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NONDECREASING SOLUTIONS

OF FRACTIONAL QUADRATIC INTEGRAL EQUATIONS

INVOLVING ERDÉLYI–KOBER SINGULAR KERNELS

Jie Xin — Chun Zhu — JinRong Wang — Fulai Chen

Abstract. In this paper, we firstly present the existence of nondecreasing
solutions of a fractional quadratic integral equations involving Erdélyi–

Kober singular kernels for three provided parameters α ∈ (1/2, 1), β ∈ (0, 1]

and γ ∈ [β(1−α)−1,∞). Moreover, we prove this restriction on α and β can
not be improved. Secondly, we obtain the uniqueness and nonuniqueness of

the monotonic solutions by utilizing a weakly singular integral inequality

and putting γ ∈ [1/2 − α,∞). Finally, two numerical examples are given
to illustrate the obtained results.

1. Introduction

Fractional continuous models are used to describe the real fractal structure

of matter and the medium in many physics problems. With the development of

fractional calculus, we find that it is better to apply this powerful tools to describe

the medium with non-integer mass dimension. In fact, fractional continuous

models provide a good method to describe dynamics of fractal media for us.

Fractional integrals are also used to derive the generalizations of the equations

of balance for the fractal media [31], [32].
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Recently, Banaś and Rzepka [4] studied nondecreasing solutions of the fol-

lowing quadratic integral equation of fractional order:

(1.1) x(t) = a(t) +
f(t, x(t))

Γ(α)

∫ t

0

(t− s)α−1u(s, x(s)) ds, t ∈ [0, 1], α ∈ (0, 1),

where Γ( · ) is the gamma function. In the paper [4], the authors not only point

an error in calculation in [6] but also give a correct proof to obtain the interesting

existence theorems of nondecreasing solutions of the equation (1.1).

In general, the term (t−s)α−1, α ∈ (0, 1) can be named as Riemann–Liouville

singular kernel since it appears in the standard Riemann–Liouville fractional

integral of order α of a continuous function y defined by

(1.2) Iαy(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s) ds, t > 0, α > 0.

In addition to the classical Riemann–Liouville fractional integrals, there are

many differ type fractional integrals such as Erdélyi–Kober fractional integrals,

Hadamard fractional integrals, Riesz fractional integrals and etc. One can also

find more about basic definitions and applications of the fractional calculus in

physics, viscoelasticity, electrochemistry and porous media [8]–[10], [13], [24],

[27], [33]. In recent years, there has been a significant development in Cauchy

problems (boundary value problems, nonlocal problems, impulsive problems) for

fractional differential (integral, evolution) equations and related optimal controls,

one can see the monographs [7], [19], [22], [28], [29] and the papers [1], [5], [11],

[12], [15], [17], [21], [23], [36]–[?].

The Erdélyi–Kober fractional integral [30], [20] of a continuous function y is

defined by

(1.3) Iγ,αβ y(t) =
t−β(γ+α)

Γ(α)

∫ t

0

(tβ − sβ)α−1y(s) dsβ ,

where α, γ and β > 0. Compared with the term (t − s)α−1 in (1.2), the term

(tβ − sβ)α−1, α ∈ (0, 1) is more general and can be named as Erdélyi–Kober

singular kernel (or named as weakly singular kernel in [25], [26]).

Since Erdélyi–Kober fractional integral can better describe the memory prop-

erty than Riemann–Liouville fractional integral, quadratic integral equations in-

volving Erdélyi–Kober singular kernels maybe better applicable in the theory

of kinetic theory of gases [14] and in the theory of neutron transport [18] than

integral equations involving Riemann–Liouville singular kernels. It is remarkable

that Wang et al. [35] obtained the existence and uniqueness -results of solutions

in a closed ball by Schauder fixed po nt theorem via a weakly singular integral

inequality in [26]. Moreover, the authors constructed three certain solutions sets
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tending to zero at appropriate rate and presented local stability results of solu-

tions. For some other pioneer works on such equations, we refer to [16], [26] and

references therein.

Motivated by the above mentioned, we will apply a differ way in [35] to

study nondecreasing solutions of a fractional quadratic integral equation involv-

ing Erdélyi–Kober singular kernels of the form:

(1.4) x(t) = a(t) +
f(t, x(t))

Γ(α)

∫ t

0

(tβ − sβ)α−1sγu(s, x(s)) ds, t ∈ [0, 1],

where α ∈ (0, 1), β ∈ (0,∞) and γ ∈ (−1,∞) are some suitable positive con-

stants, f and u are two functions will be defined later. Obviously, the equation

(1.3) is a particular case of the equation (1.1) when β = 1 and γ = 0.

By adopting the methods and techniques of Hausdorff measure of noncom-

pactness in [4], [35], we firstly obtain the existence results of the nondecreasing so-

lutions for the equation (1.4) by restricting the parameters α ∈ (1/2, 1), β ∈ (0, 1]

and γ ∈ [β(1− α)− 1,∞). Here, we also prove that the restriction on α and β

in Lemma 3.1 can not be improved due to Beta function B((γ + 1)/β, 2α − 1)

(see Remark 3.2). Secondly, we derive the uniqueness and nonuniqueness of the

nondecreasing solutions by utilizing a weakly singular integral inequality [26] and

imposing additional sublinear continuous condition on u.

Compared with the results in [4], the existence theorem of nondecreasing

solutions of the equation (1.1) is included in the equation (1.4). Moreover, the

uniqueness and nonuniqueness of the nondecreasing solutions of the equation

(1.4) are given in current text. Compared with the results in [35], a more gen-

eral nonlinear term f is appeared, a differ problem (nondecreasing solutions) is

posed, and a differ fixed point theorem (associated with Hausdorff measure of

noncompactness) is used to study the equation (1.4) under the suitable condi-

tions on f , u and γ.

2. Preliminaries

Let E be a Banach space with the norm ‖ · ‖ and X ⊆ E is bounded, but

X 6= ∅. We denote by χ(X) the Hausdorff measure of noncompactness of X,

which is defined by χ(X) = inf{ε > 0 : X has a finite ε-net in E} (see [3]).

We remark that the concept of a measure of noncompactness may be defined

in other ways [3], [34] but for our problem the Hausdorff measure of noncom-

pactness will be useful enough. Denote C([a, b]) by the Banach space which

consisting of all real functions defined and continuous on [a, b] with the general

maximum norm.

For a nonempty and bounded subset X of C([a, b]) its Hausdorff measure of

noncompactness can be expressed by a handy formula which is described below.
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We need the following symbols:

ω(X, ε) = sup{ω(x, ε) : x ∈ X}, ω0(X) = lim
ε→0

ω(X, ε),

where ω(x, ε) = sup{|x(t)− x(s)| : t, s ∈ [a, b], |t− s| ≤ ε}.
In what follows we recall some basic facts concerning the so-called superpo-

sition operator which are drawn from [34].

Let J ⊆ R but J 6= ∅ and g : [a, b]× J → R be a given function. Denote XJ

by all the functions acting from [a, b] into J . For any x ∈ XJ , a function F is

defined by

(2.1) (Fx)(t) = g(t, x(t)), t ∈ [a, b].

Then operator F defined in (2.1) is called the superposition operator generated

by g.

The following simple result is taken from [2] which will be used in the sequel.

For more theory concerning the superposition operator, the reader can refer

to [2].

Lemma 2.1. Let f : [a, b] × J → R be a continuous function on [a, b] × J .

Then the superposition operator F defined in (2.1) maps continuously XJ into

C([a, b]). In addition, if t → g(t, x) is nondecreasing on [a, b] for any x ∈ J

and x → g(t, x) is nondecreasing on J for any t ∈ [a, b], then the operator F
transforms every nondecreasing function from XJ into a nondecreasing function

in C([a, b]).

The following two basic inequalities [30] will be used in the sequel.

Lemma 2.2. For 0 < σ ≤ 1 and 0 ≤ a < b, we have

|aσ − bσ| ≤ (b− a)σ.

Lemma 2.3. Let α, β, γ and p be some suitable positive constants. Then∫ t

0

(tα − sα)p(β−1)sp(γ−1) ds =
tθ

α
B
(
p(γ − 1) + 1

α
, p(β − 1) + 1

)
,

where t ∈ R+ := [0,+∞) and

B(ξ, η) =

∫ 1

0

sξ−1(1− s)η−1 ds, (Re(ξ) > 0, Re(η) > 0)

is the well-known Beta function and θ = p[α(β − 1) + γ − 1] + 1.

To end this section, we collect a Darbox type fixed point theorem [3] which

will be used in the sequel.

Lemma 2.4. Let Q ⊆ E be a nonempty, bounded, closed and convex set and

T : Q → Q be a continuous mapping. If there exists a constant 0 ≤ k < 1 such

that χ(TX) ≤ kχ(X) for any nonempty subset X ⊆ Q, then T has a fixed point

in the set Q.
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3. Existence of nondecreasing solutions

In this section, we will apply Lemma 2.4 to study the existence of nonde-

creasing solutions of the equation (1.4).

For brevity, denote I = [0, 1]. We introduce the following assumptions:

(H1) The function a : I → R+ is continuous and nondecreasing on I.

(H2) The function f : I × J → R+ is continuous, where J ⊂ R+ is an un-

bounded interval and a0 ∈ J , where a0 = a(0).

(H3) The function f = f(t, x) is nondecreasing with respect to each of both

variables t and x separately, i.e. the function t→ f(t, x) is nondecreasing

on I for any fixed x ∈ J and the function x → f(t, x) is nondecreasing

on J for any fixed t ∈ I.

(H4) There exists a nondecreasing function k(r) = k : [a0,+∞) → R+ such

that

|f(t, x1)− f(t, x2)| ≤ k(r)|x1 − x2|

for any t ∈ I and all x1, x2 ∈ [a0, r].

(H5) The function u : I × R+ → R+ continuous and u(t, x) is nondecreasing

with respect to each variable t and x separately, i.e. the function t →
u(t, x) is nondecreasing on I for any fixed x ∈ R+ and the function

x→ u(t, x) is nondecreasing on R+ for any fixed t ∈ I.

We need the following additional conditions.

(H6) There exists a positive solution r0 of the inequality

(3.1) ‖a‖+
B((γ + 1)/β, α)Φ(r)

Γ(α)β
(rk(r) + F1) ≤ r,

where F1 = f(1, 0). Moreover,

(3.2) B
(
γ + 1

β
, α

)
Φ(r0)k(r0) < Γ(α)β.

Denote P = {x ∈ C(I) : x(t) ≥ a0, t ∈ I}. Clearly, P is a subset of C(I).

Define operators F and U on the set P as follows:

(Fx)(t) = f(t, x(t)),(3.3)

(Ux)(t) =
1

Γ(α)

∫ t

0

(tβ − sβ)α−1sγu(s, x(s)) ds,(3.4)

and operator T on the set P as follows:

(Tx)(t) = a(t) + (Fx)(t)(Ux)(t).(3.5)

In view of our assumptions on a, f and u, F,U and T are well defined on P .

For the sake of convenience, we will subdivide our main result into several

lemmas.
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Lemma 3.1. The operators F and U transform the set P into a subset of the

space C(I) consisting of functions being nonnegative on I provided α ∈ (1/2, 1)

and β ∈ (0, 1].

Proof. By (H2) and Lemma 2.1, the operator F : P → C(I) consisting of

functions being nonnegative on the interval I.

Next, we prove U has the same property. In fact, for any x ∈ P and t1, t2 ∈ I
with t1 < t2. Then, by (H5), Lemmas 2.2 and 2.3 we can derive that

|(Ux)(t2) − (Ux)(t1)|(3.6)

≤ 1

Γ(α)

{∫ t1

0

|(tβ2 − sβ)α−1 − (tβ1 − sβ)α−1|sγu(s, x(s)) ds

+

∫ t2

t1

(tβ2 − sβ)α−1sγu(s, x(s)) ds

}
≤ Φ(‖x‖)

Γ(α)

{∫ t1

0

[
1

tβ1 − sβ
− 1

tβ2 − sβ

]1−α
sγ ds

+
1

β

∫ t2

t1

(tβ2 − sβ)α−1sγs1−β dsβ
}

≤ Φ(‖x‖)
Γ(α)

{∫ t1

0

[
(t2 − t1)β

(tβ1 − sβ)2

]1−α
sγ ds+

1

β

∫ t2

t1

(tβ2 − sβ)α−1 dsβ
}

=
Φ(‖x‖)
Γ(α)

[
(t2 − t1)β(1−α)

∫ t1

0

(tβ1 − sβ)2(α−1)sγ ds+
(tβ2 − t

β
1 )α

αβ

]
≤ Φ(‖x‖)

Γ(α)β

[
B
(
γ + 1

β
, 2α− 1

)
(t2 − t1)β(1−α) +

1

α
(t2 − t1)αβ

]
,

which implies that

|(Ux)(t2)− (Ux)(t1)| → 0, as t2 → t1.

Thus, we have Ux ∈ C(I). Clearly, Ux is nonnegative on I. �

Remark 3.2. After reviewing the above result, it is natural to pose such

a problem: can we extend the above result from α ∈ (1/2, 1) to α ∈ (δ, 1) and

β ∈ (0, 1] to β ∈ [1,∞) where 0 < δ < 1/2? The answer is No. In fact, for

t1 > 0, using the fact 0 ≤ zβ ≤ z ≤ 1 for β ∈ [1,∞) we obtain∫ t1

0

(tβ1 − sβ)2(α−1)sγ ds ≥
∫ t1

t1/2

(tβ1 − sβ)2(α−1)sγ ds

≥
(
t1
2

)γ ∫ t1

t1/2

(tβ1 − sβ)2(α−1) ds

=

(
t1
2

)γ
t
2β(α−1)+1
1

∫ t1

t1/2

[
1−

(
s

t1

)β]2(α−1)
d

(
s

t1

)
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=

(
t1
2

)γ
t
2β(α−1)+1
1

∫ 1

1/2

(1− zβ)2(α−1) dz

≥
(
t1
2

)γ
t
2β(α−1)+1
1

∫ 1

1/2

(1− z)2(α−1) dz.

However, for 0 < α ≤ 1/2, one can show∫ 1

1/2

(1− z)2(α−1) dz =∞,

so we can not expect some extension on α, β.

Denote Pr0 = {x ∈ P : ‖x‖ ≤ r0}. Clearly, the set Pr0 is nonempty since

r0 ≥ a0.

Lemma 3.3. The operator T transforms the set Pr0 into itself.

Proof. Note Lemma 3.1 and (H1) we can know the operator T maps the

set P into itself.

Let Φ := Φ(r) = u(1, r) be the function defined on R+. In view of (H5), the

function Φ(r) is nonnegative and nondecreasing on R+ and u(t, x) ≤ Φ(r) for

t ∈ I and x ∈ [0, r]. Then, for an arbitrary x ∈ P and t ∈ I, using Lemma 2.3

again, we have

|(Tx)(t)| ≤ ‖a‖+
k(‖x‖)x(t) + F1

Γ(α)

∫ t

0

(tβ − sβ)α−1sγΦ(‖x‖) ds

≤‖a‖+
B((γ + 1)/β, α)Φ(‖x‖)

Γ(α)β
(k(‖x‖)‖x‖+ F1).

Now, taking into account the condition (3.1) in (H6) we can deduce that there

exists r0 > 0 with

B((γ + 1)/β, α)Φ(r0)k(r0)

Γ(α)β
< 1,

which is equal to the condition (3.2) in (H6).

From the above results, the operator T transforms the set Pr0 into itself. �

Consider the subset Q of Pr0 consisting of all functions from Pr0 which are

nondecreasing on I. Clearly, the set Q is nonempty, bounded, closed and convex.

Lemma 3.4. The operator F transforms each function belonging to Q into

a function from C(I) being nondecreasing on I. The same assertion is also valid

for the operator U provided that β(α− 1) + γ + 1 ≥ 0.

Proof. Obviously, the operator F transforms each function belonging to Q

into a function from C(I) being nondecreasing on I. Next, we show that the

same assertion is also valid for the operator U .
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Take an arbitrary function x ∈ Q and t1, t2 ∈ I with t1 < t2. Using

Lemma 2.3 we have

(Ux)(t2) − (Ux)(t1)

=
1

Γ(α)

∫ t1

0

[
1

(tβ2 − sβ)1−α
− 1

(tβ1 − sβ)1−α

]
sγu(s, x(s)) ds

+
1

Γ(α)

∫ t2

t1

(tβ2 − sβ)α−1sγu(s, x(s)) ds

≥ u(t1, x(t1))

Γ(α)

[∫ t2

0

(tβ2 − sβ)α−1sγ ds−
∫ t1

0

(tβ1 − sβ)α−1sγ ds

]
=
u(t1, x(t1))B((γ + 1)/β, α)

Γ(α)β
[t
β(α−1)+γ+1
2 − tβ(α−1)+γ+1

1 ] ≥ 0,

which implies that the function Ux is nondecreasing on I. �

Remark 3.5. Clearly, α ∈ (1/2, 1), β ∈ (0, 1) and γ ∈ [β(1− α)− 1,∞) will

imply β(α− 1) + γ + 1 ≥ 0.

Lemma 3.6. The operator T maps Q into itself and T is also continuous

on Q.

Proof. Linking Lemmas 3.1, 3.3 and 3.4, we obtain that the operator T

maps the set Q into itself. Next, we show that T is continuous on the set Q. In

view of Lemma 2.1 it is sufficient to show that the operator U is continuous on

the set Q. Thus, fix an arbitrarily ε > 0 and x0 ∈ Q. In view of assumption

(H5) and Lemma Lemma 2.1 we can find δ > 0 such that for an arbitrary x ∈ Q
with ‖x − x0‖ ≤ δ, we have |u(s, x(s)) − u(s, x0(s))| ≤ ε for s ∈ I. Hence, for

any fixed t ∈ I we can derive that

|(Ux)(t)− (Ux0)(t)| ≤ ε

Γ(α)

∫ t

0

(tβ − sβ)α−1sγ ds ≤ B((γ + 1)/β, α)

Γ(α)β
ε.

This shows that U is continuous on Q and implies the desired continuity of the

operator T on the set Q. �

Now, we are ready to state the main result in this paper.

Theorem 3.7. Let (H1)–(H5) be satisfied and α ∈ (1/2, 1) and β ∈ (0, 1).

Then the equation (1.4) has at least one solution x ∈ C(I). Moreover, all the

solutions of the equation (1.4) must be nonnegative and nondecreasing.

Proof. By Lemma 3.6, we know T maps Q→ Q is continuous. Now, take

a nonempty subset X of the set Q. Fix ε > 0 and choose x ∈ X and t1, t2 ∈ I
with |t2 − t1| ≤ ε. Assume that t1 ≤ t2. Then, using (H1)–(H5) and (3.6) we
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can derive

|(Tx)(t2) − (Tx)(t1)| ≤ |a(t2)− a(t1)|

+ (Fx)(t2)|(Ux)(t2)− (Ux)(t1)|+ (Ux)(t1)|(Fx)(t2)− (Fx)(t1)|

≤ω(a, ε) + [|f(t2, x(t2))− f(t2, 0)|+ |f(t2, 0)|]

× Φ(r0)

Γ(α)β

[
εβ(1−α)B

(
γ + 1

β
, 2α− 1

)
+
εαβ

α

]
+

[
1

Γ(α)

∫ t1

0

(tβ1 − sβ)α−1sγu(s, x(s)) ds

]
[|f(t2, x(t2))− f(t2, x(t1))|

+ |f(t2, x(t1))− f(t1, x(t1))|]

≤ω(a, ε) + (r0k(r0) + F1)
Φ(r0)

Γ(α)β

[
B
(
γ + 1

β
, 2α− 1

)
εβ(1−α) +

1

α
εαβ
]

+
Φ(r0)

Γ(α)β
B
(
γ + 1

β
, α

)
[k(r0)ω(x, ε) + v(f, ε)] ,

where v(f, ε) = sup{|f(t2, x) − f(t1, x)| : t1, t2 ∈ I, |t2 − t1| ≤ ε, x ∈ [a0, r0]}.
Hence, using the uniform continuity of f on I × [a0, r0] we deduce the inequality

(3.7) ω0(TX) ≤ B((γ + 1)/β, α)Φ(r0)k(r0)

Γ(α)β
ω0(X).

Applying the fact χ(X) = ω0(X)/2 [3] to the inequality (3.7), we can obtain

χ(TX) ≤ B((γ + 1)/β, α)Φ(r0)k(r0)

Γ(α)β
χ(X).

Note that (3.2) yields

0 ≤ B((γ + 1)/β, α)Φ(r0)k(r0)

Γ(α)β
< 1.

Thus, all the assumptions in Lemma 2.4 are satisfied. As a result, T has at least

a fixed point in the set Q. The desired results are obvious. �

4. Uniqueness and nonuniqueness

In order to obtain uniqueness and nonuniqueness result, we need the following

nonlinear integral inequality involving weakly singular kernels [25] which can be

widely used in the study of integral equations involving Erdélyi–Kober singular

kernels.

Lemma 4.1. Let κ ∈ (0, 1], x ∈ C(R+,R+) satisfies the following inequality

x(t) ≤ â(t) + ĉ(t)

∫ t

0

(tα̂ − sα̂)β̂−1sγ̂−1F̂ (s)[x(s)]κ ds, t ≥ 0,(4.1)

where â, ĉ ∈ C(R+,R+) are not decreasing functions and F̂ ∈ C(R+,R+).
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If α̂ ∈ (0, 1], β̂ ∈ (1/2, 1) and γ̂ ≥ 3/2− β̂, then

x(t) ≤ 2β̂ â(t) exp

{
(1− β̂)B(t)

∫ t

0

[F̂ (s)]1/(1−β̂) ds

}
,

for κ = 1,

x(t) ≤
[
(2β̂ â(t))(1−κ)/(1−β̂) + (1− β̂)B(t)

∫ t

0

[F̂ (s)]1/(1−β̂)
](1−β̂)/(1−κ)

,

for 0 < κ < 1, where

B(t) =

[
2

α̂
B
(
β̂ + γ̂ − 1

α̂β̂
,

2β̂ − 1

β̂

)]β̂/(1−β̂)
[ĉ(t)]1/(1−β̂)t(α̂(β̂−1)+γ̂−1+β̂)/(1−β̂).

Remark 4.2. (a) If α̂ ∈ (0, 1], β̂ ∈ (0, 1/2) and γ̂ ≥ (1− 2β̂2)/(1− β̂2), the

authors also give explicit bounds for κ = 1 and 0 < κ < 1 respectively in [25].

(b) For more general nonlinear integral inequalities involving Erdélyi–Kober

singular kernels and their applications, the reader can refer to [26].

Theorem 4.3. Under the assumptions of Theorem 3.7 hold and there exists

a positive constant L such that

|u(t, x)− u(t, y)| ≤ L|x− y|ν , 0 < ν ≤ 1,

for any t ∈ I and all x1, x2 ∈ [a0, r]. Then for some γ ∈ [1/2−α,∞), either the

equation (1.4) has a unique nonnegative and nondecreasing solution for ν = 1,

or has at least two nonnegative and nondecreasing solutions for 0 < ν < 1.

Proof. Suppose that y be another nonnegative and nondecreasing solution

of the equation (1.4). Then y satisfies the following integral equation

y(t) = a(t) +
f(t, y(t))

Γ(α)

∫ t

0

(tβ − sβ)α−1sγu(s, y(s)) ds, t ∈ I.

Hence,

|x(t) − y(t)| ≤ k(r)|x(t)− y(t)|Φ(‖x‖)
Γ(α)

∫ t

0

(tβ − sβ)α−1sγ ds

+
L(|f(t, y(t))− f(t, 0)|+ |f(t, 0)|)

Γ(α)

∫ t

0

(tβ − sβ)α−1sγ |x(s)− y(s)|ν ds

≤ k(r)Φ(r)

Γ(α)β
B
(
γ + 1

β
, α

)
|x(t)− y(t)|

+
L(k(r)|y(t)|+ F1)

Γ(α)

∫ t

0

(tβ − sβ)α−1sγ |x(s)− y(s)|ν ds,
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for any t ∈ I and all x1, x2 ∈ [a0, r]. This yields that[
1− k(r)Φ(r)

Γ(α)β
B
(
γ + 1

β
, α

)]
|x(t)− y(t)|

≤ L(k(r)r + F1)

Γ(α)

∫ t

0

(tβ − sβ)α−1sγ |x(s)− y(s)|ν ds.

In view of (3.2), we can rewrite the above inequality to

(4.2) |x(t)− y(t)| ≤ â(t) + ĉ(t)

∫ t

0

(tβ̂ − sβ̂)α̂−1sγ̂−1|x(s)− y(s)|κ ds,

where α̂ := β, β̂ := α, γ̂ := γ + 1, κ = ν, â(t) := 0 and

ĉ(t) :=
L(k(r0)r0 + F1)[

1− k(r0)Φ(r0)

Γ(α)β
B
(
γ + 1

β
, α

)]
Γ(α)

.

Note the restriction α ∈ (1/2, 1), β ∈ (0, 1] and γ ∈ [1/2 − α,∞), we can

apply Lemma 4.1 to the inequality (4.2), one can obtain the desired results

immediately. �

5. Examples

In what follows we illustrate the above obtained results by the following two

examples.

Example 5.1. Consider a fractional quadratic integral equation involving

Erdélyi–Kober singular kernels

(5.1) x(t) =
1

n
sin t+

n
√
x(t)

Γ(3/4)

∫ t

0

(t1/2−s1/2)−1/4s[s2+x2(s)] ds, t ∈ I := [0, 1].

Let α := 3/4 ∈ (1/2, 1), β := 1/2 ∈ (0, 1], γ := 1 ∈ [−1/4,∞), n ∈ N, and

a(t) :=
1

n
sin t, f(t, x) := n

√
x, u(t, x) := t2 + x2,

F1 := f(t, 0) = 0, Φ(r) := u(1, r) = 1 + r2.

Obviously, the equation (5.1) is a special case of the equation (1.4).

Now, we show that all assumptions of Theorem 4.3 are satisfied for the

equation (5.1).

In fact we can observe that:

(1) the function a(t) is continuous, positive and nondecreasing on I with

a0 = a(0) = 0 and ‖a‖ = (sin 1)/n;

(2) the function f : I × J → R+ is continuous, where J := [a0,∞) = [0,∞);

(3) f is nondecreasing with respect to each of both variables t and x sepa-

rately;

(4) f is Lipschitzian on [a0, r] with the constant k(r)e2(1−1/n)/n, for any

r ≥ a0;
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(5) the function u : I × J → R+ is continuous and it is nondecreasing with

respect to each of both variables t and x separately. Moreover, u is also

Lipschitzian on [a0, r]

|u(t, x)− u(t, y)| = |x+ y||x− y| ≤ L|x− y|ν , ν = 1,

with the constant L := 2r.

Moreover, the inequality (3.1) has the form

sin 1

n
+

B(4, 3/4)(1 + r2)

Γ(3/4)/2
× re2(1−1/n)

n
≤ r,

which implies that

sin 1 +
2B(4, 3/4)r(1 + r2)e2(1−1/n)

Γ(3/4)
≤ nr.

It is easy to see that r0 = 1 satisfies the above inequality for any n ≥ 10, where

sin 1 ' 0.8415, B(4, 3/4) ' 0.4433, Γ(3/4) ' 1.2254.

Also, the inequality (3.2) has the form

(5.2) 0.5364 ' B
(

4,
3

4

)
Φ(1)k(1) <

1

2
Γ

(
3

4

)
' 0.6125,

where Φ(1) = 2 and k(1) = 0.60496.

By Theorem 4.3, the equation (5.1) has a unique positive and nondecreasing

solution x(t) ∈ I for t ∈ I.

The unique positive and nondecreasing solution of the equation (5.1) is dis-

played in Figure 1.

0 0.2 0.4 0.6 0.8 1
0

0.1
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0.5

0.6

0.7
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x

Figure 1. The unique positive and nondecreasing of the equation (5.1).
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Example 5.2. Consider another fractional quadratic integral equation in-

volving Erdélyi–Kober singular kernels

(5.3) x(t) = a(t) +
f(t, x(t))

Γ(α)

∫ t

0

(tβ − sβ)α−1sγu(s, x(s)) ds, t ∈ I,

where α, β, γ, I, a, f are the same as in the Example 5.1 and

u(t, x) := t+ Lx1/2, L := 1,

Denote r0 := 1 and Φ(r0) := u(1, r0) = 1 +
√
r0. Clearly, for all x, y ∈ [0, 1],

|u(t, x)− u(t, y)| ≤ L|x− y|1/2, ν =
1

2
.

From the discussion in the Example 5.1, one can see that r0 = 1 satisfies the

following inequality

sin 1 +
2B(4, 3/4)r(1 +

√
r)e2(1−1/n)

Γ(3/4)
≤ nr

for any n ≥ 10. Meanwhile, the inequality (5.2) also holds since Φ(1) = 2.

By Theorem 4.3 again, the equation (5.3) has at least two positive and non-

decreasing solutions x(t) ∈ I for t ∈ I.

Two positive and nondecreasing solutions of the equation (5.3) are displayed

in Figure 2.
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Figure 2. Two positive and nondecreasing solutions of the equation (5.3).
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