = π̃(x, t).

Case 1. T 6=
k∑
j=0

φ(x+
j ) for all k ∈ N.

By hypothesis we have x ∈ L̃+(x), then there is a sequence {tn}n≥1 ⊂ R+,

tn
n→+∞−−−−−→ +∞ such that

(4.21) π̃(x, tn)
n→+∞−−−−−→ x.

Since x /∈M and T 6=
k∑
j=0

φ(x+
j ) for all k ∈ N, it follows by Lemma 3.3 that

(4.22) π̃(x, tn + T )
n→+∞−−−−−→ π̃(x, T ).

On the other hand, there is n0 ∈ N such that tn ≥ t for all n ≥ n0. Moreover,

we have

π̃(x, tn + T ) = π̃(x, tn) for all n ≥ n0.

When n → +∞ in the above equality and using (4.21) and (4.22) we obtain

π̃(x, T ) = x. Then x is periodic.

Case 2. T =

k∑
j=0

φ(x+
j ) for some k ∈ N.

Take ε > 0 such that ε < min{φ(x), φ(x+
k+1)} and T + ε <

k+1∑
j=0

φ(x+
j ).

Since x ∈ L̃+(x), there is a sequence {tn}n≥1 ⊂ R+, tn
n→+∞−−−−−→ +∞ such

that π̃(x, tn)
n→+∞−−−−−→ x. Since x /∈M and 0 < ε < φ(x) it follows by Lemma 3.3

that

(4.23) π̃(x, tn + ε)
n→+∞−−−−−→ π̃(x, ε).
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Also, since
k∑
j=0

φ(x+
j ) < T + ε <

k+1∑
j=0

φ(x+
j ) it follows again by Lemma 3.3 that

(4.24) π̃(x, tn + T + ε)
n→+∞−−−−−→ π̃(x, T + ε).

On the other hand, there is n0 ∈ N such that tn ≥ t for all n ≥ n0. This

implies that tn + ε > t for all n ≥ n0. Since π̃(x, t) is periodic with period T we

obtain

π̃(x, tn + ε+ T ) = π̃(x, tn + ε) for all n ≥ n0.

When n → +∞ in the above equality and take in account (4.23) and (4.24) we

get π̃(x, T + ε) = π̃(x, ε). Since π̃ is continuous from the right and ε > 0 is

arbitrary we have

π̃(x, T ) = lim
ε→0+

π̃(x, T + ε) = lim
ε→0+

π̃(x, ε) = x.

Thus x is periodic. �

According to Theorems 4.24 and 4.25, we obtain the following result.

Corollary 4.26. Let (X,π;M, I) be an impulsive semidynamical system.

Suppose X complete and let x ∈ X \M be such that L̃+(x) \M 6= ∅. If π̃+(x)∪
{xk}k≥1 is minimal then x is periodic.
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