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Abstract. We study the existence of solutions for the following fractional

hybrid boundary value problem

8><
>:

Dα
0+

�
x(t)

f(t, x(t))

�
+ g(t, x(t)) = 0, 0 < t < 1,

x(0) = x(1) = 0,

where 1 < α ≤ 2 and Dα
0+ denotes the Riemann–Liouville fractional deriv-

ative. The main tool is our study is the technique of measures of noncom-
pactness in the Banach algebras. Some examples are presented to illustrate

our results. Finally, we compare the results of paper with the ones obtained

by other authors.

1. Introduction

Differential equations of fractional order occur more frequently on different
research areas and they are very important in the modelling of several physical
phenomena [5], [8], [10], [12]. Recently, quadratic perturbations of nonlinear
differential equations have attracted much attention to researchers. These types
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of equations have been called hybrid differential equations and they have been
studied in some papers among them [6], [7], [11], [13], [14].

In [7], Dhage and Lakshmikantham discussed the following first order hybrid
differential equation 

d

dt

[
x(t)

f(t, x(t))

]
= g(t, x(t)), t ∈ J,

x(t0) = x0 ∈ R,

where J = [0, T ), f ∈ C(J × R, R \ {0}) and g ∈ C(J × R, R). The fractional
version of the last differential equation, i.e. Dq

0+

[
x(t)

f(t, x(t))

]
= g(t, x(t)), t ∈ J,

x(0) = 0,

where 0 < q < 1, f ∈ C(J ×R, R \ {0}) and g ∈ C(J ×R, R) was studied in [14],
where the main ingredient was a fixed point theorem in Banach algebras.

In this paper, we study the existence of solutions for the following fractional
hybrid boundary value problem

(1.1)

 Dα
0+

[
x(t)

f(t, x(t))

]
+ g(t, x(t)) = 0, 0 < t < 1,

x(0) = x(1) = 0,

where 1 < α ≤ 2 and Dα
0+ is the standard Riemann–Liouville fractional deriva-

tive.
Our main tool is a fixed point theorem for the products of two operators which

satisfy a condition of Darbo type with respect to a measure of noncompactness.

2. Basic results

Firstly, we present some basic facts about fractional calculus theory. This
material can be found in [9].

Definition 2.1. The Riemann–Liouville fractional derivative of order α > 0
of a continuous function f : (0,∞) → R is defined by

Dα
0+f(t) =

1
Γ(n− α)

(
d

dt

)(n) ∫ t

0

f(s)
(t− s)α−n+1

ds,

where n = [α] + 1, [α] denotes the integer part of α, provided that the right side
is pointwise defined on (0,∞).

Definition 2.2. The Riemann–Liouville fractional integral of order α > 0
of a function f : (0,∞) → R is defined by

Iα
0+f(t) =

1
Γ(α)

∫ t

0

f(s)
(t− s)1−α

ds,
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provided that the right side is defined on (0,∞).

From these definitions, we can obtain the following two lemmas.

Lemma 2.3. Let α > 0. If u ∈ C(0, 1) ∩ L(0, 1), then the fractional differ-
ential equation

Dα
0+u(t) = 0

has as a unique solutions

u(t) = c1t
α−1 + c2t

α−2 + . . . + cntα−n,

where ci ∈ R, i = 1, . . . , n and n = [α] + 1.

Lemma 2.4. Suppose that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative
of order α > 0 belonging to C(0, 1) ∩ L(0, 1). Then

Iα
0+Dα

0+u(t) = u(t) + c1t
α−1 + c2t

α−2 + . . . + cntα−n,

for some ci ∈ R, i = 1, . . . , n, where n = [α] + 1.

Now, we present the Green’s function of our fractional hybrid boundary value
problem. The following lemma appears in [13].

Lemma 2.5. Suppose that f ∈C([0, 1]×R, R \ {0}), y∈C[0, 1] and 1<α≤2.
Then the unique solution of the following boundary value problem Dα

0+

[
x(t)

f(t, x(t))

]
+ y(t) = 0, 0 < t < 1,

x(0) = x(1) = 0

is

x(t) = f(t, x(t))
∫ 1

0

G(t, s)y(s) ds,

where G(t, s) is the Green’s function which has the expression

G(t, s) =


[t(1− s)]α−1 − (t− s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

[t(1− s)]α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

The following lemma appears in [2].

Lemma 2.6. The Green function G(t, s) satisfies:

(a) G ∈ C([0, 1]× [0, 1], R),
(b) G(t, s) > 0 for t, s ∈ (0, 1), and
(c) max

0≤t≤1
G(t, s) = G(s, s), for any s ∈ (0, 1).
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Next, we recollect a few auxiliary facts about measures of noncompactness.
Assume that E is a real Banach space with the norm ‖·‖ and the zero element θ.
By B(x, r) we denote the closed ball in E centered at x and with radius r. By
Br we denote the ball B(θ, r). If X is a nonempty subset X of E then X and
ConvX denote the closure and the convex closure of X, respectively. By diam X

we will denote the diameter of a bounded set X and ‖ · ‖ the norm of X, i.e.
‖X‖ = sup{‖x‖ : x ∈ X}. Further, by ME we will denote the family of all
nonempty and bounded subsets of E and by NE its subfamily consisting of all
relatively compact subsets.

Throughout this paper, we will accept the following definition of the concept
of a measure of noncompactness [3].

Definition 2.7. A mapping µ:ME → R+ = [0,∞) will be called a measure
of noncompactness in E if it satisfies the following conditions:

(a) The family kerµ is nonempty and kerµ ⊂ NE .
(b) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).
(c) µ(X) = µ(X).
(c) µ(ConvX) = µ(X).
(d) µ(λX + (1− λ)Y ) ≤ λ µ(X) + (1− λ) µ(Y ) for λ ∈ [0, 1].
(e) If (Xn) is a sequence of closed subsets of ME such that Xn+1 ⊂ Xn and

lim
n→∞

µ(Xn) = 0 then X∞ =
∞⋂

n=1
Xn 6= φ.

The family kerµ appearing in 1◦ is called the kernel of the measure of non-
compactness µ. Notice that the set X∞ appearing in 6◦ belongs to ker µ. Indeed,
since µ(X∞) ≤ µ(Xn) for any n = 1, 2, . . . , we infer that µ(X∞) = 0 and this
means that X∞ ∈ ker µ.

In what follows, we will assume that the space E has structure of Banach
algebra. In such a case, we denote by xy the products of two elements x, y ∈ E

and by XY the product of two subsets X and Y of E, i.e. XY = {xy : x ∈ X,
y ∈ Y }.

Now, we recall the following concept appearing in [4] which will play an
important role in our considerations.

Definition 2.8. We say that a measure of noncompactness µ defined on the
Banach algebra E satisfies condition (m) if, for any X, Y ∈ ME , the following
inequality is satisfied

µ(XY ) ≤ ‖X‖µ(Y ) + ‖Y ‖µ(X).

In [1], the authors proved the following generalization of Darbo’s fixed point
theorem.
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Theorem 2.9 [1, Theorem 2.2]). Let Ω be a nonempty, bounded, closed and
convex subset of a Banach space E and let F : Ω → Ω be a continuous operator
satisfying

(2.2) µ(FX) ≤ ϕ(µ(X)),

for any nonempty subset X of Ω, where µ is an arbitrary measure of noncom-
pactness and ϕ: R+ → R+ is a nondecreasing function such that lim

n→∞
ϕn(t) = 0

for each t ∈ R+, where ϕn denotes the n-iteration of ϕ. Then T has at least one
fixed point in Ω.

Moreover, in [1] the authors proved the following lemma which will be useful
in our considerations.

Lemma 2.10 ([1, Lemma 2.1]). Let ϕ: R+ → R+ be a nondecreasing and
upper semicontinuous function. Then the following conditions are equivalent:

(a) lim
n→∞

ϕn(t) = 0, for any t ≥ 0,

(b) ϕ(t) < t, for any t > 0.

In this paper, we will work in the space C[0, 1] consisting of all real functions
defined and continuous on the interval [0, 1] with the usual supremum norm

‖x‖ = sup{|x(t)| : t ∈ [0, 1]},

for x ∈ C[0, 1]. Notice that the space C[0, 1] has also structure of Banach algebra,
where the multiplication is defined as the usual product of real functions.

Next, we will present the measure of noncompactness in C[0, 1] which will
be used in our study. Let us fix a set X ∈ MC[0,1]. For x ∈ X and ε > 0, we
denote by ω(x, ε) the modulus of continuity of x, i.e.

ω(x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, 1], |t− s| ≤ ε}.

Further, put

ω(X, ε) = sup{ω(x, ε) : x ∈ X} and ω0(X) = lim
ε→0

ω(X, ε).

In [3], it is proved that ω0(X) is a measure of noncompactness in C[0, 1].

Theorem 2.11. The measure of noncompactness ω0 on C[0, 1] satisfies con-
dition (m).

Proof. Fix X, Y ∈ MC[0,1], ε > 0 and t, s ∈ [0, 1] with |t − s| ≤ ε. Then,
for x ∈ X and y ∈ Y , we have

|x(t)y(t)− x(s)y(s)| ≤ |x(t)y(t)− x(t)y(s)|+ |x(t)y(s)− x(s)y(s)|
= |x(t)| |y(t)− y(s)|+ |y(s)| |x(t)− x(s)|
≤ ‖x‖ ω(y, ε) + ‖y‖ ω(x, ε).
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From this, it follows that

ω(xy, ε) ≤ ‖x‖ ω(y, ε) + ‖y‖ ω(x, ε).

and, consequently,

ω(XY, ε) ≤ ‖X‖ ω(Y, ε) + ‖Y ‖ ω(X, ε).

Taking ε → 0 in the last inequality, we get

ω0(XY ) ≤ ‖X‖ ω0(Y ) + ‖Y ‖ ω0(X).

This completes the proof. �

3. Main results

By commodity, we will denote by A the following class of functions which
will be used later,

A =
{

ϕ : R+ → R+ : ϕ is nondecreasing and lim
n→∞

ϕn(t) = 0 for ny t ∈ R+

}
.

Remark 3.1. Notice that if λ ∈ [0, 1] and ϕ ∈ A then λϕ ∈ A. In fact, it
is clear that λϕ is nondecreasing. Moreover, (λϕ)(t) ≤ ϕ(t) for any t ∈ R+. By
using mathematical induction, we can prove that (λϕ)(n)(t) ≤ λϕ(n)(t) and this
proves that lim

n→∞
(λϕ)n(t) = 0 for any t ∈ R+. Therefore, λϕ ∈ A.

Now, we are ready to prove the existence result of equation (1.1). We consider
the following assumptions:

(a1) f ∈ C([0, 1]× R, R \ {0}) and g ∈ C([0, 1]× R, R).
(a2) There exist nonnegative constants k1 and k2 such that |f(t, 0)| ≤ k1

and |g(t, 0)| ≤ k2 for any t ∈ [0, 1].
(a3) The functions f and g satisfy:

|f(t, x1)− f(t, x2)| ≤ ϕ1(|x1 − x2|),
|g(t, x1)− g(t, x2)| ≤ ϕ2(|x1 − x2|),

respectively, for any t ∈ [0, T ] and x1, x2 ∈ R, where ϕ1, ϕ2 ∈ A and ϕ1

is continuous.
(a4) There exists r0 > 0 satisfying the inequality

(ϕ1(r) + k1) · (ϕ2(r) + k2) ≤
Γ(2α)
Γ(α)

r

and, moreover

(ϕ2(r0) + k2) ≤
Γ(α)
Γ(2α)

.
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Theorem 3.2. Under assumptions (a1)–(a4), equation (1.1) has at least one
solution in C[0, 1].

Proof. In virtue of Lemma 2.5, any solution of equation (1.1) must satisfy
the following integral equation

x(t) = f(t, x(t))
∫ 1

0

G(t, s)g(s, x(s)) ds,

where G(t, s) is the Green’s function appearing in Section 2. Therefore, the
solutions of (1.1) are the fixed points of the operator defined on C[0, 1] by the
formula

(3.1) (T x)(t) = f(t, x(t))
∫ 1

0

G(t, s)g(s, x(s)) ds.

Consider the operators F and G defined on C[0, 1] by (Fx)(t) = f(t, x(t)) and
(Gx)(t) =

∫ 1

0
G(t, s)g(s, x(s)) ds, for any x ∈ C[0, 1] and t ∈ [0, 1]. Then, T x =

(Fx) · (Gx) for any x ∈ C[0, 1].
By (a1) and Lemma 2.6, it is easy to see that the operators F and G apply

C[0, 1] into itself and, since the product of continuous functions is a continuous
function, T applies C[0, 1] into itself.

Next, we fix x ∈ C[0, 1] and t ∈ [0, 1]. Then, taking into account our as-
sumptions, we get

|(T x)(t)| = |(Fx)(t)| |(Gx)(t)|

= |f(t, x(t))|
∣∣∣∣ ∫ 1

0

G(t, s)g(s, x(s)) ds

∣∣∣∣
≤ [|f(t, x(t))− f(t, 0)|+ |f(t, 0)|]

·
∣∣∣∣ ∫ 1

0

G(t, s)(g(s, x(s))− g(s, 0)) ds +
∫ 1

0

G(t, s)g(s, 0) ds

∣∣∣∣.
Since G(t, s) ≥ 0 for t, s ∈ [0, 1] (see Lemma 2.6), we have

|(T x)(t)| ≤ (φ1(|x(t)|) + |f(t, 0)|)

·
[ ∫ 1

0

G(t, s)|g(s, x(s))− g(s, 0)| ds +
∫ 1

0

G(t, s)|g(s, 0)| ds

]
≤ (φ1(|x(t)|) + |f(t, 0)|)

[ ∫ 1

0

G(t, s)ϕ2(|x(s)|) ds + k2

∫ 1

0

G(t, s) ds

]
≤ (φ1(‖x‖) + k1)(φ2(‖x‖) + k2)

∫ 1

0

G(t, s) ds.

Since max
0≤t≤1

G(t, s) = G(s, s), for any s ∈ (0, 1), we have

‖T x‖ ≤ (φ1(‖x‖) + k1)(φ2(‖x‖) + k2)
∫ 1

0

G(s, s) ds.
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Taking into account that∫ 1

0

G(s, s) ds =
1

Γ(α)

∫ 1

0

sα−1(1− s)α−1 ds =
1

Γ(α)
B(α, α) =

Γ(α)
Γ(2α)

,

from inequality (3.2), it follows that

‖T x‖ ≤ Γ(α)
Γ(2α)

(φ1(‖x‖) + k1)(φ2(‖x‖) + k2).

From assumption (a4), we infer that the operator T transforms Br0 into itself.
Moreover, from the last estimates, we get

(3.3) ‖FBr0‖ ≤ (φ1(r0) + k1) and ‖GBr0‖ ≤
Γ(α)
Γ(2α)

(φ2(r0) + k2).

In the sequel, we will prove that the operator F is continuous on the ball Br0 .
To do this, we fix ε > 0 and we take x, y ∈ Br0 with ‖x − y‖ ≤ ε. Then, for
t ∈ [0, 1], we have

|(Fx)(t)− (Fy)(t)| = |f(t, x(t))− f(t, y(t))|
≤ ϕ1(|x(t)− y(t)|) ≤ ϕ1(‖x− y‖) ≤ ϕ1(ε).

Since ϕ1 ∈ A it is easy to see that ϕ1(t) < t for any t > 0 (because, in contrary
case, we find t0 > 0 such that ϕ1(t0) < t0. Since ϕ1 is nondecreasing, (ϕn

1 (t0)) is
a nondecreasing sequence satisfying t0 ≤ ϕn

1 (t0) for any n ∈ N, and, consequently,
0 < t0 ≤ lim

t→∞
ϕn

1 (t0) and this contradicts the fact that ϕ1 ∈ A). From ϕ1(t) < t

for any t > 0, we deduce that ϕ1(0) = 0 and lim
t→0

ϕ1(t) = 0. Therefore, ϕ1 is

continuous at t = 0 and, from the last inequality, we infer that ‖Fx−Fy‖ → 0
when ε → 0.

Notice that in this argument we do not used the assumption about the con-
tinuity of ϕ1 (assumption (a3)). This proves that F is continuous on Br0 .

In order to prove that G is continuous on Br0 , we fix ε > 0 and for x, y ∈ Br0

with ‖x− y‖ ≤ ε, and t ∈ [0, 1], we have

|(Gx)(t)− (Gy)(t)| =
∣∣∣∣ ∫ 1

0

G(t, s)g(s, x(s)) ds−
∫ 1

0

G(t, s)g(s, y(s)) ds

∣∣∣∣
≤

∫ 1

0

G(t, s)|g(s, x(s))− g(s, y(s))| ds

≤ωg(ε)
∫ 1

0

G(t, s) ds,

where ωg(ε) = sup{|g(s, x)− g(s, y)| : s ∈ [0, 1], x, y ∈ [−r0, r0], |x− y| ≤ ε)}.
Since g(t, x) is uniformly continuous on bounded subsets of [0, 1] × R, we

infer that ωg(ε) → 0 as ε → 0, and, from the last inequality, it follows that
‖Gx − Gy‖ → 0 as ε → 0. This proves that G is continuous on Br0 . Therefore,
T = F · G is continuous on Br0 .
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Next, we will estimate the quantity related to the modulus of continuity for
the operators F and G on Br0 . To do this, we fix a nonempty subset X of Br0

and ε > 0. Then, for x ∈ X and t1, t2 ∈ [0, 1] with |t1 − t2| ≤ ε, we get

|(Fx)(t1)− (Fx)(t2)| = |f(t1, x(t1))− f(t2, x(t2))|
≤ |f(t1, x(t1))− f(t2, x(t1))|+ |f(t2, x(t1))− f(t2, x(t2))|
≤ω(f, ε) + ϕ1(|x(t1)− x(t2)|) ≤ ω(f, ε) + ϕ1(ω(X, ε)),

where ω(f, ε) = sup{|f(r, x) − f(s, x)| : r, s ∈ [0, 1], |r − s| ≤ ε, x ∈ [−r0, r0]}.
This means that

ω(Fx, ε) ≤ ω(f, ε) + ϕ1(ω(X, ε)).

From this, it follows that

ω(FX, ε) ≤ ω(f, ε) + ϕ1(ω(X, ε)).

Since f(t, x) is uniformly continuous on bounded subsets of [0, 1]×R, we deduce
that ω(f, ε) → 0 as ε → 0, and, from the last inequality, since ϕ1 is continuous,
we obtain

(3.4) ω0(FX) ≤ ϕ1

(
lim
ε→0

ω(X, ε)
)

= ϕ1(ω0(X)).

Now, we estimate the quantity ω0 for the operator G. To do this, we fix
a nonempty subset X of Br0 and ε > 0. Then, for x ∈ X and t1, t2 ∈ [0, 1]
with |t1 − t2| ≤ ε, we have

|(Gx)(t1)− (Gx)(t2)| =
∣∣∣∣ ∫ 1

0

G(t1, s)g(s, x(s)) ds−
∫ 1

0

G(t2, s)g(s, x(s)) ds

∣∣∣∣
≤

∫ 1

0

|G(t1, s)−G(t2, s)| |g(s, x(s))| ds.

Put L = sup{|g(t, x)| : t ∈ [0, 1], x ∈ [−r0, r0]}. Since g is continuous on the
compact set [0, 1]× [−r0, r0], L < ∞. Then, from the last estimate, we have

|(Gx)(t1)− (Gx)(t2)| ≤ L

∫ 1

0

|G(t1, s)−G(t2, s)| ds ≤ L

∫ 1

0

ω(G, ε) ds ≤ Lω(G, ε),

where ω(G, ε) = sup{|G(τ1, s) − G(τ2, s)| : τ1, τ2, s ∈ [0, 1], |τ1 − τ2| ≤ ε}. This
gives us that

ω(Gx, ε) ≤ Lω(G, ε)

and, consequently,
ω(GX, ε) ≤ Lω(G, ε).

Since G(t, s) is uniformly continuous on [0, 1]× [0, 1], we infer that ω(G, ε) → 0
as ε → 0, and, the last inequality gives us that

(3.5) ω0(GX) = 0.
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Finally, we will estimate the quantity ω0 for the operator T on Br0 . Let X be a
nonempty subset of Br0 . Taking into account Theorem 2.11, we have

ω0(T X) =ω0(FX · GX)

≤‖FX‖ω0(GX) + ‖GX‖ω0(FX) ≤ ‖FBr0‖ω0(GX) + ‖GBr0‖ω0(FX).

By (3.3)–(3.5), we infer that

ω0(T X) ≤ Γ(α)
Γ(2α)

(ϕ2(r0) + k2) ϕ1(ω0(X)).

By assumptions (a4),
Γ(α)
Γ(2α) (ϕ2(r0)+k2) ≤ 1 and, taking into account Remark 3.1,

Γ(α)
Γ(2α) (ϕ2(r0) + k2)ϕ1 ∈ A. Finally, by using Theorem 2.9, the operator T has at
least one fixed point in Br0 . �

4. Example

Before to present an example illustrating our results, we need some properties
about the inverse tangent function.

Definition 4.1. A function f : R+ → R+ is said to be subadditive if

f(x + y) ≤ f(x) + f(y), for any x, y ∈ R+.

Lemma 4.2. Suppose that f : R+ → R+ is subadditive and y ≤ x then

f(x)− f(y) ≤ f(x− y).

Proof. In fact, since f(x) = f(x − y + y) ≤ f(x − y) + f(y) it follows the
desired result. �

Remark 4.3. Notice that from Lemma 4.2, we infer that if f : R+ → R+ is
subadditive then

|f(x)− f(y)| ≤ f(|x− y|), for any x, y ∈ R+.

Lemma 4.4. Let f : R+ → R+ be a concave function with f(0) = 0. Then f

is subadditive.

Proof. We take x, y ∈ R+. The concavity of f and the fact that f(0) = 0
give us

f(x) = f

(
x

x + y
(x+y)+

y

x + y
·0

)
≥ x

x + y
f(x+y)+

y

x + y
f(0) =

x

x + y
f(x+y)

and

f(y) = f

(
x

x + y
·0+

y

x + y
(x+y)

)
≥ x

x + y
f(0)+

y

x + y
f(x+y) =

y

x + y
f(x+y).
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Adding these inequalities, we have

f(x) + f(y) ≥ x

x + y
f(x + y) +

y

x + y
f(x + y) = f(x + y).

This completes the proof. �

Remark 4.5. Since the function ϕ: R+ → [0, π/2) defined by ϕ(t) = arctan t

is concave (because ϕ′′ = −2t/((1 + t2)2) ≤ 0 for t ∈ R+) and ϕ(0) = 0,
Lemma 4.4 says us that ϕ is subadditive. By using Remark 4.3, we have

| arctan t− arctan s| ≤ arctan(|t− s|), for any t, s ∈ R+.

Since arctan t < t for any t > 0 (because if h(t) = t − arctan t for t ≥ 0,
then h′(t) = 1 − 1/(1 + t2) > 0 for t > 0 and, therefore, h(0) < h(t) for t > 0.
Consequently, arctan t < t for t > 0) and ϕ(t) = arctan t for t ∈ R+ is continuous,
Lemma 2.10 gives us lim

n→∞
ϕn(t) = 0 for any t ∈ R+. Moreover, it is clear that

ϕ(t) = arctan t is nondecreasing and, therefore, ϕ ∈ A.

Now, we are ready to present an example where our results can be applied.

Example 4.6. Consider the following fractional hybrid boundary value pro-
blem

(4.1)

 D
3/2
0+

[
x(t)

1/2 + arctan |x(t)|

]
+ arctan |x(t)| = 0, 0 < t < 1,

x(0) = x(1) = 0.

Notice that, (4.1) is a particular case of (1.1), where α = 3/2, f(t, x) = 1/2 +
arctan |x| and g(t, x) = arctan |x|.

It is clear that f ∈ C([0, 1]×R, R\{0}) and g ∈ C([0, 1]×R, R) and, moreover,
|f(t, 0)| = 1/2 = k1 and |g(t, 0)| = 0 = k2. Thus, assumptions (a1) and (a2) of
Theorem 3.2 are satisfied.

On the other hand, taking into account Remark 4.5, for any x1, x2 ∈ R and
t ∈ R+, we have

|f(t, x1)− f(t, x2)| = | arctan |x1| − arctan |x2||
≤ arctan(||x1| − |x2||) ≤ arctan(|x1 − x2|),

where we have used the nondecreasing character of the inverse tangent function
and the fact that ||x1|−|x2|| ≤ |x1−x2|. Therefore, ϕ1(t) = arctan t and ϕ1 ∈ A
(see Remark 4.5). Moreover, it is clear that ϕ1 is continuous.

Further, notice that, for any x1, x2 ∈ R and t ∈ R+, we have

|g(t, x1)− g(t, x2)| = | arctan |x1| − arctan |x2||
≤ arctan(||x1| − |x2||) ≤ arctan(|x1 − x2|)

and, in this case, ϕ2(t) = arctan t with ϕ2 ∈ A. This proves that assumption
(a3) of Theorem 3.2 is satisfied.
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In our case, the inequality appearing in assumption (a4) of Theorem 3.2 has
the expression (

arctan r +
1
2

)
(arctan r) ≤ Γ(3)

Γ(3/2)
r.

It is easy to see that this inequality is satisfied for r0 = 1/
√

3 and, moreover,

arctan r0 = arctan
1√
3

= 0.523598 ≤ Γ(3)
Γ(3/2)

=
2

0.88623
= 2.256750.

This proves that assumption (a4) of Theorem 3.2 is satisfied.
Therefore, Theorem 3.2 says us that (4.1) has at least one solution x ∈ C[0, 1]

such that ‖x‖ ≤ 1/
√

3.

5. Final remarks

In [13], the authors studied equation (1.1) under other assumptions. More
precisely, they proved the following result.

Theorem 5.1 ([13, Theorem 3.1]). Suppose that the following assumptions
are satisfied:

(H1) f ∈ C([0, 1]× R, R \ {0}) and g ∈ C([0, 1]× R, R).
(H2) There exists a constant L > 0 such that

|f(t, x)− f(t, y)| ≤ L|x− y|,

for any t ∈ [0, 1] and x, y ∈ R.
(H3) There exists a function h ∈ L1([0, 1], R+) such that

|g(t, x)| ≤ h(t), for any t ∈ [0, 1].

(H4) LT‖h‖1 < 1, where T =
∫ 1

0
G(s, s) ds.

Then equation (1.1) has a solution in C([0, 1], R).

Now, we present an example which can be treated by Theorem 3.2 and it
cannot studied by using Theorem 5.1. Previously, by using similar arguments to
the ones used for the inverse tangent function can be proved that the functions
ϕ1(t) = tanh t = (e2t − 1)/(e2t + 1) and ϕ2(t) = ln(1 + t) belong to the class A.

Example 5.2. Consider the following fractional hybrid boundary value pro-
blem:

(5.1)

 D
3/2
0+

[
x(t)

1/4 + tanh |x(t)|

]
+ ln(1 + |x(t)|) = 0, 0 < t < 1,

x(0) = x(1) = 0.

Notice that, equation (5.1) is a particular case of (1.1), where α = 3/2, f(t, x) =
1/4 + tanh |x| and g(t, x) = ln(1 + |x|).
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It is clear that assumption (a1) of Theorem 3.2 is satisfied, and, moreover,
|f(t, 0)| = 1/4 = k1 and |g(t, 0)| = 0 = k2. Since the function ϕ1(t) = tanh t is
concave and ϕ1(0) = 0, by Lemma 4.4, ϕ1 is subadditive and, therefore, for any
x1, x2 ∈ R and t ∈ R+, we have

|f(t, x1)− f(t, x2)| =≤ tanh(||x1| − |x2||) ≤ tanh(|x1 − x2|),

and ϕ1(r) = tanh r. Notice that ϕ1 ∈ A and ϕ1 is continuous.
On the other hand, for any x1, x2 ∈ R and t ∈ R+, we have

|g(t, x1)− g(t, x2)| = | ln(1 + |x1|)− ln(1 + |x2|)|.

Suppose that |x1| > |x2| (same argument works for |x2| > |x1|), then

|g(t, x1)− g(t, x2)| =
∣∣∣∣ ln

(
1 + |x1|
1 + |x2|

)∣∣∣∣
= ln

(
1 + |x2|
1 + |x2|

+
|x1| − |x2|
1 + |x2|

)
= ln

(
1 +

|x1| − |x2|
1 + |x2|

)
≤ ln(1 + (|x1| − |x2|)) ≤ ln(1 + |x1 − x2|),

where we have used the nondecreasing character of ϕ2(t) = ln(1 + t) for t ∈ R+

and the fact that |x1|− |x2| ≤ |x1−x2|. In our case, ϕ2(t) = ln(1+ t) for t ∈ R+

and it is easy to see that ϕ2 ∈ A.
The inequality appearing in assumption (a4) of Theorem 3.2 has the form(

tanh r +
1
4

)
(ln(1 + r)) ≤ Γ(3)

Γ(3/2)
r.

It is easy to see that this inequality is satisfied by r0 = 1 and, moreover,

ln(1 + r0)
Γ(α)
Γ(2α)

= ln(2) · Γ(3/2)
Γ(3)

= ln(2) · 0.443115 ≤ 1.

Therefore, by Theorem 3.2, (5.1) has at least one solution x ∈ C([0, 1], R) with
‖x‖ ≤ 1.

Notice that in our case the function g(t, x) = ln(1 + |x|) does not satisfy
assumption (H4) of Theorem 5.1 and, therefore, equation (5.1) cannot be treated
by the results of [13].
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[2] Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional

differential equation, J. Math. Anal. Appl. 311 (2005), 495-505.

[3] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture
Notes in Pure and Applied Mathematics, vol. 60, Marcel Dekker, New York, 1980.



548 J. Caballero — M.A. Darwish — K. Sadarangani
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