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AN INVARIANT SUBSPACE PROBLEM
FOR MULTILINEAR OPERATORS

ON FINITE DIMENSIONAL SPACES

John Emenyu

Abstract. We introduce the notion of invariant subspaces for multilinear

operators from which the invariant subspace problems for multilinear and
polynomial operators arise. We prove that polynomial operators acting in

a finite dimensional complex space and even polynomial operators acting

in a finite dimensional real space have eigenvalues. These results enable
us to prove that polynomial and multilinear operators acting in a finite

dimensional complex space, even polynomial and even multilinear operators

acting in a finite dimensional real space have nontrivial invariant subspaces.
Furthermore, we prove that odd polynomial operators acting in a finite

dimensional real space either have eigenvalues or are homotopic to scalar

operators; we then use this result to prove that odd polynomial and odd
multilinear operators acting in a finite dimensional real space may or may

not have invariant subspaces.

1. Introduction

The aim of this paper is two-fold;

(i) to study the existence of eigenvalues of polynomial operators on finite
dimensional spaces.

(ii) to introduce and develop the invariant subspace theory for polynomial
and multilinear operators on finite dimensional spaces.
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The notions of invariant subspaces and eigenvalues from which the invariant
subspace and eigenvalue problems are derived arise naturally from Science and
Engineering fields, see for example, prediction theory [13] and Mathematical
Physics [26]. It seems unknown who first stated the invariant subspace problem
but can only be backtracked to either after Beurling [6] published his classical
paper in Acta Mathematica in 1949 on invariant subspaces of simple shifts in
a Hilbert space or after von Neumann’s work [25] in 1935 on a proof, by use of
spectral theorem for normal operators, that every compact operator on a complex
Hilbert space has nontrivial invariant subspaces.

The invariant subspace and eigenvalue theories for bounded linear operators
on finite dimensional spaces are fully developed and their usefulness can hardly
be overstated; the classical fundamental Burnside theorem [16] and Jordan’s
structure theorem [7] are some of their outstanding and motivating achievements.

Definition 1.1. Let M be a closed linear subspace of a space E. Then M
is invariant for T :E → E if T (M) ⊆M, see [5], [7], [22].

The following Problems 1.2 and 1.3 are known as invariant subspace problem
and eigenvalue problem for linear operators respectively, see for example [5],
[7], [22].

Problem 1.2. Given a bounded linear operator T ∈ L(E), does there exist
an invariant subspace M besides the trivial ones M = {0} and M = E?

Problem 1.3. Given a bounded linear operator T ∈ L(E), does there exist
a nonzero vector v ∈ E such that T (v) = λv for some λ ∈ k = C or R?

Remark 1.4. Problems 1.2 and 1.3 have negative answers in some spaces
for example the rotation operator T : R2 → R2 defined by T (x, y) = (−y, x)
does not have eigenvalues as well as nontrivial invariant subspaces. In general,
Problem 1.2 has a negative answer in some Banach spaces such as `1 but is open
in others such as Hilbert spaces or more generally reflexive spaces. Moreover,
a positive answer to the Problem 1.3 always guarantees a positive answer to
Problem 1.2.

Definition 1.5. Let E and F denote Banach spaces. Then a map T :E ×
. . .× E → F is called an m-linear map if it is linear in each of the m variables.
We denote the space of such continuous maps by L(mE;F ), see [8].

Notation 1.6. Throughout this paper k will denote either the field R of all
real numbers or C the field of all complex numbers. The letters E and F will
denote Banach spaces and the use of the term an operator will be restricted to
the elements of L(mE;E); in this notation the elements of L(E) are regarded as
1-linear (or linear) operators.
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In Section 2, we will introduce the notion of invariant subspaces for polyno-
mial and multilinear maps. Section 3 contains an overview of the notion of topo-
logical degree that plays a major role in the development of invariant subspace
theory for polynomial and multilinear operators on arbitrary finite dimensional
spaces. Section 4 contains results of our study.

2. Invariant subspaces for multilinear operators

In this section, we introduce the notion of invariant subspaces for polynomial
and multilinear operators but first we emphasize that any such notion must
conform to that of a self map T :E → E, see Definition 1.1. In this regard,
the key idea of our formulation will be derived from the fact that an invariant
subspace for a self map T :E → E induces another map, namely, the restriction
of T :E → E to its invariant subspace.

Definition 2.1. A map p:E → E is an m-homogeneous polynomial if it
is the restriction of a map T ∈ L(mE;E) to the diagonal of E × . . . × E (i.e.
p(v) = T (v, . . . , v) for all v ∈ E). Let P(mE;E) denote the Banach space of m-
homogeneous polynomials, see [8]. A book by Dineen [12] gives an informative
and exhaustive literature on polynomial operators and their relationship with
multilinear operators.

Definition 2.2. Let M be a closed linear subspace of E and p ∈ P(mE;E)
be the polynomial operator associated to the multilinear operator T ∈ L(mE;E).

(a) Then M is said to be invariant for T ∈ L(mE;E) if p(M) ⊆M and is
strongly invariant for T ∈ L(mE;E) if T (M, . . . ,M) ⊆M.

(b) The subspace of E of the form Mv = lin{pnv : n ∈ N} for a fixed
non-zero v ∈ E is called an elementary subspace for T ∈ L(mE;E).

The following Problems 2.3 and 2.4 are not only nonlinear analogues of Prob-
lems 1.2 and 1.3 respectively but are also their generalizations. We shall in the
sequel refer to them as invariant subspace problem and eigenvalue problem for
multilinear operators respectively.

Problem 2.3. Let M be a closed linear subspace of E and p ∈ P(mE;E)
be the polynomial associated to the given bounded multilinear operator T ∈
L(mE;E). Then, does there exist an invariant subspace M for p ∈ P(mE;E)
besides the trivial ones M = {0} and M = E?

Problem 2.4. Let p ∈ P(mE;E) be the polynomial operator associated to
the given bounded multilinear operator T ∈ L(mE;E). Then, does there exist
a nonzero vector v ∈ E such that p(v) = λv for some λ ∈ k?

Remark 2.5. The key step in solving Problems 1.2 and 1.3 on finite dimen-
sional spaces is the use of the fundamental theorem of algebra that explores the
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structural (matrix) representation of linear operators, see for example [5, Chap-
ter 1]. Moreover, one can extend the techniques for solving Problems 1.2 and 1.3
on finite dimensional spaces to the Problems 2.3 and 2.4 when the space E is
2-dimensional.

On the other hand, the extension of the techniques for solving Problems 1.2
and 1.3 to the Problems 2.3 and 2.4 when dim(E) ≥ 3 faces unprecedented non-
trivial difficulties that are caused by the lack of a known matrix representation
for T ∈ L(mE;E) and many variants of the notion of the spectrum for nonlinear
operators that do not adhere to certain minimum requirements such as the reduc-
tion to the usual spectrum for linear operators, the sharing of some topological
properties such as compactness and non emptiness, and having relationship with
eigenvalues and applications, see [4, Chapters 4–9].

The following Lemma 2.6 and Remark 2.7 will be crucial in the investigation
of invariant subspace problem for multilinear operators.

Lemma 2.6. Let p ∈ P(mE;E) be the polynomial operator associated to the
multilinear operator T ∈ L(mE;E) where dim(E) ≥ 2. If for some λ ∈ k,
p(v) = λv then lin{v} is invariant for p ∈ P(mE;E).

Proof. It suffices to show that for any v ∈ E satisfying the hypothesis of
the underlying theorem then p(u) ∈ lin{v} whenever u ∈ lin{v}. But this is
straight forward since if p ∈ P(mE;E) and u ∈ lin{v}, then p(u) = p(γv) =
γmp(v) = γmλv ∈ lin{v}. �

Remark 2.7. Let M be a closed linear subspace of E. Let p ∈ P(mE;E)
be the polynomial associated to the multilinear operator T ∈ L(mE;E). The
following are equivalent.

(a) M is an invariant subspace of T ∈ L(mE;E).
(b) M is an invariant subspace of p ∈ P(mE;E).

Proof. It is immediate from the Definitions 1.5 and 2.1. �

3. An overview of topological degree of analytic maps

Consider the invariant subspace problem for T ∈L(mkn;kn). The Lemma 2.6
and Remark 2.7 interrelate the Problems 2.3 and 2.4, that is, the invariant
subspace Problem 2.3 turns out to be an eigenvalue Problem 2.4 that are typical
existential problems and for T ∈ L(mkn;kn) requires knowledge of topological
degree theory [2], [19], [24]. The topological degree of p ∈ P(mkn;kn) is simply
a measure of the number of solutions of the equation p(v) = u where u ∈ kn.

The notion of the topological degree was introduced by Brouwer [9] in 1912
and later became known as Brouwer degree. He defined the degree of a map
S: Ω → Rn, denoted by deg(S, Ω, y) ∈ Z, when Ω is an open bounded subset of Rn

and S is a continuous map of Ω into Rn with y /∈ S(∂Ω). The degree function
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deg(S, Ω, y) satisfies certain properties, see [24, Chapter 3], that were extensively
studied by different authors such as [3], [15], [17], [18] and was first extended to
infinite dimensional spaces by Leray and Schauder [14] in 1934, then to analytic
maps such as polynomial maps both in finite and infinite dimensional spaces
by different authors, see [10], [11] and [21]. The most important topological
degree property in the computation of deg(S, Ω, y) that we shall require in this
paper is the property of homotopy invariance; it is a global version of continuity.
Following a path Ht of maps, the number of y-points in Ω can change only if
some cross the boundary or else if pairs with indices ±k (for some k) coalesce or
disjoin.

Consider an analytic map f :B → Cn with y /∈ f(∂B) where B is the open
unit ball centered at zero in Cn. Let {z̃1, . . . , z̃n} be the basis chosen for Cn with
z̃j = x̃j + iỹj , x̃j , z̃j ∈ Rn for each j = 1, . . . , n. Then, there is a corresponding
basis {x1, y1, . . . , xn, yn} for R2n; this identification induces an isomorphism
between B and the open unit ball Λ centered at the origin in R2n, between the
map f :B → Cn and a continuous map g: Λ → R2n and between y ∈ Cn and ỹ ∈
R2n with ỹ /∈ g(∂Λ), see [21] and references therein. Moreover, for such bases for
Cn and R2n, det(Jg(x)) = |det(Jf (z))|2, see [11]. Therefore, the Brouwer degree
deg(g,Λ, ỹ) is well defined under these conditions and adhere to some topological
properties, see for example [24, p. 72]. Subsequently, one can set deg(f,B, y) :=
deg(g,Λ, ỹ) and therefore the topological degree, deg(f,B, y), of an analytic map
f is well-defined; this degree can be computed by the determinant formula,

(3.1) deg(f,B, y) = deg(g,Λ, ỹ) =
∑

x∈Z
ey

sign(detJg(x)),

where Z
ey = g−1(ỹ) ∩ Λ and the sign is always positive. Moreover, the degree

deg(f,B, y) makes sense if detJg(x) 6= 0 for all x ∈ Z
ey and is always nonneg-

ative (that is, deg(f,B, y) = 0 if y /∈ f(B) and deg(f,B, y) > 0 if and only if
y ∈ f(B)). The results in [21] are sharp and can be applied to polynomial oper-
ators p ∈ P(mCn; Cn), making topological degree most suitable for investigating
Problem 2.4 and therefore Problem 2.3. On the other hand, the results in [10]
and [11] give an upper bound on a number of algebraic solutions of the equation
p(z) = 0.

Remark 3.1. When n, the dimension of the space Rn, is odd then by the
well known hedgehog theorem for Brouwer degree [20, 3.3.26], the Problem 2.4
and subsequently Problem 2.3 has a positive answer; the case m = 1 is precisely
[1, Corollary 10.7 (1)]. On the other hand when n is even the hedgehog theorem
[20, 3.3.26] fails, see [20, 3.3.27].

The proofs of Problems 1.3 and 2.4 are modeled on the idea of the eigenvalue
principle embodied in the following theorem.
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Theorem 3.2. Let Ω ⊂ E be bounded and open, and T : Ω 7→ E be compact
vector fields. If 0 /∈ S(∂Ω), 0 /∈ T (∂Ω) and deg(T,Ω, 0) 6= deg(S, Ω, 0) then the
problem Tz = λSz has a solution for z ∈ ∂Ω, λ < 0.

4. Results

Lemma 4.1. Every polynomial operator p ∈ P(mCn; Cn) has eigenvalues.

Proof. If 0 is an eigenvalue of p ∈ P(mCn; Cn), there is nothing to prove.
If not, the degree deg(p,B, 0) is well defined, where B is the open unit ball in
Cn centered at zero. We shall tacitly assume below that m > 2 since the case
m = 1 is well known.

Now consider the homotopy Ht:B× [0, 1] → Cn defined by

(4.1) Ht(z) = (1− t)p(z) + tz for all t ∈ [0, 1].

We shall argue that this homotopy is not admissible. If it were so, then by the
homotopy invariance of topological degree, deg(p,B, 0) = deg(I,B, 0). However,
by continuity of the topological degree we have deg(p,B, 0) = deg(p,B, c) if ‖c‖
is small enough, and by Sard’s theorem [23] we may take c to be a regular value
so that the latter degree can be computed by the determinant formula. Now, if
p(ω) = c 6= 0 and γ1, . . . , γm are the m-th roots of unity, then also p(γkω) = c

and therefore the sum in the right hand side of the determinant formula is at
least m. Hence, deg(I,B, 0) ≥ m ≥ 2 contradicting the above. Consequently,
the homotopy Ht cannot be admissible; this means that Ht(z) = 0 for some
t ∈ (0, 1) and z ∈ ∂B. As a result, p(z) = tz/(t− 1) so that p ∈ P(mCn; Cn)
must have eigenvalue. �

Theorem 4.2. Every polynomial operator p ∈ P(mCn; Cn) has nontrivial
invariant subspaces.

Proof. By Lemma 4.1, the polynomial operator p ∈ P(mCn; Cn) has eigen-
values. Then by the Lemma 2.6, it follows that the polynomial operator p ∈
P(mCn; Cn) has nontrivial invariant subspaces. �

Theorem 4.3. Every multilinear operator T ∈ L(mCn; Cn) has nontrivial
invariant subspaces.

Proof. Let p ∈ P(mCn; Cn) be the polynomial operator associated to the
multilinear operator T ∈ L(mCn; Cn). Then by Theorem 4.2, p ∈ P(mCn; Cn)
has nontrivial invariant subspaces. Therefore, it follows from Remark 2.7 that
the multilinear operator T ∈ L(mCn; Cn) has nontrivial invariant subspaces. �

Lemma 4.4. Every polynomial operator q ∈ P(2mRn; Rn) has eigenvalues.

Proof. If 0 is an eigenvalue of q ∈ P(2mRn; Rn), then we are done. If
not, the degree deg(q, Λ, 0) is well defined, where Λ is the open unit ball in Rn

centered at zero.
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Now consider the homotopy ht: Λ× [0, 1] → Rn defined by

ht(x) = (1− t)p(x) + tx for all t ∈ [0, 1].

We shall again argue that this homotopy cannot be admissible. If it were so, then
by the homotopy invariance of topological degree, deg(q, Λ, 0) = deg(I,Λ, 0).
However, by continuity of the topological degree, deg(q, Λ, 0) = deg(q, Λ, c) if
‖c‖ is small enough. Then by Sard’s theorem [23] we can consider c to be
a regular value so that the latter degree can be computed by the determinant
formula. Now, if q(x) 6= c for all x ∈ Λ then the sum in the determinant formula
is zero and therefore deg(q, Λ, c) = 0, contradicting the admissibility assumption
on the homotopy ht. This means that ht(x) = 0 for some t ∈ (0, 1) and x ∈ ∂Λ.
Consequently, q(x) = tx/(t− 1) so that q ∈ P(2mRn; Rn) must have eigenvalues.

However, if q(ω) = c, then also q(−ω) = c. Moreover, by the homogeneity of
q ∈ P(2mRn; Rn) either sign(det Jq(ω)) = −sign(detJq(−ω) or sign(det Jq(ω)) =
sign(detJq(−ω)). Subsequently, by the determinant formula, deg(q, Λ, 0) ∈ 2Z
and it is finite. Therefore, again this contradicts the admissibility assumption
on the homotopy ht. Hence, by the same reasoning as above the polynomial
operator q ∈ P(2mRn; Rn) must have eigenvalues. �

Theorem 4.5. Every polynomial operator q ∈ P(2mRn; Rn) has nontrivial
invariant subspaces.

Proof. By Lemma 4.4, the polynomial operator q ∈ P(2mRn; Rn) has eigen-
values. Therefore, it follows from Remark 2.7 that the polynomial operator
q ∈ P(2mRn; Rn) has nontrivial invariant subspaces. �

Theorem 4.6. Every multilinear operator S ∈ L(2mRn; Rn) has nontrivial
invariant subspaces.

Proof. Let q ∈ P(2mRn; Rn) be the polynomial operator associated to the
multilinear operator S ∈ L(2mRn; Rn). Then by Theorem 4.5, the polynomial
operator q ∈ P(2mRn; Rn) has nontrivial invariant subspaces. Therefore, it
follows from Remark 2.7 that the multilinear operator S ∈ L(2mRn; Rn) has
nontrivial invariant subspaces. �

Remark 4.7. The Lemma 4.4, Theorems 4.5 and 4.6 in general are in-
valid for polynomial operator q ∈ P(2m−1Rn; Rn) and multilinear operator
T ∈ L(2m−1Rn; Rn), respectively. A counter example is the following: the poly-
nomial operator q ∈ P(3R2; R2) defined by q(x1, x2) = (−x3

2, x
3
1) does not have

real eigenvalues as well as nontrivial invariant subspaces. In fact, this is a general
phenomenon exhibited by odd m-linear operators that are homotopic to scalar
operators. A scalar operator is one that is a complex multiple of the identity.

Below, we shall only consider Problem 2.3 for q ∈ P(2m−1R2n; R2n) since
the existence of nontrivial invariant subspaces for q ∈ P(2m−1R2n−1; R2n−1) is
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guaranteed by the well known hedgehog theorem for Brouwer degree [20, 3.3.26],
Lemma 2.6 and Remark 2.7.

Lemma 4.8. A polynomial operator q ∈ P(2m−1R2n; R2n) either has eigen-
values or is homotopic to a scalar operator.

Proof. If 0 is an eigenvalue of q ∈ P(2m−1R2n; R2n) then we are done. If
not, the degree deg(q, Λ, 0) is well defined and deg(±I,Λ, 0) = (±1)2n = 1.

Consider the homotopy ht: Λ× [0, 1] → Rn defined by

(4.2) ht(x) = (1− t)q(x) + tx for all t ∈ [0, 1].

Now by continuity of the topological degree, we have deg(q, Λ, 0) = deg(q, Λ, c)
if ‖c‖ is small enough. By Sard’s theorem [23] take c to be a regular value so
that the latter degree can be computed by the determinant formula. Now the
ball Λ is always symmetric about its center at zero and therefore by Borsuk–
Ulam theorem [24, p. 78], there is always x0 ∈ Λ such that q(x0) = c since if
it was not so, the determinant formula would give deg(q, Λ, 0) = 0 ∈ {2m − 1 :
m ∈ N} which is absurd. However, q(−x0) = −q(x0) = −c 6= c. Therefore, the
determinant formula yields either deg(q, Λ, c) = 1 or deg(q, Λ, c) ∈ {2m + 1 :
m ∈ N}. Subsequently, in the case deg(q, Λ, c) = 1, the polynomial operator q ∈
P((2m−1)R2n; R2n) is homotopic to a scalar operator. Otherwise, ht cannot be
admissible and so the operator q ∈ P((2m−1)R2n; R2n) must have eigenvalues. �

Theorem 4.9. Every polynomial operator q ∈ P(2m−1R2n; R2n) that is not
homotopic to a scalar operator has nontrivial invariant subspaces.

Proof. By the Lemma 4.8, the polynomial operator q ∈ P(2m−1R2n; R2n)
has eigenvalues. Therefore, it follows from Lemma 2.6 that the polynomial op-
erator q ∈ P(2m−1R2n; R2n) has nontrivial invariant subspaces. �

Theorem 4.10. Let S ∈ L(2m−1Rn; Rn) and q ∈ P(2m−1Rn; Rn) be its
associated polynomial operator that is not homotopic to a scalar operator. Then
the multilinear operator S ∈ L(2m−1Rn; Rn) has nontrivial invariant subspaces.

Proof. By Theorem 4.9 and the well known hedgehog theorem for Brouwer
degree [20, 3.3.26], q ∈ P(2m−1Rn; Rn) has nontrivial invariant subspaces. There-
fore, it follows from Remark 2.7 that the multilinear operator S ∈ L(2m−1Rn; Rn)
has nontrivial invariant subspaces. �

Remark 4.11. The arguments of the proofs of our results are valid in any
normed space E of dimension n since for a chosen basis for E, one can identify E

with kn in a natural fashion. Moreover, the maps f :kn → kn and F :E → E are
similar, that is, there exists a homeomorphism h:E → kn such that F = hfh−1,
see for example [19] and references therein. The conclusion then follows from
the fact that similarity preserves invariant subspaces. We, therefore, state the
following theorems without giving their proofs.
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Theorem 4.12. Let E be a finite dimensional complex space. Then every
multilinear T ∈ L(mE;E) has nontrivial invariant subspace in E.

Theorem 4.13. Let E be a finite dimensional real space. Then every mul-
tilinear operator T ∈ L(2mE;E) has nontrivial invariant subspace in E.

Remark 4.14. Theorems 4.5, 4.6, 4.9, 4.10 characterize multilinear opera-
tors and their associated polynomial operators into two major subclasses;

(a) even multilinear operators and their associated polynomial operators
that have nontrivial invariant subspaces.

(b) odd multilinear operators and their associated polynomial operators
that may or may not have nontrivial invariant subspaces; this includes
linear operators.

Moreover, these results show that the existence of invariant subspaces for
a given operator depends both on the linearity structure of the operator (see
Theorems 4.5 and 4.6) and dimensional structure of the space (see Theorems 4.9
and 4.10). On the other hand, [1, Corollary 10.7], shows that the dimensional
structures of the space play a more subtle role in the existence of invariant
subspaces for operators acting on them. This does not only point to the fact
that the development of any robust method for solving an invariant subspace
problem affirmatively should be based on both the structure of the space and
operator but also the difficulties that one faces in solving the problem itself.

Acknowledgement. I thank the Analysis research team at Freie Univer-
sität, Berlin for their various contributions to this research. I also thank DAAD
for the financial support towards my stay in Germany. Finally, I thank the ref-
eree for pointing out the use of hedgehog theorem in determining eigenvalues of
an operator on an odd dimensional space.
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