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ALMOST AUTOMORPHIC SOLUTIONS

FOR EVOLUTIONS EQUATIONS

Bruno de Andrade — Eder Mateus — Arlúcio Viana

Abstract. In this work we deal with existence and uniqueness of almost

automorphic solutions for abstract semilinear differential equations using

a mix of fixed point theory and extrapolation spaces theory. We apply
our abstract results in the framework of transmission problems for the

Bernoulli–Euler plate equation and heat conduction theory.

1. Introduction

In recent years, the theory of almost automorphic functions has been de-

veloped extensively and consequently there has been a considerable interest in

the existence of almost automorphic solutions of various kinds of evolution equa-

tions, see for instance [4], [6], [8], [10] and the references therein. In this work, we

study existence and uniqueness of almost automorphic mild solutions for a class

of abstract differential equations described in the form

u′(t) = Au(t) + f(t, u(t)), t ∈ R,(1.1)

where A is an unbounded linear operator, assumed to be Hille–Yosida of neg-

ative type, with domain D(A) not necessarily dense on some Banach space X,

f : R×X0 → X is a continuous function and X0 = D(A).
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It is well known that if the domain of the linear operator A is non-dense, the

classical theory of semigroups cannot be applied directly to treat the equation

(1.1). Indeed, the Hille–Yosida theorem gives necessary and sufficient conditions

for a linear operator to generate a C0-semigroup, among these conditions there is

the density of the domain of the operator. On the other hand, there are a great

variety of semilinear differential equations with a linear part dominated by a non-

densely defined operator. Such situations arise, for example, from restrictions

made on the space where the equation is considered (e.g. periodic continuous

functions, Hölder continuous functions) and from boundary conditions (e.g. the

set of continuous functions with null value on the boundary is non-dense in the

space of continuous functions).

However, in [14] the authors show that if the usual Hille–Yosida conditions are

satisfied, but without the assumption that D(A) be dense in X, then existence

and uniqueness results for the problem (1.1) can be obtained which are even

more general than those known when D(A) is dense in X. The main tool used

in [14] was the abstract extrapolation theory. First attempts to build this theory

where made by Da Prato and Grisvard [13] and Nagel [9] and used from various

purposes.

The main results of this work are contained in Sections 3 and 4. Basically,

they says that if the non-linear term in (1.1) is an almost automorphic function,

in some sense, and is a locally or globally Lipschitz continuous function, then

the equation (1.1) has a unique almost automorphic mild solution. As typical

applications of our abstract results we consider, e.g. the transmission problem

for the Bernoulli-Euler plate equation. Precisely, let Ω1 ⊂ Ω ⊂ Rn, n ≥ 2,

be strictly convex, bounded domains with smooth boundaries Γ1 = ∂Ω1 and

Γ = ∂Ω with Γ1∩Γ = ∅. Then O = Ω\Ω1 is a bounded, connected domain with

boundary ∂O = Γ1 ∪ Γ. We are going to study the following mixed boundary

value problem

(1.2)



(∂2
t + c2∆2)u1(x, t) = b(t)f(u1(x, t)) in Ω1 × R,

(∂2
t + ∆2)u2(x, t) = b(t)f(u2(x, t)) in O × R,

u1|Γ1 = u2|Γ1 , ∂νu1|Γ1 = ∂νu2|Γ1 ,

c∆u1|Γ1
= ∆u2|Γ1

, c∂ν∆u1|Γ1
= ∂ν∆u2|Γ1

,

u2|Γ = 0, ∆u2|Γ = −a∂ν∂tu2|Γ,

where c > 1 is a constant, ν denotes the inner unit normal to the boundary, a is

a non-negative function on Γ, b : R → R and f : R → R are real functions that

satisfies some additional conditions. Under natural assumptions on non-linear

term of (1.2), see Example 3.7, we show that this problem has a unique almost

automorphic mild solution.
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This work is organized as follows. In Section 2, we collect results and stan-

dard literature of almost automorphic functions. In particular we recall a result

of composition for almost autmorphic functions (see Lemma 2.4) which is very

important in our investigations. In Section 3, we study existence and uniqueness

of almost autmorphic mild solutions for the equation (1.1) with almost aut-

morphic conditions. In Section 4, we ensure sufficient conditions for existence

and uniqueness of almost autmorphic solutions to (1.1) with Stepanov almost

autmorphic conditions.

Acknowledgements. This paper was initiated while the first author was

visiting the Universidade Federal de Sergipe (Sergipe, Brasil) during May 2011.

B. de Andrade would like to thank the DMAI-UFS for they kind invitation and

hospitality.

2. Preliminaries

Before stating the precise problems of concern in this paper, let us intro-

duce the basic results and notations we will be considering. Consider (X, ‖ · ‖)
and (Y, ‖ · ‖) Banach spaces. In this work BC(R;X) denotes the space con-

sisting of the continuous and bounded functions from R into X endowed with

the norm of the uniform convergence which is denoted for ‖ · ‖∞. Furthermore,

the notation L(X,Y ) stands for the space of bounded linear operators from X

into Y endowed with the uniform operator topology, and we abbreviate to L(X)

whenever X = Y .

2.1. Almost automorphic functions. We begin recalling the notion of

almost automorphic function (1).

Definition 2.1. A continuous function f : R 7→ X is called almost automor-

phic if for every sequence of real numbers (s′n)n∈N there exists a subsequence

(sn)n∈N ⊂ (s′n)n∈N such that

lim
n,m→∞

‖f(t+ sn − sm)− f(t)‖ = 0.

Example 2.2. Concrete examples of almost automorphic functions are given

by the functions

a(t) = cos

(
1

cos(t) + cos(
√

2t)

)
and b(t) = sin

(
1

sin(t) + sin(
√

2t)

)
,

for t ∈ R.

Definition 2.3. Let X and Y be two Banach spaces. A continuous function

f : R×Y 7→ X is said to be almost automorphic if f(t, x) is almost automorphic

in t ∈ R uniformly for all x ∈ K, where K is any bounded subset of Y .

(1) This definition is due to Bochner (see [3]).
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(a) cos

(
1

cos(t)+cos(
√

2t)

)
(b) sin

(
1

sin(t)+sin(
√

2t)

)
Figure 1

In this work we use the notation AA(X) to represent the subset of BC(R;X)

formed by the almost automorphic functions. We observe that (AA(X), ‖ · ‖∞)

is a Banach space. Furthermore, if f ∈ AA(X) then the set {f(t) : t ∈ R} is

a relatively compact subset of X. Similarly, we set AA(Y ;X) to represent the

set of all functions almost automorphic in t uniformly for x ∈ Y .

The following result is standard in the theory of almost automorphic func-

tions.

Lemma 2.4 [7]. If f : R × Y 7→ X is almost automorphic, and h ∈ AA(Y ),

and assume that f(t, · ) is uniformly continuous on each bounded subset K ⊂ Y
uniformly for t ∈ R, that is for any ε > 0, there exists δ > 0 such that x, y ∈ K
and ‖x−y‖ < δ imply that ‖f(t, x)−f(t, y)‖ < ε for all t ∈ R, then the function

f( · , h( · )) ∈ AA(X).

2.2. Stepanov almost automorphic functions. Let (X, ‖ · ‖), (Y, ‖ · ‖)
be Banach spaces. We remember the concept of Stepanov almost automorphic

functions.

Definition 2.5. The space BSp(X) of all Stepanov functions, with the ex-

ponent p, consists of all measurable functions f on R with values in X such

that

‖f‖Sp := sup
t∈R

(∫ t+1

t

‖f(τ)‖p dτ
)1/p

< +∞.

We observe that, whenever p ≥ q ≥ 1, Lp(R, X) ⊆ BSp(X) ⊆ Lploc(R, X)

and BSp(X) ⊆ BSq(X). Furthermore, for each p ≥ 1, we have the following

continuous inclusion

(BC(X), ‖ · ‖∞) ↪→ (BSp(X), || · ||Sp).
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Remark 2.6. In the above definition, we can replace the norm ‖ · ‖Sp by the

norm obtained varying the length of the integration interval as

|||f ||| = sup
t∈R

(
1

l

∫ t+l

t

‖f(τ)‖p dτ
)1/p

,

where l > 0 and we obtain a new norm equivalent to the old one.

Definition 2.7. A function f ∈ BSp(X) is called Stepanov almost auto-

morphic if for every sequence of real numbers (s′n)n∈N there are a subsequence

(sn)n∈N ⊂ (s′n)n∈N and a function g ∈ Lp(R, X) such that(∫ 1

0

‖f(t+ sn + s)− g(t+ s)‖p ds
)1/p

→ 0,

and (∫ 1

0

‖g(t− sn + s)− f(t+ s)‖p ds
)1/p

→ 0,

as n→∞ pointwise on R.

We denote the set of all Stepanov almost automorphic functions by ASp(X).

For p ≥ q ≥ 1, we have that

AA(X) ⊆ ASp(X) ⊆ ASq(X).

Example 2.8 [11]. Let (xn)n∈N ⊂ X be an almost automorphic sequence

and consider ε ∈ (0, 1/2). Define the function

f(t) =

xn for t ∈ (n− ε, n+ ε),

0 otherwise.

Then f ∈ ASp(X) for every p ≥ 1 and f /∈ AA(X).

Definition 2.9. A function f : R× Y → X is called Stepanov almost auto-

morphic in t ∈ R for x ∈ Y , if f( · , u) ∈ ASp(X) for each u ∈ Y .

We denote the set of all Stepanov almost automorphic functions f : R×Y →X

by ASp(Y,X). We close this subsection with a composition result. The proof is

a standard application of the Minkowski’s inequality.

Lemma 2.10. Let f ∈ ASp(Y,X) and suppose that there is L > 0 such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖,

for all t ∈ R and for all x, y ∈ Y . If φ ∈ ASp(Y ) then the function f( · , φ( · )) ∈
ASp(X).
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2.3. Hille–Yosida operators. We recall some basic properties of extra-

polation spaces for Hille–Yosida operators which are a natural tool in our setting.

Definition 2.11. Let X be a Banach space and A be a linear operator with

domain D(A). One says that (A,D(A)) is a Hille–Yosida operator on X if there

exist ω ∈ R and a positive constant M ≥ 1 such that (ω,∞) ⊂ ρ(A) and

sup{(λ− ω)n‖(λ−A)−n‖ : n ∈ N, λ > ω} ≤M.

The infinimum of such ω is called the type of A. If the constant ω can be

chosen smaller than zero, A is called of negative type.

Let (A,D(A)) be a Hille–Yosida operator on X and X0 = D(A). Let

A0 : D(A0) ⊂ X0 → X0 be the realization of A on

D(A0) = {x ∈ D(A) : Ax ∈ X0}.

We have the following result.

Lemma 2.12 [5]. The operator A0 is the infinitesimal generator of a C0-

semigroup (T0(t))t≥0 on X0 with ‖T0(t)‖ ≤ Meωt for t ≥ 0. Moreover, ρ(A) ⊂
ρ(A0) and R(λ,A0) = R(λ,A)|X0

, for λ ∈ ρ(A).

In this work we assume that (A,D(A)) is a Hille–Yosida operator of negative

type on X. This implies that 0 ∈ ρ(A), i.e. A−1 ∈ L(X). We remark that the

expression ‖x‖−1 = ‖A−1
0 x‖ define a norm on X0.

Definition 2.13. The completion of (X0, ‖ · ‖−1), denoted by X−1, is called

the extrapolation space of X0 associated with A0.

We note that X is an intermediary space between X0 and X−1 and (see [9])

X0 ↪→ X ↪→ X−1.

Since A−1
0 T0(t) = T0(t)A−1

0 , we have that ‖T0(t)x‖−1 ≤ ‖T0(t)‖L(X0)‖x‖−1

which implies that T0(t) has a unique bounded linear extension T−1(t) to X−1.

The operator family (T−1(t))t≥0 is a C0-semigroup on X−1, called the extrapo-

lated semigroup of (T0(t))t≥0. In the sequel, (A−1, D(A−1)) is the generator of

(T−1(t))t≥0.

Lemma 2.14 [9]. Under the previous conditions, the following properties are

verified.

(a) D(A−1) = X0 and ‖T−1(t)‖L(X−1) = ‖T0(t)‖L(X0) for every t ≥ 0.

(b) The operator A−1 : X0 → X−1 is the unique continuous extension of

A0 : D(A0) ⊂ (X0, ‖ · ‖) → (X−1, ‖ · ‖−1) and λ − A−1 is an isometry

from (X0, ‖ · ‖) into (X−1, ‖ · ‖−1).

(c) If λ ∈ ρ(A0), then (λ − A−1)−1 exists and (λ − A−1)−1 ∈ L(X−1). In

particular, λ ∈ ρ(A−1) and R(λ,A−1)|X0
= R(λ,A0).
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(d) The space X0 = D(A) is dense in (X−1, ‖ ·‖−1). Thus, the extrapolation

space X−1 is also the completion of (X, ‖ · ‖−1) and X ↪→ X−1. More-

over, A−1 is an extension of A to X−1. In particular, if λ ∈ ρ(A), then

R(λ,A−1)|X = R(λ,A) and R(λ,A−1)X = D(A).

Lemma 2.15 [1]. Let f ∈ BC(R;X). Then the following properties are valid.

(a) T−1 ∗ f(t) =

∫ t

−∞
T−1(t− s)f(s) ds ∈ X0, for every t ∈ R.

(b) ‖T−1 ∗ f(t)‖ ≤ Cewt
∫ t

−∞
e−ws‖f(s)‖ ds where C > 0 is independent of

t and f .

(c) The linear operator Λ: BC(R, X) → BC(R, X0) defined by Λ(f)(t) =

T−1 ∗ f(t) is continuous.

(d) lim
t→0

∥∥∥∥T−1 ∗ f(t)−
∫ 0

−∞
T−1(−s)f(s) ds

∥∥∥∥ = 0, for every t ∈ R.

(e) x(t) = T−1 ∗ f(t) is the unique bounded mild solution in X0 of x′(t) =

Ax(t) + f(t), t ∈ R.

Remark 2.16. For the rest of this work we assume that (A,D(A)) is a Hille–

Yosida operator of negative type. Therefore, there are constants M ≥ 1 and

ω < 0 such that

‖T−1(t)‖ ≤Meωt, t ≥ 0,

where (T−1(t))t≥0 is the extrapolated semigroup associated to (T0(t))t≥0.

3. Almost automorphic solutions

with almost automorphic conditions

The next result assure the regularity of the covolution of the semigroup

(T−1(t))t≥0 with almost automorphic functions. This result will be very useful

in our approach of the equation (1.1).

Lemma 3.1. If u ∈ AA(X0), then z : R→ X, defined by

z(t) :=

∫ t

−∞
T−1(t− s)u(s) ds

is in AA(X0).

Proof. From Lemma 2.15, we have that z(t) ∈ X0. Since u ∈ AA(X0),

there is a sequence (sn) ⊂ R and g : R → X0 such that g(t) = lim
n→∞

u(t + sn)

uniformly for t ∈ R. Then,

z(t+ sn) =

∫ t+sn

−∞
T−1(t+ sn − s)u(s) ds =

∫ t

−∞
T−1(t− s)u(s+ sn) ds.
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The Dominated Convergence Theorem yields

z(t+ sn)→
∫ t

−∞
T−1(t− s)g(s) ds, as n→∞.

A similar computation shows that∫ t−sn

−∞
T−1(t− sn− s)g(s) ds =

∫ t

−∞
T−1(t− s)g(s− sn) ds→ z(t), as n→∞,

and this conclude the proof. �

Remark 3.2. An immediate consequence of Lemma 3.1 is the existence of

almost automorphic mild solution for the nonhomogeneous linear peoblem

u′(t) = Au(t) + f(t), t ∈ R,(3.1)

where A is a Hille–Yosida operator of negative type on a Banach space X and

f ∈ AA(X0).

Theorem 3.3. Let f ∈ AA(X0, X) as in Lemma 2.4. Assume that there

exists a function L ∈ L1
loc(R; [0,∞)) such that

(3.2) ‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖, t ∈ R, x, y ∈ X0.

Let

θ(t) =

∫ t

−∞
eω(t−s)L(s) ds, t ∈ R.

Suppose that there is a positive constant K < 1 such that Mθ(t) < K, for all

t ∈ R. Then the equation (1.1) has a unique mild solution in AA(X0).

Proof. We define the operator Λ on the space AA(X0) by

(3.3) Λu(t) =

∫ t

−∞
T−1(t− s)f(s, u(s)) ds.

It follows from Lemma 2.4 that f( · , u( · )) ∈ AA(X) for every u ∈ AA(X0).

Furthermore, by Lemma 3.1 we have that the operator Λ: AA(X0) → AA(X0)

is well defined. We next proof that Λ is aK-contraction. In fact, if u, v ∈ AA(X0)

we have that

‖Λu(t)− Λv(t)‖ ≤
∫ t

−∞
Meω(t−s)L(s)‖u(s)− v(s)‖ ds

≤Mθ(t)‖u− v‖ ≤ K‖u− v‖∞.

Hence, by the Banach’s fixed point theorem we conclude the proof. �

The next results are immediate consequences of Theorem 3.3.
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Corollary 3.4. Let f ∈ AA(X0, X) and suppose that f satisfies the Lip-

schitz condition (3.2) with L a bounded continuous function. Let

θ(t) =

∫ t

−∞
eω(t−s)L(s) ds, t ∈ R.

Suppose that there is a positive constant K < 1 such that Mθ(t) < K, for all

t ∈ R. Then the equation (1.1) has a unique mild solution in AA(X0).

Example 3.5. We consider a simple application of our abstract results. Let

a ∈ AA(R) and consider the partial differential equation

(3.4)

ut = uxx − u+ a sin(u) in R× [0, π],

u = 0 on R× {0, π}.

Let X = C([0, π];R) and define the operator A on X by Au = u′′ − u, with

domain D(A) = {u ∈ X : u′′ ∈ X, u(0) = u(π) = 0}.
It is well known that A is a Hille–Yosida operator of type −1 with do-

main non-dense. Equation (3.4) can be rewritten as an abstract system of the

form (1.1), where u(t)(s) = u(t, s),

f(t, φ)(x) = a(t) sin(φ(x)),

for all φ ∈ X, t ∈ R and x ∈ [0, π]. If we assume that M‖a‖∞ < |ω|, then the

equation (3.4) has a unique almost automorphic mild solution.

Corollary 3.6. Let f ∈ AA(X0, X) and suppose that f satisfies the Lip-

schitz condition

‖f(t, x)− f(t, y)‖ ≤ K‖x− y‖ for all x, y ∈ X0 and t ∈ R.

If K is small enough, then the equation (1.1) has a unique mild solution in

AA(X0).

Example 3.7. Consider the transmission problem for the Bernoulli–Euler

plate equation (1.2). We suppose that there is a constant a0 > 0 such that

a0 ≤ a on Γ. Furthermore, we assume that b ∈ AA(R). Consider the function

α(x) =

c in Ω1,

1 in O.

To treat the problem (1.2) we will follow some ideas of [2]. To this end, introduce

the Hilbert space H = V ×H, where H = L2(Ω, α(x)−1 dx) and the space V is

defined as follows. On the Hilbert space H consider the operator G defined by

G

(
u1

u2

)
=

(
−c∆u1

−∆u2

)
, for all

(
u1

u2

)
∈ D(G),
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with domain

(3.5) D(G) =
{

(u1, u2) ∈ H = L2(Ω1, c
−1dx)⊕ L2(O) : u1 ∈ H2(Ω1),

u2 ∈ H2(O), u2|Γ = 0, u1|Γ1 = u2|Γ1 , ∂νu1|Γ1 = ∂νu2|Γ1}.

The operator G is a strictly positive self-adjoint one with a compact resolvent.

Set V = D(G) with norm ‖ · ‖V = ‖G · ‖H .

We can rewrite (1.2) as follows. Define the operator A : D(A) ⊂ H → H by

A

(
u

u

)
= −i

(
v

−α2∆2u

)
, for all

(
u

v

)
∈ D(A),

where

(3.6) D(A) = {(u, v) ∈ H : (v,∆2u) ∈ H, u|Γ = 0, ∆u|Γ = −a∂νv|Γ,

u|Γ1
= v|Γ1

, ∂νu|Γ1
= ∂νv|Γ1

, c∆u|Γ1
= ∆v|Γ1

, c∂ν∆u|Γ1
= ∂ν∆v|Γ1

}.

Using Green’s formula we can see that

Im

〈
A

(
u

u

)
,

(
u

u

)〉
H

=

∫
Γ

a|∂νv|2 dΓ ≥ 0, for all

(
u

u

)
∈ D(A).

This implies that A generates a C0-semigroup (T (t))t≥0 (e.g. see Theorems 4.3

and 4.6 from [12, p.14–15]). On the other hand, follows from [2] that the resolvent

set ρ(A) is a discrete set of eigenvalues of A. Moreover, A has no eigenvalue on

the real axis. Consequently, there are constants M ≥ 1 and ω < 0 such that

‖T (t)‖ ≤ Meωt, t ≥ 0. Finally, we will assume that the function f : R → R
is a globally Lipschitz continuous function with constant K > 0. If K is small

enough, then the problem (1.2) has a unique almost automorphic mild solution.

We now move on to the problem of locally Lipschitz perturbations for equa-

tion (1.1). In this sense, the following theorem is the main result of this section.

Remark 3.8. In the following result we will use the notion of locally bounded

function, that is, we consider a function L : X0×X0 → [0,∞) such that for every

r ≥ 0 there is a constant k(r) ≥ 0 such that L(x, y) ≤ k(r), for all x, y ∈ X0

with ‖x‖ ≤ r and ‖y‖ ≤ r.

Theorem 3.9. Consider f ∈ AA(X0, X) and let L : X0 × X0 → [0,∞) be

a locally bounded function such that

‖f(t, x)− f(t, y)‖ ≤ L(x, y)(1 + ‖x‖l−1 + ‖y‖l−1)‖x− y‖, for all t ∈ R

with l > 1. Suppose that there is R > 0 such that(
K(R) +

‖f( · , 0)‖∞
R

)
M

|ω|
< 1, where K(R) :=

k(R)(R+ 2Rl)

R
,

with k(R) as in Remark 3.8. Then, the equation (1.1) has a unique mild solution

in AA(X0).
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Proof. Define the operator Λ by expression (3.3). Consider R > 0 such

that (RK(R) + ‖f( · , 0)‖∞)M/|ω| < R.

Let BR be the closed ball BR = {u ∈ AA(X0) : ‖u‖∞ ≤ R} ⊂ AA(X0). We

observe that, if u ∈ BR, then

‖Λu(t)‖ ≤
∫ t

−∞
‖T−1(t− s)f(s, u(s))‖ ds

≤M
∫ t

−∞
eω(t−s)L(u(s), 0)(1 + ‖u(s)‖l−1)‖u(s)‖ ds

+M‖f( · , 0)‖∞
∫ t

−∞
eω(t−s) ds

≤ (RK(R) + ‖f( · , 0)‖∞)
M

|ω|
≤ R.

Therefore, Λ(BR) ⊂ BR. It remains to show that Λ is a contraction. But this

follows from estimate

‖Λu(t) − Λv(t)‖ ≤
∫ t

−∞
‖T−1(t− s)(f(s, u(s))− f(s, v(s)))‖ ds

≤M
∫ t

−∞
eω(t−s)L(u(s), v(s))(1 + ‖u(s)‖l−1 + ‖v(s)‖l−1) ds‖u− v‖∞

≤
(
MK(R)

|ω|

)
‖u− v‖∞

Since MK(R)/|ω| < 1, the assertion is a consequence of the Banach fixed point

theorem and the proof is completed. �

Corollary 3.10. Let f ∈ AA(X0, X) and assume that there is a constant

c ≥ 0 such that for every x, y ∈ X0 we have

(3.7) ‖f(t, x)− f(t, y)‖ ≤ c(1 + ‖x‖l−1 + ‖y‖l−1)‖x− y‖, for all t ∈ R,

with l ≥ 1. If c is small enough then the equation (1.1) has a unique almost

automorphic mild solution.

Corollary 3.11. Let f ∈ AA(X0, X) and assume that for every r ≥ 0 there

is a constant L(r) ≥ 0 such that for every x, y ∈ X0, with ‖x‖ ≤ r and ‖y‖ ≤ r,
we have

(3.8) ‖f(t, x)− f(t, y)‖ ≤ L(r)‖x− y‖, for all t ∈ R.

If there is R > 0 such that(
L(R) +

‖f( · , 0)‖∞
R

)
M

|ω|
< 1.

Then, the equation (1.1) has a unique mild solution in AA(X0).



116 B. de Andrade — E. Mateus — A. Viana

Example 3.12. Consider the set B = {x ∈ Rn : ‖x‖ < 1} and let Sn−1 =

∂B. We study existence and uniqueness of almost automorphic mild solutions

for the nonhomogeneous equation:

(3.9)

ut = ∆u+ ag(u) in R×B,
u = 0 on R× Sn−1,

where a ∈ AA(R) and g ∈ C1(R,R) satisfies the additional condition:

lim
|s|→∞

|g′(s)|
|s|l−1

= 0,

with l > 1. Then for each η > 0 there is Cη > 0 such that

|g(s1)− g(s2)| ≤ (Cη + η|s1|l−1 + η|s2|l−1)|s1 − s2|, for all s1, s2 ∈ R.

To treat system (3.9), we choose the space X = C(B;R) and the operator A

defined by Av = ∆v + ωv, ω < 0, with domain

D(A) = {v ∈ X : v = 0 on Sn−1 and ∆v ∈ X}.

In this case, X0 = C0(B;R) 6= X and therefore A is a Hille–Yosida operator of

negative type ω with non-dense domain. Its clear that (3.9) can be rewritten as

an abstract system of the form

u′(t) = Au(t) + f(t, u(t)), t ∈ R,

where u(t)(x) = u(t, x) and f(t, ψ)(x) = a(t)f(ψ(x)) − ωψ(x), t ∈ R, x ∈ B.

Furthermore, we have that

‖f(t, ψ1)− f(t, ψ2)‖ ≤ c(1 + ‖ψ1‖l−1 + ‖ψ2‖l−1)‖ψ1−ψ2‖, for all ψ1, ψ2 ∈ X0.

Hence, if c = c(ω) > 0 is small enough the system (3.9) has a unique almost

automorphic mild solution.

4. Almost automorphic solutions

with Stepanov almost automorphic conditions

This section deals with existence and uniqueness of almost automorphic mild

solution to equation (1.1) with Stepanov almost automorphic conditions. We fix

q = p/(p− 1), p > 1. We have the following auxiliary result:

Lemma 4.1. Let f ∈ ASp(X) ∩ C(R, X), with p > 1. Given n ∈ N, consider

vn(t) =

∫ n

n−1

T−1(ξ)f(t− ξ) dξ.

Then, vn ∈ AA(X0), for every n ∈ N.
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Proof. In fact, let (sm)m∈N ⊂ R. Since f ∈ ASp(X), there are a subse-

quence (smk
)k∈N ⊂ (sm)m∈N and a function g ∈ ASp(X) such that

(4.1)

(∫ 1

0

‖f(t+ smk
+ σ)− g(t+ σ)‖p dσ

)1/p

→ 0,

as k →∞. Let ṽn =
∫ n
n−1

T−1(ξ)g(t−ξ) dξ. Follows from the Hölder’s inequality

that

‖vn(t+ smk
) − ṽn(t)‖ =

∥∥∥∥∫ n

n−1

T−1(ξ)(f(t+ smk
− ξ)− g(t− ξ)) dξ

∥∥∥∥
≤M

∫ n

n−1

eωξ‖(f(t+ smk
− ξ)− g(t− ξ))‖ dξ

≤M
(∫ n

n−1

eqωξ dξ

)1/q(∫ n

n−1

‖(f(t+ smk
− ξ)− g(t− ξ))‖p dξ

)1/p

=K

(∫ n

n−1

‖(f(t+ +smk
− ξ)− g(t− ξ))‖p dξ

)1/p

,

where K = K(q, ω,M) is constant. Then, (4.1) implies that

‖vn(t+ smk
)− ṽn(t)‖ → 0,

as k →∞. Similarly, we have that

‖ṽn(t− sm)− vn(t)‖ → 0

as k →∞, and this conclude the proof. �

Lemma 4.2. Let f ∈ ASp(X) ∩ C(R, X), with p > 1. Then the function

u(t) =

∫ t

−∞
T−1(t− s)f(s) ∈ AA(X0).

Proof. Let (vn)n∈N be as in the Lemma 4.1. Note that

vn(t) =

∫ t−n+1

t−n
T−1(t− s)f(s) ds.

Hence,

‖vn‖ ≤M
∫ t−n+1

t−n
eω(t−s)‖f(s)‖ ds.

Using the Hölder’s inequality, we obtain

‖vn‖ ≤M
(∫ t−n+1

t−n
eqω(t−s)ds

)1/q(∫ t−n+1

t−n
‖f(s)‖p

)1/p

ds

≤ M
q
√
q|ω|

(eqω(n−1) − eqωn)1/q‖f‖Sp

≤ Meωn

q
√
q|ω|

(eq|ω| − 1)1/q‖f‖Sp ≤ Meω

q
√
q|ω|

(eq|ω| + 1)1/q‖f‖Sp .
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Since the series (
Meω

q
√
q|ω|

(eq|ω| + 1)1/q

) ∞∑
n=1

eωn

is convergent, follows from the Weierstrass test that
∞∑
n=1

vn is uniformly conver-

gent in R. Let u(t) =
∞∑
n=1

vn. Clearly, we get

u(t) =

∫ t

−∞
T−1(t− s)f(s) ds, t ∈ R,

and from Lemma 4.1 we conclude that u ∈ AA(X0). �

Remark 4.3. An immediate consequence of Lemma 4.2 is the existence of

almost automorphic mild solution for the nonhomogeneous linear peoblem

u′(t) = Au(t) + f(t), t ∈ R,

where A is a Hille–Yosida operator of negative type on a Banach space X and

f ∈ ASp(X) ∩ C(R, X), with p > 1.

Theorem 4.4. Let f ∈ ASp(X0, X) and suppose that there is a constant

L > 0 such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, for all t ∈ R and all x, y ∈ X0.

Then the equation (1.1) has a unique mild solution u ∈ AA(X0), whenever

ML/|ω| < 1.

Proof. Define Λ on AA(X0) by (3.3). Using Lemmas 2.10 and 4.2, we have

that Λ(AA(X0)) ⊂ AA(X0) ⊂ ASp(X0). Therefore, Λ: AA(X0) → AA(X0) is

well defined. On the other hand,

‖Λu(t)− Λv(t)‖ ≤
∫ t

−∞
Meω(t−s)L‖u(s)− v(s)‖ ds ≤ ML

|ω|
‖u− v‖∞,

for every t ∈ R. Therefore, the result is consequence of the Banach fixed point

theorem. �

We close this work with the following example.

Example 4.5 (Example 3.12 revisited). Let Ω ⊂ Rm be a bounded open set

with regular boundary ∂Ω. Consider the problem

(4.2)

ut = ∆u+ af(u) in R× Ω,

u = 0 on R× ∂Ω,

where, a ∈ ASp(R) and f ∈ C(R,R) is a globally L-Lipschitz function. With

the same procedure of the Example 3.12 we can rewrite the problem (4.2) in the

abstract form (1.1). Then, if L is small enough we have that the problem (4.2)

has a unique almost automorphic mild solution.
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CEP. 13569-970, São Carlos-SP, BRAZIL

E-mail address: bruno00luis@gmail.com

Eder Mateus and Arlúcio Viana
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CEP. 49500-000, Itabaiana-SE, BRAZIL

E-mail address: edermateus@ufs.com, arlucioviana@ufs.com

TMNA : Volume 44 – 2014 – No 1


