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ON SECOND ORDER ELLIPTIC EQUATIONS

AND VARIATIONAL INEQUALITIES WITH ANISOTROPIC

PRINCIPAL OPERATORS

Vy Khoi Le

Abstract. This paper is about boundary value problems of the form{
−div[∇Φ(∇u)] = f(x, u) in Ω,

u = 0 on ∂Ω,

where Φ is a convex function of ξ ∈ RN , rather than a function of the

norm |ξ|. The problem is formulated appropriately in an anisotropic Orlicz–

Sobolev space associated with Φ. We study the existence of solutions and
some other properties of the above problem and its corresponding varia-

tional inequality in such space.

1. Introduction

We are concerned in this paper with the following boundary value problem:

(1.1)

−div[∇Φ(∇u)] = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded region in RN (N ≥ 1) with sufficiently smooth boundary

∂Ω, the function Φ: RN → R defines the principal term, and f : Ω × R → R is

the lower order term.
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If Φ(ξ) = |ξ|2/2 (| · | is the Euclidean norm in RN ) then div(∇Φ(∇u)) =

div(∇u) = ∆u is the classical Laplacian. The case Φ(ξ) = |ξ|p/p (p > 1)

corresponds to equations with the p-Laplacian. In the more general case where

Φ(∇u) = φ(|∇u|) where φ is a convex function from [0,∞) into itself, we have

problems with φ-Laplacian. In the above cases, Φ(ξ) does not depend on ξ

directly but instead on its norm |ξ| and thus the growth of Φ is the same in

all directions (isotropic). In this paper we study equation (1.1) and a more

general variational inequality in the anisotropic case, that is, when Φ has different

growths in different directions in RN . This means that Φ is a function in all

components ξ1, . . . , ξN of ξ, not only in |ξ|. A simple example of such function is

Φ(ξ) =

N∑
j=1

|ξj |pj , for all ξ = (ξ1, . . . , ξN ) ∈ RN with p1, . . . , pn ∈ (1,∞),

or more generally

(1.2) Φ(ξ) =

N∑
j=1

Aj(|ξj |), for all ξ ∈ RN ,

where A1, . . . , AN are possibly different N -functions.

Several interesting problems in Physics and Mechanics have anisotropic na-

tures and have been formulated recently in anisotropic Orlicz spaces or cones,

for example in [9] and [18]–[21] (problems in Fluid Mechanics) and in [44], [5]

(problems in Elasto–Plasticity). Differential equations with anisotropic opera-

tors have been also studied recently in various situations, cf. e.g. [41], [4], [12]

and the references therein. After finishing this work, we have learnt of the very

recent works [17] and [22] in which similar equations with anisotropic growths

were studied in general settings. It was studied in [17] the existence of solutions

to the boundary value problem−div(A(x,∇u)) = f in Ω,

u = 0 on ∂Ω,

in generalized Orlicz–Musielak spaces generated by inhomogeneous and aniso-

tropic N -functions without ∆2 or ∇2 conditions. In [22], the authors proved the

existence of renormalized and weak solutions of the inclusionβ(x, u)− div(a(x,∇u) + F (u)) 3 f in Ω,

u = 0 on ∂Ω,

with f ∈ L1(Ω) and β being maximal monotone with respect to u in the

framework of generalized Orlicz–Musielak spaces. Compared to these interesting

works, our approaches, goals, and results here are quite different. More detailed

discussions are presented in Remark 3.12.
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In this paper, we propose some steps for a functional analytic study of second

order partial differential equations and inclusions with general principal parts

having anisotropic growths, that is, different growths in different directions of

the gradient and not necessarily given in the form (1.2). We are, in particular,

interested in what extend the standard tools in classical cases such as Sobolev

spaces or regular Orlicz–Sobolev spaces can be applied in this more general and

complicated case and what adaptation and generalization are needed for such

extension. We present here basic definitions and properties of anisotropic Orlicz

and Orlicz–Sobolev spaces associated with G-functions and consider weak formu-

lations of equation (1.1) also in the more general case where Φ is nonsmooth. As

will be seen later, in this case an appropriate formulation of (1.1) is an inclusion

or a variational inequality. We study the existence of solutions and properties

of the resolvent mapping of (1.1) and its associated variational inequality by

extending the classical monotonicity and topological/fixed point methods to our

present problems.

The paper is organized as follows. In Section 2, we present the definitions of

G-functions following [47] and of anisotropic Orlicz and Orlicz–Sobolev spaces

associated with G-functions, together with some of their basic properties. Sec-

tion 3 is about weak formulations of (1.1) in anisotropic Orlicz–Sobolev spaces.

Abstract existence theorems and properties of resolvent mappings of (1.1) and

a more general variational inequality are next established in this general setting.

Section 4 is devoted to fixed point formulations of our problems. We show that

under certain appropriate growth condition on the lower order term, extending

the classical sub-critical growth condition, the problem is equivalent to a fixed

point inclusion which has suitable compactness property such that a multival-

ued Leray–Schauder topological degree for the involved operators is well defined.

An illustrative example of the abstract existence theorem in Section 3 when the

lower order term has a more specific growth is presented in Section 5.

2. Preliminaries

Assume Φ is a G-function in the sense of [47], that is Φ: RN → [0,∞] such

that:

(G1) Φ(0) = 0,

(G2) lim
|x|→∞

Φ(x) =∞,

(G3) Φ is convex on RN ,

(G4) Φ is symmetric, i.e. Φ(−x) = Φ(x), for all x ∈ RN ,

(G5) The set Φ−1 = {x ∈ RN : Φ(x) =∞} is separated from 0,

(G6) Φ is lower semicontinuous.

In what follows, we need stronger conditions than (G2) and (G5). In fact,

instead of (G2) and (G5), we assume that
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(G2’) lim
|x|→∞

Φ(x)

|x|
=∞, and

(G5’) Φ−1(∞) = ∅, i.e. Φ(x) 6=∞ for all x ∈ RN .

In short, we assume that Φ is a symmetric, convex, lower semicontinuous

function from RN to [0,∞) that satisfies (G1) and (G2’) (cf. Hypothesis 2.1,

[9], Definitions 2.1–2.2, [46], and [47]). As a consequence of (G5’) and (G6), Φ

is locally Lipschitz and therefore continuous on RN . Let Φ∗ be the (Fenchel)

conjugate of Φ,

(2.1) Φ∗(y) = sup
x∈RN

[x · y − Φ(x)], y ∈ RN .

Our assumptions on Φ imply that Φ∗ also satisfies (G1), (G2’), (G3), (G4),

(G5’), (G6). It follows from the definition of Φ∗ that x · y ≤ Φ(x) + Φ∗(y), for

all x, y ∈ RN and for each x ∈ RN , there exists y ∈ RN such that

(2.2) x · y = Φ(x) + Φ∗(y).

Furthermore (cf. e.g. [3]),

(2.3) Φ∗∗ = Φ.

We have definitions about some behaviors of G-functions.

Definition 2.1. (a) A G-function G is said to satisfy a ∆2 condition (at∞)

if there exist L,M ≥ 0 such that

(2.4) Φ(2x) ≤ LΦ(x), for all x ∈ RN with |x| ≥M.

If M = 0 in (2.4) then we say that Φ satisfies a ∆2 condition globally.

(b) Given G-functions G1, G2 : RN → [0,∞]. We say that G1 ≺ G2 if there

exist L,M ≥ 0 such that

(2.5) G1(x) ≤ G2(Lx), for all x ∈ RN with |x| ≥M.

If G1 ≺ G2 and G2 ≺ G1 then we say that G1 and G2 are equivalent and denote

G1 ∼ G2.

We define now the anisotropic Orlicz space LG(Ω) and first order Sobolev–

Orlicz space W 1LG(Ω). Let L0(Ω) be the set of all (equivalent classes of) mea-

surable functions from Ω to R.

Definition 2.2. (a) Let G : RN → [0,∞] be a G-function. The anisotropic

Orlicz space associated with G is defined as:

LG(Ω) =

{
u ∈ [L0(Ω)]N : exists λ > 0 such that

∫
Ω

G(λu) dx <∞
}
.

(b) Let G : RN+1 → [0,∞] be a G-function. The first order anisotropic

Orlicz–Sobolev space W 1LG(Ω) associated with G is defined as the set of all

weakly differentiable functions u : Ω→ R such that (u, ∂1u, . . . , ∂Nu) ∈ LG(Ω).
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LG(Ω), equipped with the Luxemburg norm

(2.6) ‖u‖LG(Ω) = ‖u‖G = inf

{
λ > 0 :

∫
Ω

G

(
u

λ

)
dx ≤ 1

}
(u ∈ LG(Ω)),

is a Banach space. In Definition 2.2(b), W 1LG with the norm

(2.7) ‖u‖W 1LG(Ω) = ‖u‖1,G = ‖(u, ∂1u, . . . , ∂Nu)‖G (u ∈W 1LG),

can be identified with a closed subspace of LG(Ω) and is therefore a Banach

space itself. It is clear that C1
0 (Ω) ⊂ W 1LG(Ω). We have next the following

definitions.

Definition 2.3. (a) The space W 1
0LG(Ω) is the closure of C1

0 (Ω) in W 1LG
with respect to the norm ‖ · ‖1,G.

(b) ([47]) Let G : RN → [0,∞] be a G-function. The space H0(G,Ω) is

defined as the completion of the space C1
0 (Ω) with respect to the norm

‖ · ‖H0(G,Ω) = ‖∇( · )‖G : u 7→ ‖∇u‖G, for all u ∈ C1
0 (Ω).

First, we have the following properties of anisotropic Orlicz spaces and norms,

whose proofs are straightforward and thus omitted.

Proposition 2.4. Let G1, G2 be G-functions.

(a) If G1 ≺ G2 then LG2(Ω) ⊂ LG1(Ω) with continuous embedding.

(b) If G1 ∼ G2 then LG2
(Ω) = LG1

(Ω) and the norms ‖ · ‖G1
and ‖ · ‖G2

are

equivalent.

(c) If G1 ≺ G2 and G1 satisfies condition (G5’) then G∗2 ≺ G∗1.

Proposition 2.5. Assume Gi : RNi → [0,∞] is a G-function (i = 1, 2).

Then G : RN ≡ RN1 × RN2 → [0,∞], G(x) = G(x1, x2) = G1(x1) + G2(x2), for

all x = (x1, x2) ∈ RN (N = N1 +N2, xi ∈ RNi , i = 1, 2), is a G-function on RN

and

(a) LG(Ω) = LG1
(Ω)× LG2

(Ω).

(b) For u = (u1, u2) ∈ LG(Ω) with ui ∈ LGi
(Ω), i = 1, 2, the norms

u 7→ ‖u‖G and u 7→ ‖u1‖G1
+ ‖u2‖G2

are equivalent.

Next, let us consider some relations between the spaces introduced in Defini-

tion 2.3. Assume G : RN → [0,∞] is a G-function. Define G1 : RN+1 → [0,∞] by

(2.8) G1(x0, x) = |x0|+G(x), for all x0 ∈ R, x ∈ RN .

Then G1 is a G-function with

(2.9) H0(G,Ω) = W 1
0LG1

(Ω),

and moreover, the norm u 7→ ‖u‖W 1LG1
(Ω) is equivalent to the norm

(2.10) u 7→ ‖∇u‖LG(Ω),
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in this space. In fact, straightforward calculations show that G1 is a G-function.

To verify (2.9), let us assume u ∈ H0(G,Ω). Then there exists a sequence

{un} ⊂ C1
0 (Ω) such that ‖un − u‖H0(G,Ω) = ‖∇un − ∇u‖LG(Ω) → 0. We know

([47]) that H0(G,Ω) ↪→ W 1,1
0 (Ω) (with continuous embedding) and ‖v‖L1(Ω) ≤

C‖v‖H0(G,Ω), for all v ∈ H0(G,Ω) for some constant C > 0. Hence for some

C1, C2 > 0 independent of u, un,

‖un−u‖W 1LG1
(Ω)≤C1(‖un−u‖L1(Ω)+‖∇un−∇u‖LG(Ω))≤C2‖∇un−∇u‖LG(Ω).

This shows that un → u with respect to the norm ‖ · ‖W 1LG1
(Ω), i.e. u ∈

W 1
0LG1

(Ω). Conversely, assume u ∈ W 1
0LG1

(Ω), i.e. there exists {un} ⊂ C1
0 (Ω)

such that ‖un − u‖W 1LG1
(Ω) → 0.

Because of the equivalence between ‖ ·‖W 1LG1
(Ω) and the norm in (2.10) (see

Proposition 2.5), we see that ‖un − u‖H0(G,Ω) = ‖∇un − ∇u‖LG(Ω) → 0, i.e.

u ∈ H0(G,Ω), which completes the proof of (2.9). These arguments also prove

the equivalence between the norms ‖ · ‖W 1LG1
(Ω) and ‖∇( · )‖LG(Ω).

In what follows, we concentrate on G-functions G : RN+1 → [0,∞] with

G(u0, u) = Φ0(u0) + Φ(u), u0 ∈ R, u ∈ RN ,

where Φ0 is a Young function from R to [0,∞] and Φ a G-function from RN

to [0,∞]. As in [47], we denote Φ∗+(u) = sup{u · v − Φ(v) : v ∈ RN+} where

RN+ = {v ∈ RN : vi ≥ 0, for all i ∈ {1, . . . , N}}. Let A be a Young function that

satisfies Theorem 1 in [47] for H0(G,Ω), i.e. there are continuous, nondecreasing

functions f1, . . . , fN from [0,∞) into itself such that

(2.11) G∗+(0, f1(s), . . . , fN (s))(= Φ∗+(f1(s), . . . , fN (s))) ≤ s,

for all s ∈ [0,∞), and for some k > 0,

(2.12)
1

k

∫ t

0

ds

s

(
N∏
i=1

fi(s)

)1/n
≤ A−1(t), for all t ≥ 0.

According to Theorem 1 and the remark in pages 29–30 of [47], the embedding

(2.13) W 1
0LG(Ω) ↪→ LA(Ω)

is continuous with

(2.14) ‖u‖LA(Ω) ≤ C‖ |∇u| ‖LΦ(Ω), for all u ∈W 1
0LG(Ω).

From (2.13) we see that if

(2.15) Φ0 ≺ A,

then the norms ‖ · ‖W 1LG
and ‖∇( · )‖LΦ

are equivalent on W 1
0LG. In fact, we

have from Theorem 1 in [47],

‖u‖LΦ0
≤ C1‖u‖LA

≤ C2‖∇u‖LΦ ,
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for all u ∈ H0(Φ, G) ⊃ W 1
0LΦ. Therefore, the norms ‖ · ‖LΦ0

+ ‖∇( · )‖LΦ
and

‖∇( · )‖LΦ
are equivalent on W 1

0LΦ. From Proposition 2.5, the norms ‖ · ‖LΦ0
+

‖∇( · )‖LΦ
and ‖ · ‖W 1LG

are equivalent on W 1LG. Hence the norms ‖ · ‖W 1LG

and ‖∇( · )‖LΦ
are equivalent. These arguments also imply that if (2.15) holds

then H0(Φ,Ω) = W 1
0LG.

In the particular case where Φ is given by (1.2), it was proved in [47] that

the function A such that (2.12) and thus (2.13) hold can be chosen as

A−1(t) =

∫ t

0

ds

m(s)
(t ≥ 0),

where

m(s) = s1+1/N

[ N∏
j=1

A−1
j

(
s

N

)]−1/N

.

Remark 2.6. Instead of using the classical embedding theorem in [47], we

can use alternatively a sharp embedding theorem due to Cianchi ([7], see also

[6], [8]). If Φ is as above then A can be constructed as follows. Let Φ? : [0,∞]→
[0,∞] be defined by

Φ?(s) = sup{t : |{ξ ∈ RN : Φ(ξ) ≤ t}| < Cns
n} for s ≥ 0,

where Cn = πn/2Γ(1+n/2) is the measure of the n-dimensional unit ball. Assume∫ a

0

(
t

Φ?(t)

)1/(N−1)

dt <∞

for some a > 0 and define H : [0,∞)→ [0,∞) by

H(r) =

(∫ r

0

(
t

Φ?(t)

)1/(N−1)

dt

)(N−1)/N

for r ≥ 0.

Then for the Young function A given by

(2.16) A = Φ? ◦H−1,

where H−1 is the left-continuous inverse of H, the embedding (2.13) holds (when

∂Ω is sufficiently smooth). More importantly, the embedding (2.13) is sharp in

the class of Young functions with A given by (2.16).

Note that our results in the sequel still hold if A is given by (2.16) instead

by (2.11)–(2.12).

Let us conclude this section with a coercivity result for integrals in anisotropic

Orlicz spaces that will be used later. This result is obvious for Lebesgue spaces

and was proved in [16] for Orlicz spaces.
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Proposition 2.7. Assume G is a G-function that satisfies (G2’) and (G5’).

If G∗ satisfies a ∆2 condition (at infinity) then
∫

Ω
G(u) dx is coercive on LG(Ω)

in the following sense:

(2.17) lim
‖u‖G→∞

1

‖u‖G

∫
Ω

G(u) dx =∞.

To prove this proposition, we need a simple result on G-functions with

∆2 conditions, a one-dimensional version of which (for N -functions) was given

in [26].

Proposition 2.8. Assume G is a G-function satisfying condition (G5’) and

a ∆2 condition at ∞. Then there exists a G-function H satisfying (G5’) and

a ∆2 condition globally such that G ∼ H.

Proof. Assume (2.4) holds with M > 0. By the continuity of G, K :=

sup{G(x) : |x| ≤M}+1 ∈ [1,∞). Let B = G−1([0,K]). Since G is a continuous

G-function, B is a closed, bounded, convex, symmetric (about 0) subset of RN .

Since K > 0, the continuity of G implies that 0 ∈ B◦. It also follows from the

convexity of G that

(2.18) G(x) = K ⇔ x ∈ ∂B.

Next, we prove that

(2.19) For each x ∈ B \ {0}, there exists a unique t = tx ≥ 1

such that txx ∈ ∂B.

In fact, consider the function Gx : R→ [0,∞), Gx(t) = G(tx). Since Gx(0) = 0

and Gx(tx)→∞ as t→∞, there must exists t0 ∈ (0,∞) such that Gx(t0) = K,

i.e. t0x ∈ ∂B by (2.18). Moreover, from the convexity of G implies that Gx is

nondecreasing on [0,∞), i.e. if 0 ≤ t1 < t2 then Gx(t1) ≤ Gx(t2). Moreover, if

Gx(t2) > 0 then Gx(t1) < Gx(t2).

This property implies that t0 ≥ 1. In fact, if t0 < 1 then 0 < K = Gx(t0) ≤
Gx(1) and thus K = Kx(t0) < Gx(1) = G(x) = K.

To see the uniqueness of t0, assume there are t0, t1 such that 1 ≤ t0 < t1
and Gx(t0) = Gx(t1) = K. This is impossible since Gx(t1) > 0 and thus

K = Gx(t0) < Gx(t1) = K. This contradiction proves the uniqueness of t0 and

thus (2.19).

Let us define G1 : B → R as follows. G1(0) = 0 and for x ∈ B \ {0},
G1(x) = K/tx where tx is the unique number in [1,∞) such that txx ∈ ∂B. It

is clear that G1 is symmetric and G1(x) = K for all x ∈ ∂B. Moreover,

(2.20) G1 is convex on B.

In fact, let x, y ∈ B, x = tx0, y = sy0 with x0, y0 ∈ ∂B and s, t ∈ [0, 1]. We have

by definition, G1(x) = tK, G1(y) = sK. Let z = λx+ (1− λ)y with λ ∈ (0, 1).
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We need to prove that

(2.21) G1(z) ≤ λG1(x) + (1− λ)G1(y).

Without loss of generality, we can assume that either t > 0 or s > 0. Consider

σ = [λt + (1 − λ)s]−1. We have σ ≥ 1 and σz = σλtx0 + σ(1 − λ)sy0 with

σλt+ σ(1− λ)s = 1 and σλt, σ(1− λ)s ≥ 0. Since B is convex, we have σz ∈ B,

i.e. G1(σz) ≤ K. Note that G1(σz) = σG1(z) and thus

G1(z) ≤ K

σ
= λtK + (1− λ)sK = λG1(x) + (1− λ)G1(y),

proving (2.21) and therefore (2.20). It follows that

(2.22) epi(G1) = {X = (x, x∗) ∈ B × R : G1(x) ≤ x∗} is convex.

Let us define H : RN → [0,∞) by

(2.23) H(x) =

G1(x) if x ∈ B,
G(x) if x 6∈ B.

Straightforward arguments show that H is continuous in RN . Let us prove that

H is convex in RN , i.e. to prove that epiH = {(x, x∗) ∈ RN+1 : x ∈ RN and x ≥
H(x)} is a convex set. First, note that

(2.24) epiH ⊂ epiG.

In fact, let (x, x∗) ∈ epiH. If x 6∈ B then G(x) = H(x) and (x, x∗) ∈ epiG. If

x ∈ B with x = tx0, x0 ∈ ∂B and t ∈ [0, 1], we have (x,G1(x)) = (x, tK) =

t(x0, G(x0)). Since epiG is convex and contains (0, 0), we have (x,G1(x)) ∈
epiG, i.e. G1(x) ≥ G(x). It follows that x∗ ≥ H(x) = G1(x) ≥ G(x) and thus

(x, x∗) ∈ epiG, proving (2.24). Let X = (x, x∗), Y = (y, y∗) ∈ epiH. We prove

that

(2.25) [X,Y ] := {λX + (1− λ)Y : λ ∈ [0, 1]} ⊂ epiH.

We first note the following equivalences, whose proofs are straightforward and

thus omitted. For Z = (z, z∗) ∈ RN+1 (z ∈ RN and z∗ ∈ R), we have

(2.26) [Z ∈ epiH and z∗ ≥ K]⇔ [Z ∈ epiG and z∗ ≥ K],

and

(2.27) [Z ∈ epiH and z∗ ≤ K]⇔ [Z ∈ epiG1 and z∗ ≤ K].

To prove (2.25), we consider 3 cases.

(i) Both x∗, y∗ ≥ K. It follows from (2.26) that X,Y ∈ epiG. Since epiG

is convex, [X,Y ] ⊂ epiG. For any Z = (z, z∗) ∈ [X,Y ], since z∗ is a convex

combination of x∗ and y∗, we have z∗ ≥ K. Thus from (2.26), Z = (z, z∗) ∈ epiH

and (2.25) is proved in this case.
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(ii) Both x∗, y∗ ≤ K. For this case, the equivalence in (2.27) implies that

X,Y ∈ epiG1. Using again the convexity of epiG1 (cf. (2.22)), we have [X,Y ] ⊂
epiG1, and thus for any Z = (z, z∗) ∈ [X,Y ], we have z∗ ≤ K. Since Z ∈ epiG1,

(2.27) implies that Z ∈ epiH.

(iii) min{x∗, y∗} ≤ K < max{x∗, y∗}. Assume for example x∗ ≤ K < y∗.

Then there exists a unique Z = (z, z∗) ∈ [X,Y ] such that z∗ = K. It is clear

that

(2.28) [X,Y ] = [X,Z] ∪ [Z, Y ].

From (2.24), we have [X,Y ] ⊂ epiG and thus Z ∈ epiG. As a consequence,

K = z∗ ≥ G(z) and thus z ∈ B. It follows from the definition of H and G1

that H(z) = G1(z) = tK where t ∈ [0, 1] is such that z = tz0, z0 ∈ ∂B. We

thus have H(z) = tK ≤ K = z∗ and thus Z = (z, z∗) = (z,K) ∈ epiH. Since

X,Z ∈ epiH with x∗, z∗ ≤ K, we have

(2.29) [X,Z] ⊂ epiH,

from the proof in case (ii) with Z instead of Y . Similarly, since Z, Y ∈ epiH

with z∗, y∗ ≥ K, we have

(2.30) [Z, Y ] ⊂ epiH,

from case (i) above with Z instead of X. From (2.28)–(2.30), we have (2.25) also

in case (iii) and thus in all cases. We obtain the convexity of H in RN .

Since B is bounded one can choose ρ ∈ (0,∞) such that

(2.31) B ⊂ Bρ(0).

Because H(x) = G(x) for all x ∈ RN , |x| ≥ ρ, we immediately see that H ∼ G.

Let us prove now that H satisfies a global ∆2 condition. First, note from its

definition that H(x) > 0 for all x ∈ RN \ {0}. Furthermore, from the definitions

of B and K, we have that BM (0) ⊂ B. Let K1 = max{H(x) : |x| ≤ 2ρ} ∈ (0,∞)

where ρ satisfies (2.31) and m1 = min{H(x) : M/2 ≤ |x| ≤ ρ} ∈ (0,∞).

For any x ∈ RN , we have the following possibilities: |x| ≤M/2, M/2 < |x| <
ρ, and |x| ≥ ρ.

If |x| ≤ M/2 then x, 2x ∈ B and H(2x) = G1(2x) = tK where 2x = tx0,

x0 ∈ ∂B. Since x = tx0/2, we have H(x) = G1(x) = tK/2. Thus H(2x) =

2H(x) if |x| ≤M/2.

In the case where M/2 < |x| < ρ, we have H(2x) ≤ K1 and H(x) ≥ m1 and

thus H(2x) ≤ (K1/m1)H(x).

If |x| ≥ ρ then x, 2x 6∈ B. In particular, |x| ≥ M and from (2.4), we have

H(2x) = G(2x) ≤ LG(x) = LH(x). Combining the above cases, we get

H(2x) ≤ max{2,K1/m1, L}H(x), for all x ∈ RN . �
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Proof of Proposition 2.7. First, assume that G∗ satisfies a global ∆2

condition, that is,

(2.32) G∗(2x) ≤ LG∗(x), for all x ∈ RN ,

for some L > 2. By mathematical induction, we have

(2.33) G∗(2kx) ≤ LkG∗(x), for all x ∈ RN and all k ∈ N.

As in the proof of Lemma 3.14, [16], we define the function f : [1,∞)→ [L,∞) by

(2.34) f(r) = r[(1− r)Lk+1 + λLk+2],

if r = (1 − λ)2k + λ2k+1, with λ ∈ [0, 1], k ∈ N ∪ {0}, i.e. f(2k) = 2kLk+1 and

f(r)/r is affine in each interval [2k, 2k+1] for k ∈ N ∪ {0}. From (2.33) and the

convexity of G∗, we see that

(2.35) G∗(rx) ≤ f(r)G∗(x), for all x ∈ RN and all r ∈ [1,∞).

Let r ≥ 1. From (2.35) and Young’s inequality, for each x ∈ RN , there exists

y ∈ RN such that

G(x) +G∗(y) =
1

f(r)

(
f(r)

r
x

)
· (ry)

≤ 1

f(r)

[
G

(
f(r)

r
x

)
+G∗(ry)

]
≤ 1

f(r)
G

(
f(r)

r
x

)
+G∗(y).

This proves that

(2.36) G

(
f(r)

r
x

)
≥ f(r)G(x), for all x ∈ RN and all r ≥ 1.

On the other hand, it follows from the definition of f that r 7→ f(r)/r is strictly

increasing function from [1,∞) onto [L,∞). Let g : [L,∞) → [1,∞) be its

inverse. We obtain from (2.36) that

G(g−1(r)x) ≥ f(r)G(x), for all x ∈ RN and all r ≥ 1.

For s ≥ L, let s = g−1(r) = f(r)/r. We have f(r) = sg(s) and the above

inequality becomes

(2.37) G(sx) ≥ sg(s)G(x), for all x ∈ RN and all s ≥ L.

Let u ∈ LG(Ω) with ‖u‖G > L+ 1. For all ε ∈ (0, 1), we have ‖u‖G − ε > 1 and∫
Ω

G

(
u

‖u‖G − ε

)
dx > 1.

For almost every x ∈ Ω, it follows from (2.37) that

G(u(x)) ≥ (‖u‖G − ε) g(‖u‖G − ε)G
(

u(x)

‖u‖G − ε

)
,
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and thus, for all ε ∈ (0, 1),∫
Ω

G(u) dx ≥ (‖u‖G − ε)g(‖u‖G − ε)
∫

Ω

G

(
u

‖u‖G − ε

)
dx

≥ (‖u‖G − ε)g(‖u‖G − ε).

Hence,∫
Ω

G(u) dx ≥ ‖u‖Gg(‖u‖G) for all u ∈ LG(Ω) with ‖u‖G > L+ 1.

Since g(s)→∞ as s→∞, we obtain (2.17).

Assume now that G∗ only satisfies a ∆2 condition at ∞. Since G satisfies

(G2’) and G = (G∗)∗, we see that G∗ satisfies condition (G5’) (cf. e.g. Theo-

rems 2.35 and 11.8, [45]) and is thus continuous on RN . From Proposition 2.8,

there exists a G-function H : RN → [0,∞) such that H satisfies a global ∆2 con-

dition and G∗ ∼ H. Since both G∗ and H satisfy condition (G5’), it follows from

Proposition 2.4 that G = (G∗)∗ ∼ H∗ := G1. As H satisfies condition (G5’),

its conjugate G1 satisfies the coercivity condition (G2’). Also, G∗1 = H satisfies

a global ∆2 condition. By the above proof, we have

(2.38) lim
u∈LG1

(Ω), ‖u‖G1
→∞

1

‖u‖G1

∫
Ω

G1(u)dx =∞.

Since ‖ · ‖G and ‖ · ‖G1
are equivalent on LG1

(Ω) = LG(Ω), we have k1‖u‖G ≤
‖u‖G1

≤ k2‖u‖G, for all u ∈ LG(Ω) for some k1, k2 > 0. Moreover, since G1 ∼ G,

there are L1,M1 > 0 such that

(2.39) G1(L1t) ≤ G(t), for all t ∈ RN , with |t| ≥M1.

Since G satisfies (G5’), G∗ and thus H satisfy (G2’). As a consequence, G1

also satisfies (G5’). Hence, from (2.39), there is C1 > 0 such that G(t) ≥
G1(L1t)− C1, for all t ∈ RN . We have, for u ∈ LG(Ω),

1

‖u‖G

∫
Ω

G(u) dx ≥ 1

k2‖u‖G1

∫
Ω

[G1(L1u)− C1] dx

≥ L1

k2

[
1

‖L1u‖G1

∫
Ω

G1(L1u) dx− C1|Ω|
]
,

where |Ω| is the measure of Ω. Since ‖u‖G is large if and only ‖L1u‖G1
is, this

estimate and (2.38) imply (2.17). �

Remark 2.9. Proposition 2.8 is an extension of Lemma 3.14 in [16] for N -

functions to the vector case of G-functions. Its alternate proof given here also

fixes a seeming gap in the proof of Lemma 3.14 in [16]. In fact, in the second

part of that proof in [16] (we use the notation of [16]) when M is assumed to
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have a ∆2 property for large value of t, we have M(st) ≥ sg(s)M(t) only for

t ≥ t0 and s ≥ K. For x ∈ Ωu, we have |u(x)| ≥ t0 and thus

M(|u(x)|) = M

[
(‖u‖(M),Ωu

− ε) |u(x)|
‖u‖(M),Ωu

− ε

]
.

In order to apply the above equality on M(st), we need both ‖u‖(M),Ωu
− ε ≥ k

and |u(x)|/(‖u‖(M),Ωu
−ε)≥ t0. The first inequality holds because ‖u‖(M),Ωu

>k.

However, the second inequality does not hold in general in Ωu. The reason is

that although |u(x)| ≥ t0 by the definition of Ωu, ‖u‖(M),Ωu
− ε can be large,

which makes the fraction |u(x)|/(‖u‖(M),Ωu
− ε) less than t0.

3. Equations and variational inequalities

with anisotropic principal parts

In this section, we consider precise settings for (1.1) and its weak formula-

tions. We also prove general existence theorems and study some properties of

the resolvent mapping. Assume Φ: RN → [0,∞) is a coercive G-function, i.e. Φ

satisfies conditions (G1), (G2’), (G3), (G4), (G5’), (G6). As noted above, the

conjugate Φ∗ of Φ also satisfies these conditions. We also assume that both Φ

and Φ∗ satisfy ∆2 conditions at infinity in the sense of Definition 2.1. Assume A

is a Young function satisfying Trudinger’s embedding theorem, i.e. (2.11)–(2.12)

above. Therefore, we have (2.13) and (2.14). Let Φ0 be an N -function (cf. [1])

such that

(3.1) Φ0 � A,

(in the sense of Young functions, we refer to [40], [26], [1], [10] for definitions and

properties of Young functions and N -functions). We know that the conjugate

Φ∗0 of Φ0 is also an N -function. Furthermore, it follows that the G-function

G : RN+1 → [0,∞],

(3.2) G(u0, u) = Φ0(u0) + Φ(u) (u0 ∈ R, u ∈ RN ),

also satisfies the conditions (G1), (G2’), (G3), (G4), (G5’), (G6). It is easy to

prove that

(3.3) G∗(v0, v) = Φ∗0(v0) + Φ∗(v), for all (v0, v) ∈ RN+1.

For simplicity of calculations, we also assume here that

(3.4) Φ0 and Φ∗0 satisfies ∆2 conditions at infinity.

It follows from (3.2)–(3.3) that G and G∗ also satisfy ∆2 conditions at infinity.

As a consequence (cf. e.g. [46] or [24]), LG and thus W 1LG,W
1
0LG are reflexive

and moreover (LG)∗ = LG∗ under the usual pairing given by integrals.
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We study the boundary value problem (1.1) with the above setting. The

weak formulation of (1.1) is

(3.5)


∫

Ω

∇Φ(∇u)∇v dx =

∫
Ω

f(x, u)v dx, for all v ∈ X,

u ∈ X,

where X is an appropriate function space. Because of the growth condition of

the principal term and the boundary condition in (1.1), a natural choice of X is

the anisotropic Orlicz–Sobolev space defined by Φ,

(3.6) X = H0(Ω,Φ) = W 1
0LG,

where G is given by (3.1)–(3.2). The appropriateness of this choice of function

space is reflected in the following property, which means that the integral in the

left hand side of (3.5) is defined for all u, v ∈ X.

Proposition 3.1. Assume Φ is differentiable in RN . Then

(3.7) ∇Φ(∇u)∇v ∈ L1(Ω), for all u, v ∈ X.

Proof. First, note that

(3.8) Φ∗(∇Φ(ξ)) ≤ Φ(2ξ), for all ξ ∈ RN .

In fact, since Φ is differentiable, we have ∂Φ(ξ) = {∇Φ(ξ)}, for all ξ ∈ RN .

Also (cf. e.g. [3]) ∇Φ(ξ)ξ = Φ(ξ) + Φ∗(∇Φ(ξ)) and thus Φ(ξ) ≤ ∇Φ(ξ)ξ ≤
Φ(2ξ) − Φ(ξ). Hence, Φ∗(∇Φ(ξ)) = ∇Φ(ξ)ξ − Φ(ξ) ≤ Φ(2ξ) − 2Φ(ξ) ≤ Φ(2ξ).

For almost every x ∈ Ω, we have from Young’s inequality,

|∇Φ(∇u(x))∇v(x)| ≤Φ(∇v(x)) + Φ∗(∇Φ(∇u(x)))(3.9)

≤Φ(∇v(x)) + Φ(2∇u(x)).

Since Φ satisfies a ∆2 condition at∞, the integrals
∫

Ω
Φ(2∇u) dx and

∫
Ω

Φ(∇v) dx

are finite, i.e. Φ(∇v),Φ(2∇u) ∈ L1(Ω). (3.9) thus implies (3.7). �

Let us consider the functional

J : X → [0,∞], J(u) =

∫
Ω

Φ(∇u) dx, u ∈ X.

Since Φ is convex, so is J . Moreover, since Φ satisfies a ∆2 condition, D(J) = X.

A standard application of Fatou’s lemma shows that J is lower semicontinuous

on X. As a consequence, J is locally Lipschitz on X. However, if Φ is not

differentiable on RN , J is not differentiable on X in general. On the other hand,

if Φ has some smoothness on RN then J inherits such property on X, which also

shows the natural choice of X as a suitable function space for problem (1.1). We

have the following result about the derivative of J on X. For a proper convex

functional f from a normed vector space Z into R ∪ {∞}, and for u ∈ D(f),
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h ∈ Z, we use the usual notation Df(u)h for the directional derivative of f at u

in the direction h.

Proposition 3.2. (a) For any u, h ∈ X, the directional derivative of J at u

in the direction of h exists and is given by

(3.10) DJ(u)h =

∫
Ω

DΦ(∇u(x))∇h(x) dx.

(b) Assume Φ is Gâteaux differentiable on RN and

(3.11) Φ(ξ) 6= 0, for all ξ ∈ RN \ {0}.

Then J is Gâteaux differentiable on X and DJ is given by (3.10).

(c) If Φ is of class C1 on RN and satisfies (3.11) then J is of class C1 on X

and

〈J ′(u), h〉 =

∫
Ω

∇Φ(∇u(x))∇h(x) dx.

Proof. We present the proof of (a) in detail and skip those of (b) and

(c) since they are similar. Since J is convex with D(J) = X, the directional

derivative DJ(u)h,

DJ(u)h = lim
t→0+

J(u+ th)− J(u)

t
,

exists in [−∞,∞] for all u, h ∈ X. Let us prove that DJ(u)h is given by (3.10)

in our case. For t > 0, we have

1

t
[J(u+ th)− J(u)] =

∫
Ω

1

t
[Φ(∇u(x) + th(x))− Φ(∇u(x))] dx.

Since Φ is convex with D(Φ) = RN (cf. assumption (G5’)), the limit

(3.12) lim
t→0+

1

t
[Φ(∇u(x) + th(x))− Φ(∇u(x))] = DΦ(∇u(x))(∇h(x))

exits in [−∞,∞] for almost every x ∈ Ω. The function x 7→ DΦ(∇u(x))(∇h(x))

is thus measurable on Ω. Moreover (cf. Proposition 4.1 in [3]),

Φ(∇u(x))− Φ(∇u(x)−∇h(x)) ≤DΦ(∇u(x))(∇h(x))(3.13)

≤Φ(∇u(x) +∇h(x))− Φ(∇u(x)),

for almost every x ∈ Ω.
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Since the function t 7→ [Φ(∇u(x) + t∇h(x)) − Φ(∇u(x))]/t is increasing

on (0,∞), we have for t ∈ (0, 1), x ∈ Ω,

−1

2
Φ(2∇u(x)) − 1

2
Φ(2∇h(x)) ≤ Φ(∇u(x))− Φ(∇u(x)−∇h(x))

≤DΦ(∇u(x))∇h(x) ≤ inf
s>0

{
1

s
[Φ(∇u(x) + s∇h(x))− Φ(∇u(x))]

}
≤ 1

t
[Φ(∇u(x) + t∇h(x))− Φ(∇u(x))]

≤Φ(∇u(x) +∇h(x))− Φ(∇u(x)) ≤ 1

2
Φ(2∇u(x)) +

1

2
Φ(2∇h(x)).

Consequently,

(3.14)

∣∣∣∣1t [Φ(∇u(x) + t∇h(x))− Φ(∇u(x))]

∣∣∣∣ ≤ 1

2
Φ(2∇u(x)) +

1

2
Φ(2∇h(x)),

for all t ∈ (0, 1), almsot every x ∈ Ω. Since Φ satisfies a ∆2 condition and

∇u,∇h ∈ LΦ(Ω), the function in the right hand side of (3.14) belongs to L1(Ω).

From (3.12), (3.14), and the Lebesgue dominated convergence theorem, we get

DJ(u)h =

∫
Ω

lim
t→0+

{
1

t
[Φ(∇u(x) + t∇h(x))− Φ(∇u(x))]

}
dx

=

∫
Ω

DΦ(∇u(x))∇h(x) dx. �

Remark 3.3. Note that for any G-function Φ satisfying (G1), (G2’), (G3),

(G4), (G5’), by using the construction in Proposition 2.8, we see that there

always exists a G-function Φ1 that satisfies these conditions and also (3.11).

Therefore in the sequel we assume Φ satisfies (3.11).

In what follows, we are interested in nonsmooth G-functions Φ, that is Φ is

assumed only to satisfy (G1), (G2’), (G3), (G4), (G5’), (G6) and thus may not

be differentiable in RN . If F is given by

(3.15) 〈F(u), v〉 =

∫
Ω

f(x, u)v dx.

then under certain growth condition of f , F(u) belongs to X∗ for any u ∈ X.

Equation (3.5) now becomes

(3.16) DJ(u)(v) = 〈F(u), v〉, for all v ∈ X.

In case J is not differentiable, thanks to its convexity, we can consider instead

of equation (3.16), the inclusion ∂J(u) 3 F(u) or equivalently,

(3.17) ∂J(u)−F(u) 3 0 in X∗.

Inclusion (3.17) is equivalent to the variational inequality

(3.18)

J(v)− J(u)− 〈F(u), v − u〉 ≥ 0, for all v ∈ X,
u ∈ X.
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In what follows, we study instead of (3.18) a more general variational inequality:

(3.19)

J(v)− J(u)− 〈F(u), v − u〉 ≥ 0, for all v ∈ K,
u ∈ K,

where K is a closed convex subset of X. We have the following abstract existence

result for (3.19).

Theorem 3.4. Assume

(3.20) F : X → X∗ is a pseudomonotone mapping,

and there are u0 ∈ X and R > ‖u0‖ such that

(3.21) K ∩BR(0) 6= ∅,

and

(3.22) 〈F(u), u− u0〉+ J(u) > J(u0),

for all u ∈ K with ‖u‖ = R. Then the variational inequality (3.19) has solutions.

Proof. Theorem 3.4 is a direct consequence of Corollary 2.6 in [33]. In fact,

since Φ satisfies a ∆2 condition at ∞, we see that J is bounded on bounded sets

of X and thus locally Lipschitz on X. It follows (cf. e.g. Theorem 4.2 in [3]) that

∂J(u) 6= ∅, for all u ∈ X. Furthermore,

(3.23) D(∂(J + IK)) = K.

In fact, since (J + IK)(u) =∞ if u 6∈ K, we have D(∂(J + IK)) ⊂ K. If u ∈ K
then for l ∈ ∂J(u), we have for any v ∈ X,

(J + IK)(v)− (J + IK)(u) ≥ J(v)− J(u) ≥ 〈l, v − u〉.

This shows that l ∈ ∂(J + IK)(u), i.e. ∂(J + IK)(u) 6= ∅, and thus u ∈ D(∂(J +

IK)), proving (3.23). Note that X is reflexive since both G and G∗ satisfy ∆2

conditions at infinity and thus Corollary 2.6 in [33] is applicable in our problem

here. Also, (3.21)–(3.23) imply that the conditions in Corollary 2.6 of [33] are

satisfied with ψ = J , φ = J+IK , L = 0, and B = −F . According to that result,

inequality (3.19) has solutions. �

As a consequence of Theorem 3.4, we have the following existence result.

Corollary 3.5. Assume F is a pseudomonotone mapping such that

(3.24) 〈F(u), u− u0〉 ≥ −α1‖u‖ − β1, for all u ∈ K,

for some α1, β1 ≥ 0. Then (3.19) has solutions.
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Proof. It follows from (3.24) that

J(u) + 〈F(u), u− u0〉
‖u‖

≥ J(u)

‖u‖
− α1 −

β1

‖u‖
,

for all u ∈ K \ {0}. From (2.17) in Proposition 2.7, we see that

lim
‖u‖→∞, u∈K

J(u) + 〈F(u), u− u0〉
‖u‖

=∞,

which implies (3.22). �

It is clear that F(u) = L ∈ X∗ satisfies (3.24), thus the set SK(L) of solutions

to the variational inequality

(3.25)

J(v)− J(u) ≥ 〈L, v − u〉, for all v ∈ K,
u ∈ K,

or equivalently, of the inclusion ∂J(u) 3 L is nonempty.

Remark 3.6. Note that in this particular case where f = L ∈ X∗, (3.25) is

equivalent to the minimization theorem

(3.26) u ∈ K : J(u)− 〈L, u〉 = min
v∈K

[J(v)− 〈L, v〉].

From the coercivity property of J given in Proposition 2.7 and its lower semi-

continuity with respect to the weak∗ topology of X (cf. Theorem 2.1, Chapter 8,

[11]), we obtain the existence of solutions of (3.26) and thus of (3.25) for any

weakly∗ closed and convex subset K of X, with a ∆2 condition assumed only on

G∗ but not necessarily on G.

The mapping SK : L 7→ SK(L) is resolvent (mapping) solution of (3.25). In

the particular case where K = X and Φ is smooth, SX is the same as the inverse

operator [−div(∇Φ(∇( · )))]−1. Some properties of SK are given in the following

result.

Theorem 3.7. (a) u ∈ SK(L) if and only if u is a minimizer of the functional

J − L on K.

(b) For any L ∈ X∗, SK(L) is a nonempty closed convex and bounded subset

of K. If Φ is strictly convex then SK(L) is a singleton.

(c) The mapping SK : X∗ → 2X is a bounded and strong-weak upper semi-

continuous, i.e. upper semicontinuous from X∗ with the strong topology to 2X

with the weak topology on X.

Proof. The proof of (a) is straightforward.

(b) As noted above, SK(L) 6= ∅. The convexity, boundedness, and closedness

of SK(L) follows directly from the convexity, coercivity (cf. Proposition 2.7), and

lower semicontinuity of J . When Φ is strictly convex on RN , it is straightforward
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to show that J is also strictly convex on X. Therefore, J − L has a unique

minimizer in K, which is the unique element of SK(L).

(c) To prove the boundedness of SK , let W be a bounded set in X∗ and

M = sup{‖L‖∗ : L ∈ W}(< ∞). Let u0 be a fixed element of K and put

M0 = |J(u0) − 〈L, u0〉|. From Proposition 2.7, there exists ρ > 1 such that

J(u)/‖u‖ > M + M0 for all u ∈ X with ‖u‖ > ρ. Let L ∈ W and u ∈ SK(L).

We have J(u)− 〈L, u〉 ≤ J(u0)− 〈L, u0〉 ≤M0 and thus

J(u)

‖u‖
≤ |〈L, u〉|
‖u‖

+
M0

‖u‖
≤ ‖L‖∗ +M0 ≤M +M0

if ‖u‖ > ρ. This implies from the choice of ρ that ‖u‖ ≤ ρ. Hence
⋃
{SK(L) :

L ∈W} ⊂ Bρ(0), proving that SK is a bounded mapping.

Let L0 ∈ X∗. To prove the strong-weak upper semicontinuity of SK at L0,

we assume by contradiction that there exists a weakly open set W in X and a

sequence {Ln} ⊂ X∗ such that

(3.27) Ln → L0 in X∗, S(L0) ⊂W, but S(Ln) 6⊂W, for all n ∈ N.

Therefore, for each n ∈ N, there exists

(3.28) un ∈ S(Ln) \W.

Since {Ln} is bounded, {un} is a bounded sequence in K. Because X is reflexive

and K is weakly closed in X, by passing to a subsequence if necessary we can

assume that

(3.29) un ⇀ u0 ∈ K.

The weak lower semicontinuity of J on X implies that

(3.30) J(u0) ≤ lim inf J(un).

On the other hand, (3.27) and (3.29) implies that

(3.31) 〈Ln, un〉 → 〈L0, u0〉.

Let v ∈ K. For any n ∈ N, we have J(v)− 〈Ln, v〉 ≥ J(un)− 〈Ln, un〉. Letting

n→∞ and taking into account (3.30) and (3.31), we have

J(v)− 〈L, v〉 = lim[J(v)− 〈Ln, v〉] ≥ lim inf[J(un)− 〈Ln, un〉]

= lim inf J(un)− lim〈Ln, un〉 ≥ J(u0)− 〈L0, u0〉.

This shows that u0 ∈ SK(L0). From (3.29), we see that un ∈ W for all n

sufficiently large, contradicting (3.28). This contradiction proves the strong-

weak upper semicontinuity of SK . �

WhenK = X and Φ is strictly convex, the continuity of SX in Theorem 3.7(c)

can be strengthened as follows.
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Theorem 3.8. Assume K = X and Φ is strictly convex on RN . Then for

each L ∈ X∗, SX(L) = {uL} and the mapping SX : L 7→ uL is continuous from

X∗ to X.

The proof of this theorem is based on the following lemma about a compact-

ness property of ∂J on X which seems to have some interest itself.

Lemma 3.9. Let {un} be a bounded sequence in X, {ξn} a sequence in X∗,

u ∈ X, and ξ ∈ X∗ such that ξ ∈ ∂J(u), ξn ∈ ∂J(un), for all n ∈ N. Further-

more,

(3.32) 〈ξn − ξ, un − u〉 → 0 as n→∞,

then un → u in X.

Proof. Assume u, ξ, un, ξn be as in the assumptions of Lemma 3.9. Note

that X can be identified with a closed subspace X̃ of LΦ(Ω):

X̃ = {(w1, . . . , wN ) ∈ LΦ(Ω) : ∃u ∈W 1,1
0 (Ω) : ∂ju = wj a.e. on Ω}.

Therefore, from Theorem 3.3 in [25], we have, for any w ∈ X,

∂J(w) ⊂
∫

Ω

∂Φ(∇w(x))∇( · ) dx,

i.e. for any η ∈ ∂J(w), there exists a measurable function η̂ : Ω→ RN such that

(3.33) η̂(x) ∈ ∂Φ(∇w(x)) for a.e. x ∈ Ω,

η̂∇v ∈ L1(Ω), and

(3.34) 〈η, v〉 =

∫
Ω

η̂(x)∇v(x) dx, for all v ∈ X.

Let ξ̂n, ξ̂ correspond to ξn, ξ and un, u as in (3.33)–(3.34). From (3.33), we have

η̂(x)∇w(x) = Φ(∇w(x)) + Φ∗(η̂(x)),

for almost every x ∈ Ω. Hence, from (3.34),

∞ > 〈η, w〉 =

∫
Ω

η̂(x)∇w(x) dx =

∫
Ω

Φ(∇w(x)) dx+

∫
Ω

Φ∗(η̂(x)) dx.

This implies that

(3.35) Φ∗(η̂) ∈ L1(Ω), i.e. η̂ ∈ LΦ∗(Ω).

On the other hand, since Φ is strictly convex, ∂Φ is strictly monotone on RN ,

that is, for all z, z′ ∈ RN , z 6= z′, all ẑ ∈ ∂Φ(z), ẑ′ ∈ ∂Φ(z′), we have

(3.36) 〈ẑ − ẑ′, z − z′〉 > 0.

Therefore,

(3.37) 〈ξ̂n(x)− ξ̂(x),∇un(x)−∇u(x)〉 ≥ 0, for a.e. x ∈ Ω, all n ∈ N.
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Since 〈ξn, v〉 =
∫

Ω
ξ̂n∇v dx and 〈ξ, v〉 =

∫
Ω
ξ̂∇v dx, we have

〈ξn − ξ, un − u〉 =

∫
Ω

(ξ̂n − ξ̂)(∇un −∇u) dx.

(3.37) and (3.32) imply that

(3.38) (ξ̂n − ξ̂)(∇un −∇u)→ 0 in L1(Ω).

We prove that for any ε > 0, there exists δ ∈ (0, ε) such that for all H ⊂ Ω

measurable with |H| < δ (|H| is the Lebesgue measure of H), we have

(3.39)

∫
H

Φ(∇un) dx < ε, for all n ∈ N.

In fact, given ε > 0, it follows from (3.38) that there exists n1 ∈ N such that∫
Ω

(ξ̂n − ξ̂)(∇un −∇u) dx <
ε

4
, for all n ≥ n1.

Together with (3.37), this implies that∫
H

(ξ̂n − ξ̂)(∇un −∇u) dx <
ε

4
, for all n ≥ n1,

for any measurable subset H of Ω. Therefore,∫
H

ξ̂n∇un dx <
ε

4
+

∫
H

ξ̂n∇u dx+

∫
H

ξ̂∇un dx−
∫
H

ξ̂∇u dx(3.40)

≤ ε

4
+

∫
H

ξ̂n∇u dx+

∫
H

ξ̂∇undx.

In the next step, we present some inequalities that are useful in the next calcu-

lations. First, basic properties of convex functions give us

(3.41) Φ(z) ≤ ζz ≤ Φ(2z),

and

(3.42) Φ∗(ζ) ≤ Φ(2z),

for all z ∈ RN , all ζ ∈ ∂Φ(z). On the other hand, we have from Young’s

inequality that for all ρ ∈ (0,∞), all z1, z2 ∈ RN ,

(3.43) |z1z2| ≤ Φ(ρ−1z1) + Φ∗(ρz2).

Since Φ satisfies a ∆2 condition, there are K, b ≥ 0 such that

(3.44) Φ(2z) ≤ KΦ(z) + b, for all z ∈ RN .

For any x ∈ Ω, ρ ∈ (0, 1), we have

|ξ̂n(x)∇u(x)| ≤Φ(ρ−1∇u(x)) + Φ∗(ρξ̂n(x))(3.45)

≤Φ(ρ−1∇u(x)) + ρΦ∗(ξ̂n(x)).
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Similarly,

|ξ̂(x)∇un(x)| ≤Φ(ρ∇un(x)) + Φ∗(ρ−1ξ̂(x))(3.46)

≤ ρΦ(∇un(x)) + Φ∗(ρ−1ξ̂(x)).

Also, since ξ̂n(x) ∈ ∂Φ(∇un(x)) for almost every x ∈ Ω, we have from (3.44)

and (3.42) that for almost every x ∈ Ω,

(3.47) Φ∗(ξ̂n(x)) ≤ Φ(2∇un(x)) ≤ KΦ(∇un(x)) + b.

Combining (3.40), (3.41), (3.45), (3.42), (3.47), (3.46) and simplifying the re-

sulted estimate, we get

(3.48) [1− ρ(K + 1)]

∫
H

Φ(∇un) dx <
ε

4
+ [ρb+ b∗(ρ)]|H|

+

∫
H

Φ(ρ−1∇u) dx+K∗(ρ)

∫
H

Φ(2∇u) dx.

Choose ρ = [2(K+1)]−1. Since Φ satisfies a ∆2 condition and ∇u ∈ LΦ, we have

Φ(ρ−1∇u),Φ(2∇u) ∈ L1(Ω). Hence, there are δ1, δ2 > 0 such that if |H| < δ1
then ∫

H

Φ(ρ−1∇u) <
ε

12

and, if |H| < δ2, then∫
H

Φ(2∇u) dx <
ε

12K∗([2(K + 1)]−1)
.

Letting

δ = min

{
δ1, δ2,

ε

12(b[2(K + 1)]−1 + b∗([2(K + 1)]−1))

}
,

we see that if H ⊂ Ω measurable and |H| < δ then the last three terms in the

right hand side of (3.48) is less than ε/12 and thus
∫
H

Φ(∇un) dx < ε. (3.39) is

proved.

Next, we prove that

(3.49) ∇un → ∇u a.e. in Ω.

From (3.38), there exist a subsequence {unk
} of {un} and a subset U of Ω of

measure zero such that for all x ∈ Ω\U , ξ̂n(x) ∈ ∂Φ(∇un(x)), ξ̂(x) ∈ ∂Φ(∇u(x)),

for all n ∈ N and

(3.50) (ξ̂nk
)(x)− ξ̂(x))(∇unk

(x)−∇u(x))→ 0 as k →∞.

In particular, for all x ∈ Ω \ U , there is α0 ≥ 0 (which may depend on x)

such that (ξ̂nk
)(x) − ξ̂(x))(∇unk

(x) − ∇u(x)) ≤ α0, for all k ∈ N. Using again
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the estimates in (3.40), (3.41), (3.45), (3.42), (3.47), and (3.46), we see that for

all x ∈ Ω \ U , all k ∈ N,

[1− ρ(K + 1)]Φ(∇unk
(x)) ≤ α0 + ρb+ b∗(ρ) + Φ(ρ−1∇u(x)) +K∗(ρ)Φ(2∇u(x)).

By choosing ρ = [2(K + 1)]−1, we see that {Φ(∇unk
(x))} is a bounded sequence

for all x ∈ Ω \ U . From (G2’) (or even (G2)), this means that {∇unk
(x)} is a

bounded sequence in RN , which together with (3.47), implies that {Φ∗(ξ̂nk
(x))}

and thus {ξ̂nk
(x)} are bounded sequences (for all x ∈ Ω \ U).

For each x ∈ Ω \ U , by passing to subsequences (that may as well depend

on x), we can assume for simplicity of notation that

∇unk
(x)→ w0 = w0(x) in RN ,(3.51)

ξ̂nk
(x)→ ξ̂0 = ξ̂0(x) in RN .(3.52)

Since ξ̂nk
(x) ∈ ∂Φ(∇unk

(x)), for all k ∈ N, by the upper semicontinuity of

the mapping ∂Φ: RN → 2R
N

, w 7→ ∂Φ(w), we see that ξ̂0 ∈ ∂Φ(w0). Let

k → ∞ in (3.50), we see that (ξ̂0 − ξ̂(x))(w0 − ∇u(x)) = 0. Due to the strict

monotonicity of ∂Φ, we conclude that ∇u(x) = w0, i.e. ∇unk
(x) → ∇u(x).

Since this procedure holds for any subsequence of {∇un(x)}, we obtain (3.49).

From (3.49) and the continuity of Φ in RN , we get

(3.53) Φ(∇un −∇u)→ 0 a.e. in Ω.

Let us prove that the sequence {Φ(∇un − ∇u)} is uniformly integrable on Ω.

In fact, for all n ∈ N and almost every x ∈ Ω,

Φ(∇un(x)−∇u(x)) ≤ 1

2
Φ(2∇un(x)) +

1

2
Φ(2∇u(x))

≤ K

2
Φ(∇un(x)) +

b

2
+

1

2
Φ(2∇u(x)).

Hence for all H ⊂ Ω measurable,

(3.54)

∫
H

Φ(∇un −∇u) dx ≤ K

2

∫
H

Φ(∇un) dx+
b|H|

2
+

1

2

∫
H

Φ(2∇u) dx.

Given ε>0. It follows from (3.39) that there exists δ3>0 such that
∫
H

Φ(∇un) dx

< 2ε/(3K) whenever H is a measurable subset of Ω with |H| < δ3. On the other

hand, since Φ(2∇u) ∈ L1(Ω), there is δ4 > 0 such that
∫
H

Φ(2∇u) dx < 2ε/3 if

|H| < δ4. Choosing δ = min{δ3, δ4, 2ε/(3b)}, we see from (3.54) that if H ⊂ Ω

measurable and |H| < δ then
∫
H

Φ(∇un −∇u) dx < ε for all n ∈ N.

According to Vitali’s convergence theorem (cf. e.g. [23]), together with (3.53),

this uniform integrability of {Φ(∇un − ∇u)} shows that Φ(∇un − ∇u) → 0 in

L1(Ω). Since Φ satisfies a ∆2 condition at ∞, the norm and modular conver-

gences are equivalent in LΦ(Ω). Hence ‖∇un −∇u‖LΦ
→ 0, i.e. un → u in X.�
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Corollary 3.10. If Φ is strictly convex in RN then ∂J : X → 2X
∗

is of

class (S)+ in the following sense: If un ⇀ u in X and there exists ξn ∈ ∂J(un)

such that lim sup〈ξn, un − u〉 ≤ 0, then un → u in X.

Proof. Let ξ ∈ ∂J(u). We have 〈ξ, un − u〉 → 0 and thus

0 ≤ lim inf〈ξn − ξ, un − u〉 ≤ lim sup〈ξn − ξ, un − u〉 = lim sup〈ξn, un − u〉 ≤ 0.

This shows that lim〈ξn − ξ, un − u〉 = 0. Also, since {un} is weakly convergent,

it is bounded. According to Lemma (3.9), we have un → u in X. �

Remark 3.11. In the case of modulars given by anisotropic convex functions

as considered above, Corollary 3.10 improves Theorem 3.8 in [13] in the sense that

we assume here the strict convexity of Φ instead of uniform convexity conditions

as in [13]. Also, we follow here a different approach to prove Corollary 3.10.

We are now ready to prove Theorem 3.8.

Proof Proof of Theorem 3.8. Since Φ is strictly convex on RN , J is

strictly convex on X. The uniqueness of the solution of (3.25) follows from the

strict convexity of J − L. Let {Ln} ⊂ X∗, Ln → L0 in X∗. Let us prove that

un → u0 in X where {un} = SX(Ln), n ∈ N∪{0}. In fact, from Theorem 3.7(c),

we know that un ⇀ u0 in X. As above, we have Ln ∈ ∂J(un), for all n ∈ N and

also u0 ∈ SX(L0), i.e.L0 ∈ ∂J(u0). Since Ln → L0 in X∗ and un ⇀ u0 in X, we

get 〈Ln−L0, un−u0〉 → 0. It now follows from Lemma 3.9 that un → u in X.�

Remark 3.12. (a) Since we are interested here in variational inequalities on

any closed and convex subset K of X, the ∆2 conditions on both G and G∗

are assumed here in order to apply the abstract existence results in [33] (Theo-

rem 2.2 and Corollary 2.6, [33]) for the solvability of inclusions and variational

inequalities in reflexive Banach spaces. ∆2 conditions are assumed on both G

and G∗ to guarantee the reflexivity of X and thus the applicability of the above

abstract theorems. As a consequence, we obtain in Theorem 3.4 and Corol-

lary 3.5 the existence of solutions of inequalities in which the lower order terms

(or right-hand-side terms) can be given by general pseudomonotone operators

of u.

Another reason for such assumption about ∆2 conditions here is that we

study, in addition to the existence of solutions of variational inequality (3.19)

and inclusion (3.17), properties of their solutions and their related mappings as

well. For example, we need a ∆2 condition on G∗ in the proof of Proposition 2.7

about a coercivity property of J and a ∆2 condition onG to get the (S)+ property

of ∂J in Corollary 3.10.

(b) Compared to the papers [17] and [22], we note that in those papers

the function spaces are general anisotropic Orlicz–Musielak spaces, that is, the
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generating N -functions depend also on x. It was not assumed in [17] any ∆2

condition on the N -function M nor on its conjugate M∗ as we assume here.

The right hand side f was assumed in [17] to be a function on Ω which was the

divergence of a vector field F in EM∗ which, roughly speaking, corresponds to

the case f = L ∈ X∗ here. It was proved in [22] the existence and uniqueness of

renormalized and, in particular cases, of weak solutions of the inclusion

β(x, u)− div(a(x,∇u) + F (u)) 3 f in Ω,

where β is maximal monotone in the second variable without any further growth

condition, F is locally Lipschitz, and f belongs to Ld(Ω) in the case of weak

solutions (d is the dimension of Ω). The problem was studied in a general Orlicz–

Musielak space where the conjugate of the generating function satisfied a ∆2

condition. The existence results in the above works were based on truncation

methods together with Minty–Browder type techniques.

Here, we get the existence of solutions of variational inequalities in anisotropic

Orlicz–Sobolev spaces (generated by G-functions that do not depend on x) by

a combination of variational and monotonicity approaches based on an abstract

existence theorem. Compared to [17] and [22], the different approaches lead to

existence results of different natures. As noted in (a), we assumed in Theorem 3.4

∆2 conditions on both G and G∗, but we get the existence of solutions of vari-

ational inequalities rather than of equations, with right hand sides of different

nature (pseudomonotone terms that may depend on u). In the illustrative ex-

ample in Section 5, the signed term h is assumed to have subcritical growth but

is not necessarily monotone in u, while the “sublinear” term g depends on u and

has no monotone property in general. Therefore, even in the case of equation

(i.e. K = X, in problem with ∆2 conditions), that particular example seems

not to be completely covered by the theories in [17] and [22]. Furthermore, we

are interested here in some other properties of solutions and of their related

mappings.

4. Fixed point formulation and topological degree

By using the resolvent mapping SK , we can write the variational inequality

(3.19) equivalently as the fixed point inclusion

(4.1) u ∈ X : u ∈ SK(F(u)).

In cases where F has some compactness properties, the existence and other prop-

erties of solutions of (4.1) can be studied by fixed point or topological methods.

An example of such situations is presented here.

Assume f : Ω× R→ R is a Carathéodory function such that

(4.2) |f(x, u)| ≤ B0(x) + C0[(Φ∗0)−1Φ0](|u|),
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for almost every x ∈ Ω, all u ∈ R, where B0 ∈ LΦ∗
0

and C0 > 0. Note that Φ0 is

given in (3.1)–(3.2) and condition (4.2) is an extension of the classical subcritical

growth condition to our problem with anisotropic principal term.

From (3.1), the embedding i = iΦ0
: X ↪→ LΦ0

is compact, and so is its

adjoint i∗ : LΦ∗
0
(= (LΦ0

)∗) ↪→ X∗. It follows from the growth condition (4.2) that

f̃(u) = f( · , u( · )) ∈ LΦ∗
0

for every u ∈ LΦ0
and the mapping f̃ : u 7→ f( · , u( · ))

is continuous and bounded from LΦ0
into LΦ∗

0
. Let

(4.3) F = i∗f̃ i.

In this case (4.1) is equivalent to a fixed point inclusion in LΦ0
.

Proposition 4.1. Let F be given by (4.3) with f satisfying (4.2). If u is

a solution of (4.1) then w = iu is a solution of the fixed point inclusion

(4.4) w ∈ LΦ0
: w ∈ (iSKi

∗f̃)(w).

Conversely, if w is a solution of (4.4) then w ∈ X and is a solution of (4.1).

Proof. If u is a solution of (4.1) then w = iw ∈ LΦ0
satisfies w = iu ∈

iSK [F(u)] = iSK [i∗f̃(iu)] = (iSKi
∗f̃)(w). Conversely, assume w is a solution

of (4.4). Since SK(X∗) ⊂ K ⊂ X, we have w ∈ K ⊂ X. Hence, w = iw ∈
iSK [i∗f̃ i(w)] = SK [F(w)], i.e. w satisfies (4.1). �

Some useful properties of iSKi
∗f̃ and thus of the formulation (4.4) are given

in the following result.

Proposition 4.2. (a) For each w ∈ LΦ0 , (iSKi
∗f̃)(w) is a nonempty, con-

vex, compact subset of LΦ0 .

(b) The mapping iSKi
∗f̃ is upper semicontinuous and compact from LΦ0 into

2LΦ0 \ {∅}.

Proof. (a) For any L ∈ X∗, since SK(L) is nonempty, convex, closed, and

bounded in X, and i is compact, it is straightforward to see that (iSKi
∗f̃)(w) is

nonempty, convex, and compact in LΦ0
.

(b) Let w0 ∈ LΦ0
and U be an open set in LΦ0

such that

(iSKi
∗f̃)(w0) ⊂ U.

Since the embedding i is compact, i−1(U) = U ∩X is weakly open in X. Fur-

thermore, (SKi
∗f̃)(w0) ⊂ i−1(U) = U ∩X. From Theorem 3.7(c), there exists

an open neighbourhood W of i∗f̃(w0) in X∗ such that SK(W ) =
⋃

L∈W
SK(L) ⊂

U ∩ X. Since f̃ is continuous from LΦ0 to LΦ∗
0

and i∗ is continuous from LΦ∗
0

to X∗, V = (i∗f̃)−1(W ) is an open neighbourhood of w0 in LΦ0
. If w ∈ V then

i∗f̃(w) ∈W and thus SK(i∗f̃(w)) ⊂ U ∩X. This means that (iSKi
∗f̃)(V ) ⊂ U ,

proving the upper semicontinuity of iSKi
∗f̃ .
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Assume now that W is a bounded set in LΦ0
. Since f̃ is a bounded map-

ping, f̃(W ) is bounded in LΦ∗
0

and thus i∗f̃(W ) is bounded in X∗. Because

of the boundedness of SK , we see that SKi
∗f̃(W ) is bounded in X. Since i is

compact, (iSKi
∗f̃)(W ) is relatively compact in LΦ0

. This proves that iSKi
∗f̃ is

a (multivalued) compact mapping. �

The properties of iSKi
∗f̃ in Proposition 4.2 allow us to use classical topo-

logical tools such the Tikhonov’s fixed point theorem for multivalued compact

vector fields or variants of topological degrees of multivalued perturbations of

identity to study the existence and other behaviors of solutions of (4.4), cf. e.g.

[2], [43], [15]. For example, Proposition 4.2 implies that the topological degree

(cf. e.g. [39], [42]) deg(I − iSKi∗f̃ , U, a) is defined, where I is the identity map-

ping of LΦ0
, U is an open bounded subset of LΦ0

and a ∈ LΦ0
\(I−iSKi∗f̃)(∂U).

We have therefore the following basic existence and localization theorem for the

inclusion (4.4) in LΦ0
and thus for the variational inequality (3.19).

Theorem 4.3. Assume U is an open bounded subset of LΦ0 such that

0 6∈ u− (iSKi
∗f̃)(u), for all u ∈ ∂U,

and deg(I − iSKi∗f̃ , U, 0) 6= 0. Then the inclusion (4.4) and thus the variational

inequality (3.19) have solutions in K ∩ U .

5. An example

We conclude this paper with a more concrete example and prove an existence

theorem when f is the sum of a “subcritical” signed function and a “sublinear”

one.

Let F be a Young function from R to [0,∞]. We denote by F̂ the function

from RN to [0,∞] defined by

F̂ (ξ) = F (|ξ|), for all ξ ∈ RN .

It is easy to see that F̂ is a G-function (i.e. F̂ satisfies (G1)–(G6)) and if F is

an N -function then F̂ satisfies also (G2’) and (G5’).

Assume

(5.1) f = g + h,

where g and h are Carathéodory functions from Ω×R into R. The sublinearity

(with respect to Φ) of g is extended from the classical case Sobolev spaces to our

case as follows:

(G) There are N -functions Ψ and Ψ0 such that

Ψ0 � Ψ,(5.2)

Ψ̂ ≺ Φ,(5.3)
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and

(5.4) |g(x, u)| ≤ B1(x) + C1[(Ψ∗0)−1Ψ0](|u|),

for almost every x ∈ Ω, all u ∈ R, where C1 > 0 and B1 ∈ LΨ∗
0
.

Note that condition (G) is an extension of the usual sublinear growth condi-

tion to our case. Concerning h, we assume that:

(H) h has subcritical growth (as in (4.2)):

(5.5) |h(x, u)| ≤ B2(x) + C2[(Φ∗0)−1Φ0](|u|),

for almost every x ∈ Ω, all u ∈ R, where C2 > 0 and B2 ∈ LΦ∗
0
, and

(5.6) h(x, u)u ≥ 0, for a.e. x ∈ Ω, all u ∈ R.

From (5.3), we see that X is continuously embedded into the Orlicz–Sobolev

space W 1
0LΨ̂ = W 1

0LΨ. From (5.2), W 1
0LΨ is compactly embedded into LΨ0

.

Hence, the embedding iΨ0
: X ↪→ LΨ0

is compact. On the other hand, as

discussed above, the embedding iΦ0
: X ↪→ LΦ0

is also compact. Further-

more, the growth conditions (5.4) and (5.5) imply that the Niemytskii operators

g̃ : u 7→ g( · , u( · )) and h̃ : u 7→ h( · , u( · )) are bounded and thus continuous from

LΨ0
into LΨ∗

0
and from LΦ0

into LΦ∗
0
, respectively. The mapping F given by

(3.15) with f given by (5.1) is well defined and moreover, F can be written in

this case as

(5.7) F = i∗Ψ0
g̃iΨ0

+ i∗Φ0
h̃iΦ0

.

We have the following existence result for (3.19).

Theorem 5.1. Assume F is given by (3.15) and (5.1) with g and h satisfying

(G) and (H). Then the variational inequality (3.19) has solutions.

Proof. We shall apply Theorem 3.4 by checking the assumptions there.

First, note that since iΨ0 , iΦ0 are compact and g̃, h̃ are continuous on their

domains, the mappings i∗Ψ0
g̃iΨ0

, i∗Φ0
h̃iΦ0

, and thus F are completely continuous

from X into X∗ (i.e. continuous from X with the weak topology to X∗ with

the strong topology). This immediately implies that F is pseudomonotone. We

only need to verify the coercivity condition (3.22) with u0 = 0 and R sufficiently

large. In fact, we have for any u ∈ X,

〈F(u), u〉+ J(u) =

∫
Ω

Φ(∇u) dx+

∫
Ω

g(x, u)u dx+

∫
Ω

h(x, u)u dx(5.8)

≥
∫

Ω

Φ(∇u) dx+

∫
Ω

g(x, u)u dx.

From (5.3), there exist k1, α0, β0 > 0 such that Φ(k1ξ) ≥ α0Ψ̂(ξ) − β0 =

α0Ψ(|ξ|)− β0 for all ξ ∈ RN . Since Φ satisfies a ∆2 condition at ∞, this implies
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the existence of α1, β1 > 0 such that

(5.9) Φ(ξ) ≥ α1Ψ(|ξ|)− β1, for all ξ ∈ RN .

It follows from Poincaré’s inequality for Orlicz–Sobolev spaces (Lemma 5.7, [16])

that

(5.10)

∫
Ω

Ψ(|∇v|) dx ≥ α3

∫
Ω

Ψ(k2|v|) dx, for all v ∈W 1
0LΨ,

for some constants k2, α3 > 0. Since u ∈ X ↪→W 1
0LΨ, (5.9) and (5.10) give

(5.11)

∫
Ω

Φ(∇u) dx ≥ α1

∫
Ω

Ψ(|∇u|) dx− β1|Ω| ≥ α4

∫
Ω

Ψ(k2|u|) dx− β4.

On the other hand, (5.4) and Young’s inequality imply∣∣∣∣ ∫
Ω

g(x, u)u dx

∣∣∣∣ ≤ ∫
Ω

B1|u| dx+ C1

∫
Ω

(Ψ∗0)−1Ψ0(|u|)|u| dx(5.12)

≤ C3‖u‖LΨ0
+ C1

∫
Ω

{Ψ∗0[(Ψ∗0)−1Ψ0(|u|)] + Ψ0(|u|)} dx

≤ C4‖u‖+ 2C1

∫
Ω

Ψ0(|u|) dx.

Given any ε > 0, from (5.2) there exists β5 > 0 such that

(5.13) Ψ0(|s|) ≤ εΨ(k2|s|) + β5, for all s ∈ R.

Combining (5.12), (5.13) with (5.11) yields

(5.14)

∣∣∣∣ ∫
Ω

g(x, u)u dx

∣∣∣∣ ≤ C4‖u‖+ 2εC1

∫
Ω

Ψ(k2|u|) dx+ 2C1β5|Ω|

≤ C4‖u‖+
2εC1

α4

∫
Ω

Φ(∇u) dx+

(
2C1β5|Ω|+

2εC1β4

α4

)
.

Choosing ε = α4/(4C1), we obtain from (5.8) and (5.14) that

〈F(u), u〉+ J(u) ≥ 1

2

∫
Ω

Φ(∇u) dx− C4‖u‖ −
(

2C1β5|Ω|+
β4

2

)
.

As a consequence of Proposition 2.7, the right hand side of this inequality is

positive for all u ∈ X with ‖u‖ sufficiently large. Therefore, both conditions

(3.21) and (3.22) hold for R sufficiently large. According to Theorem 3.4, (3.19)

has solutions. �

Remark 5.2. (a) We can get a similar result to Theorem 5.1 by using al-

ternatively topological degrees and Theorem 4.3. As noted in Remark 3.6, by

following this approach we only need to assume that G∗ satisfies a ∆2 condi-

tion and thus can extend several results in [36] to variational inequalities in

anisotropic Orlicz–Sobolev spaces.

(b) We present here a monotonicity and a topological/fixed point method to

study the existence of solutions of (1.1); other approaches such as variational,
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topological, and sub-supersolution ones on problems with other boundary con-

ditions will be the subjects of some forthcoming projects. Regarding to the

relaxation of the ∆2 conditions, we hope that the arguments used in problems

without such conditions in (isotropic) non-reflexive Orlicz–Sobolev spaces that

we studied before in e.g. [14], [27]–[32], [34]–[38] could be extended to problems

in anisotropic Orlicz–Sobolev spaces or Orlicz–Musielak–Sobolev spaces. Such

extensions are not within the scope of this introductory paper and would be

investigated in some future works.

Acknowledgments. The author would like to thank the referee for his valu-
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