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THE EFFECT OF DIFFUSION
ON CRITICAL QUASILINEAR ELLIPTIC PROBLEMS

Renato José de Moura — Marcos Montenegro

Abstract. We discuss the role of the diffusion coefficient a(x) on the

existence of a positive solution for the quasilinear elliptic problem involving

critical exponent

(
−div(a(x)|∇u|p−2∇u) = up∗−1 + λup−1 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in Rn, n ≥ 2, 1 < p < n, p∗ =
np/(n−p) is the critical exponent from the viewpoint of Sobolev embedding,

λ is a real parameter and a: Ω → R is a positive continuous function. We
prove that if the function a(x) has an interior global minimum point x0

of order σ, then the range of values λ for which the problem above has a

positive solution relies strongly on σ. We discover in particular that the
picture changes drastically from σ > p to σ ≤ p. Some sharp answers are

also provided.

1. Introduction and main theorems

In the 80’s decade, Brezis and Nirenberg investigated, in the celebrated paper
[9], the existence of a positive solution for the problem

(1.1)

{
−∆u = u(n+2)/(n−2) + λu in Ω,

u = 0 on ∂Ω,
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on a smooth bounded domain Ω ⊂ Rn, n ≥ 3, where λ is a real parameter. As
it is well known, the existence of such a positive solution relies on the value of
the constant λ compared with the first eigenvalue λ1(−∆) corresponding to the
Laplace operator on Ω under Dirichlet boundary condition. According to one
of the main results of [9], the problem (1.1) admits a positive solution if, and
only if, λ ∈ (0, λ1(−∆)) provided that n ≥ 4 and Ω is star-shaped. Besides,
when n = 3 and Ω is a ball, a positive solution of (1.1) exists if, and only if,
λ ∈ (λ1(−∆)/4, λ1(−∆)). Since then, a lot of attention has been devoted to
various questions and extensions related to (1.1). We refer for instance to the
Struwe’s [36] and Willem’s [38] books and references therein for an overview on
the so-called Brezis–Nirenberg problem.

A closely related extension which has been widely addressed in the literature
is the existence of a positive solution for the problem

(1.2)

{
−∆pu = |u|p∗−2u + λ|u|p−2u in Ω,

u = 0 on ∂Ω,

where n ≥ 2, 1 < p < n, ∆pu = div(|∇u|p−2∇u) represents the p-Laplace
operator and p∗ = np/(n − p) denotes the critical Sobolev exponent to the
embedding of W 1,p

0 (Ω) into Lebesgue spaces. Again the existence of a positive
solution for (1.2) relies on the location of λ with respect to the first eigenvalue
λ1(−∆p) corresponding to the p-Laplace operator on Ω under Dirichlet boundary
condition. The above-mentioned result of [9] valid for n ≥ 4 and star-shaped
domains has been extended by Egnell [19], Garcia Azorero and Peral Alonso [21]
and Guedda and Veron [25], who have proved that the problem (1.2) admits
a positive solution if, and only if, λ ∈ (0, λ1(−∆p)) provided that 1 < p ≤√

n. Under this range on p, De Valerioli and Willem [14] has also discussed
the existence of solution. The case p >

√
n has been considered by Egnell [19],

who has found a number λ∗ so that a positive solution of (1.2) exists for any
λ ∈ (λ∗, λ1(−∆p)). When λ ≥ λ1(−∆p), results on existence of a nontrivial
solution have been established in [11] and [22] for p = 2 and in [2] and [15] for
p 6= 2.

Another important line of investigation consists of the study of existence of
positive (or nontrivial) solutions for problems connected to (1.2) in the presence
of diffusion such as

(1.3)

{
−∆pu = α(x)up∗−1 + β(x)up−1 in Ω,

u = 0 on ∂Ω,

and

(1.4)

{
−div(a(x)|∇u|p−2∇u) = up∗−1 + λup−1 in Ω,

u = 0 on ∂Ω,
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where the diffusion coefficients α(x), β(x) and a(x) are positive continuous func-
tions on Ω. The problem (1.3) has been focused in various works in the case
p = 2 as, for instance, [5], [7], [11], [20], [22]–[24], [32], [33], [40] and in the case
p 6= 2, in [2], [6], [15], [17], [19], [28], among others. Already the problem (1.4)
has been investigated in a few works where a comprehensive study has been
performed, namely [18], [26] and [31] for p = 2 and [19] for p 6= 2.

Our main goal is discussing the effect of the order of global minimum points
of the diffusion a(x) on the existence of a positive solution for the problem (1.4)
when p 6= 2.

For simplicity of notation, let Lp,au = div(a(x)|∇u|p−2∇u). The operator
Lp,a is degenerate elliptic for p > 2 and singular for p < 2. By a positive solution
of (1.4) we mean a nontrivial nonnegative weak solution in W 1,p

0 (Ω). A positive
solution in C1(Ω) will be simply referred as a positive C1 solution.

Let λ1(−Lp,a) be the first eigenvalue corresponding to the problem

(1.5)

{
−Lp,au = λ|u|p−2u in Ω,

u = 0 on ∂Ω.

A fairly simple fact that deserves mention due to Egnell [19] is the existence of
a number λ∗ less than λ1(−Lp,a) such that a positive solution of (1.4) exists for
any λ ∈ (λ∗, λ1(−Lp,a)). We are interested in the seeking for optimal values of
λ∗ or, at least, for good upper and lower bounds of λ∗ depending of the order of
global minimum points of the function a(x).

We first state two main existence results, the first one to higher order mini-
mum points and the second one dealing with lower order.

Theorem 1.1. Assume that a(x) attains its minimum value at x0 ∈ Ω and
there exist constants σ > p and C0 > 0 such that

(1.6) a(x) ≤ a(x0) + C0|x− x0|σ

around x0. If 1 < p ≤
√

n, then the problem (1.4) has a positive solution for any
λ ∈ (0, λ1(−Lp,a)).

The conclusion of Theorem 1.1 remains indeed valid if the condition (1.6) is
replaced by a(x) = a(x0) + o(|x− x0|p) around x0, see Section 3 for full details.
The importance of working with global minimum is justified by Lemma 2.1.

Theorem 1.2. Assume that there exist x0 ∈ Ω and constants 0 < σ ≤ p and
C0 > 0 such that

(1.7) a(x) ≥ a(x0) + C0|x− x0|σ

for all x ∈ Ω. If 1 < p < n, then there exists a positive constant λ∗ such that the
problem (1.4) has a positive solution for any λ ∈ (λ∗, λ1(−Lp,a)).



520 R.J. de Moura — M. Montenegro

Note that the point x0 in the theorem above is a global minimum of a(x). If
further x0 is unique, it suffices instead of assuming that a(x) ≥ a(x0)+C0|x−x0|σ

around x0.
We next present two main nonexistence results, the second one deals with

lower order minimum points.

Theorem 1.3. Assume that Ω is of C1 class and star-shaped with respect to
x0 ∈ Ω, a is of C1 class on Ω\{x0} and ∇a(x) · (x−x0) extends continuously to
x0 and is nonnegative on Ω. If 1 < p < n, then the problem (1.4) has no positive
C1 solution for any λ ∈ (−∞, 0].

It deserves mention that the problem (1.4) has no positive solution whenever
λ ≥ λ1(−Lp,a). This assertion follows from a slight adaptation of the proof of
Theorem 3.3 of Guedda and Veron [25].

The assumptions in the theorem above imply that x0 is a global minimum
point of a(x), as can easily be checked.

Theorem 1.4. Assume that Ω is of C1 class and star-shaped with respect
to x0 ∈ Ω, a is of C1 class on Ω\{x0} and ∇a(x) · (x−x0) extends continuously
to x0. Assume further that there exist constants 0 < σ ≤ p and C0 > 0 such that

(1.8) ∇a(x) · (x− x0) ≥ σC0|x− x0|σ

for all x ∈ Ω. If 1 < p < n, then there exists a positive constant λ∗ such that the
problem (1.4) has no positive C1 solution for any λ ∈ (−∞, λ∗].

A quite simple argument shows that the condition (1.8) implies (1.7). So, the
conditions assumed in Theorems 1.2 and 1.4and standard regularity theorems
guarantees the existence of constants 0 < λ∗ ≤ λ∗ such that a positive C1

solution of (1.4) exists for any λ ∈ (λ∗, λ1(−Lp,a)) and no existence occurs for
any λ ∈ (−∞, λ∗]. Regarding the case that n ≥ p2, Ω is star-shaped with
respect to x0 and a(x) = 1 + |x − x0|σ, we discover that the picture changes
considerably according to the cases σ > p to σ ≤ p. Precisely, assuming Ω ∈ C1

and σ > p, Theorems 1.1 and 1.3 and the above-mentioned nonexistence result
for λ ≥ λ1(−Lp,a) provide a positive C1 solution for the problem (1.4) if, and
only if, λ ∈ (0, λ1(−Lp,a)). On the other hand, if σ ≤ p, then a nonexistence
range is given by (−∞, λ∗] for some positive number λ∗. Moreover, when σ = p

and n = p2, we prove in Section 6 that λ∗ = λ∗. In order to further exploit
this example, we investigate what happens as σ tends to zero. As we shall see
later, λ∗ = 0 in the case that σ = 0. So, in our approach, the classical Brezis–
Nirenberg result for p-Laplace operators and n ≥ p2 is recovered, which can be
framed in the cases σ = 0 or σ > p. However, it is interesting to note that

lim inf
σ→0+

λ∗ ≥ λ1(−∆p) > 0.
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In particular, λ∗ is not continuous at σ = 0. All assertions concerning the
diffusion term a(x) = 1 + |x− x0|σ will be proved in Sections 5 and 6.

In conclusion, if Ω is star-shaped with respect to any point (e.g. a ball), then
the range of the values λ for which the problem (1.4) has a positive solution relies
heavily on the order of interior global minimum points of the diffusion a(x).

An important advantage of Theorems 1.2 and 1.4 is that the constants λ∗ and
λ∗ are constructed explicitly in terms of best constants associated to Euclidean
Hardy–Sobolev type inequalities. In particular, we will be able to furnish upper
and lower bounds for these constants, see Section 5 for more details.

In order to find solutions to problem (1.1) we can use either minimax methods
involving the free energy functional or constrained minimization. We refer for
instance to the Willem’s book [38] for more details. Here we employ the second
strategy. Precisely, consider the functional

Ψp,a(u) =
∫

Ω

a(x)|∇u|p dx− λ

∫
Ω

|u|p dx

constrained to the set Ep := {u ∈ W 1,p
0 (Ω) :

∫
Ω
|u|p∗ dx = 1}. Since Ψp,a(u) =

Ψp,a(|u|) for all u ∈ Ep, the existence of a minimizer for Ψp,a|Ep
leads readily to

a positive solution of (1.4).
As we shall see in Section 2, the condition (1.6) assumed in Theorem 1.1

combined with standard estimates on bubbles around x0 yields

Ψp,a(u0) < maK(n, p)−p

on some function u0 ∈ Ep, where ma denotes the minimum value of a(x) on Ω
and K(n, p) is the best constant to the embedding of W 1,p

0 (Ω) into Lp∗(Ω). Once
this is done, the existence of a positive solution is classically deduced from the
preceding estimate. We present a complete proof for convenience of the reader.
A different proof can also be deduced by using the Ekeland variational principle
and a compactness result recently obtained by Mercuri and Willem in [30].

The proof of Theorem 1.2 involves the validity on C∞
0 (Ω) of the sharp Sobolev

inequality

(1.9)
( ∫

Ω

|u|p
∗
dx

)p/p∗

≤ K(n, p)p

∫
Ω

|∇u|p dx

and of the sharp Hardy–Sobolev inequality

(1.10)
∫

Ω

|u|p dx ≤ K0(n, p, σ,Ω, x0)p

∫
Ω

|x− x0|σ|∇u|p dx

provided that 0 < σ ≤ p. Inequality (1.10) is a special case of the famous
Caffarelli–Konh–Nirenberg inequality presented in [10]. When σ = p, the value of
K0(n, p, σ,Ω, x0) does not depend on Ω and x0, namely K0(n, p, σ,Ω, x0) = p/n,
as can be seen in [27] for p = 2 and in [1] for p 6= 2. Thanks to (1.9) and (1.10)
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and to the condition (1.7), the positive constant λ∗ will be constructed as the
supremum of values λ > 0 for which the inequality( ∫

Ω

|u|p
∗
dx

)p/p∗

+ λm−1
a K(n, p)p

∫
Ω

|u|p dx ≤ m−1
a K(n, p)p

∫
Ω

a(x)|∇u|p dx

holds for all u ∈ C∞
0 (Ω). Section 3 will be devoted to the detailed proof of

Theorems 1.1 and 1.2.
Pohoz̆aev type integral identities are powerful tools in proving nonexistence

of solutions for quasilinear elliptic boundary problems. Related to Theorem 1.3,
we use one of them, namely a version of the Pucci–Serrin identity [34] for C2

solutions refined by Degiovanni, Musesti and Squassina in [15] for C1 solutions.
The same identity is useful in the proof of Theorem 1.4 together with the sharp
Hardy–Sobolev inequality (1.10) which plays a key role. The proof of Theo-
rems 1.3 and 1.4 will be presented in Section 4. In Section 5, upper and lower
bounds will be obtained for λ∗ and λ∗ considering some particularly interesting
examples of diffusion coefficients a(x). In Section 6, it will be outlined some
open problems which are naturally motivated by our results. Part of the tools
required in proofs will be provided in Section 2.

2. Preliminary tools

Our aim in this section is to provide two suitable lemmas for the proof of the
main theorems.

As mentioned in the introduction, nontrivial solutions of (1.4) can be found
as critical points of the functional

Ψp,a(u) =
∫

Ω

a(x)|∇u|p dx− λ

∫
Ω

|u|p dx

constrained to the set Ep := {u ∈ W 1,p
0 (Ω) :

∫
Ω
|u|p∗ dx = 1}. Such a critical

point is called a least energy solution of (1.4) and

cp,a := inf
u∈Ep

Ψp,a(u)

is called the least energy level of Ψp,a on Ep.
The conclusion of Theorems 1.1 and 1.2 relies on a rather standard lemma

whose proof will be outlined for reader’s convenience. The proof given below
follows the ideas of an elegant and simple proof of minimizers existence presented
by Barstch and Willem in [4] and communicated to us by M. Willem.

Given a positive continuous function a(x) on Ω, recall that ma denotes its
minimum value on Ω and K(n, p) denotes the best constant to the embedding
of W 1,p

0 (Ω) into Lp∗(Ω).
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Lemma 2.1. If 0 < cp,a < maK(n, p)−p, then the constrained functional
Ψp,a|Ep

attains its infimum.

Proof. Let (uj) ⊂ Ep be such that

Ψp,a(uj) =
∫

Ω

a(x)|∇uj |p dx− λ

∫
Ω

|uj |p dx → cp,a

as j → +∞. We can assume that uj ⇀ u in W 1,p
0 (Ω), uj → u in Lp(Ω) and

uj → u almost everywhere. on Ω. By the sharp Sobolev inequality,

cp,a = lim
j→+∞

( ∫
Ω

a(x)|∇uj |p dx− λ

∫
Ω

|uj |p dx

)
≥ maK(n, p)−p − λ

∫
Ω

|u|p dx.

Thus, since cp,a < maK(n, p)−p, it follows that u 6= 0. We now show that
||u||Lp∗ (Ω) = 1. As in [4], consider, for h > 0, the auxiliary functions

Th(s) = min(max(s,−h), h) and Rh(s) = s− Th(s).

As can be easily checked, Th(u), Rh(u) ∈ W 1,p
0 (Ω) and∫

Ω

a(x)|∇u|p dx =
∫

Ω

a(x)|∇Th(u)|p dx +
∫

Ω

a(x)|∇Rh(u)|p dx

for any u ∈ W 1,p
0 (Ω). Consequently,

cp,a = lim
j→+∞

( ∫
Ω

a(x)|∇uj |p dx− λ

∫
Ω

|uj |p dx

)
= lim

j→+∞

( ∫
Ω

a(x)|∇Th(uj)|p dx +
∫

Ω

a(x)|∇Rh(uj)|p dx

)
− λ

∫
Ω

|u|p dx

= lim
j→+∞

( ∫
Ω

a(x)|∇Th(uj)|p dx

− λ

∫
Ω

|Th(uj)|p dx +
∫

Ω

a(x)|∇Th(uj)|p dx− λ

∫
Ω

|Rh(uj)|p dx

)
+ λ

∫
Ω

|Th(u)|p dx + λ

∫
Ω

|Rh(u)|p dx− λ

∫
Ω

|u|p dx

≥ cp,a lim
j→+∞

[(∫
Ω

|Th(uj)|p
∗
dx

)p/p∗

+
( ∫

Ω

|Rh(uj)|p
∗
dx

)p/p∗]
+ λ

∫
Ω

|Th(u)|p dx + λ

∫
Ω

|Rh(u)|p dx− λ

∫
Ω

|u|p dx.

Thanks to Lemma 3.1 of [4], one gets

cp,a ≥ cp,a

[(∫
Ω

|Th(u)|p
∗
dx

)p/p∗

+
(

1 +
∫

Ω

|Rh(u)|p
∗
dx−

∫
Ω

|u|p
∗
dx

)p/p∗]
+ λ

∫
Ω

|Th(u)|p dx + λ

∫
Ω

|Rh(u)|p dx− λ

∫
Ω

|u|p dx.
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Using that cp,a > 0, when h → +∞, one obtains

1 ≥
( ∫

Ω

|u|p
∗
dx

)p/p∗

+
(

1−
∫

Ω

|u|p
∗
dx

)p/p∗

,

so that ||u||L∗(Ω) = 1. By lower semi-continuity, it then follows that u is a mini-
mizer for cp,a. �

As previously already quoted, nonexistence results for elliptic problems are
often established through integral identities satisfied by any solution. Particu-
larly, the proof of Theorems 1.3 and 1.4 relies on the following integral identity:

Lemma 2.2 ([15], [34]). Let 1 < p < n. Assume that Ω is of C1 class, a is
of C1 class on Ω \ {x0} and b(x) = ∇a(x) · (x− x0) extends continuously to x0.
Let u be a C1 solution of (1.4). Then u satisfies the identity

(2.1)
1
p

∫
∂Ω

a(x)|∇u|p (x− x0) · ν ds = λ

∫
Ω

|u|p dx− 1
p

∫
Ω

b(x)|∇u|p dx,

where ν denotes the exterior normal field to ∂Ω and ds stands for the element
of area corresponding to ∂Ω.

3. Proof of Theorems 1.1 and 1.2

The proof of Theorems 1.1 and 1.2 involves Lemma 2.1, bubbles estimates
around x0 and the valid of the sharp Hardy–Sobolev inequality (1.10) on C∞

0 (Ω).

Proof of Theorem 1.1. Although we could provide an alternative proof
by using some ideas due to Egnell [18], [19], we choose considering another
functional on E defined in the introduction, namely Ψp,a, in a similar way to
the one of Garcia Azorero and Peral Alonso [21]. As explained in detail in the
introduction, the key point of this proof is Lemma 2.1. First, without loss of
generality, assume that x0 = 0. By the assumption (1.6), there exists δ > 0 such
that Bδ(0) ⊂ Ω and

a(x) ≤ a(0) + C0|x|σ

for all x ∈ Bδ(0). Using this condition, we have

cp,a ≤ inf
u∈W 1,p

0 (Bδ(0))\{0}

∫
Bδ(0)

a(x)|∇u|p dx−
∫

Bδ(0)

λ|u|p dx( ∫
Bδ(0)

|u|p
∗
dx

)p/p∗

≤ inf
u∈W 1,p

0 (Bδ(0))\{0}

∫
Bδ(0)

a(0)|∇u|p dx+C0

∫
Bδ(0)

|x|σ|∇u|p dx−λ

∫
Bδ(0)

|u|p dx( ∫
Bδ(0)

|u|p
∗
dx

)p/p∗
.
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In order to prove that cp,a < maK(n, p)−p, consider now a cutoff function η ∈
C∞

0 (Bδ(0)) with η = 1 around 0 and extremal functions for K(n, p) on D(Rn)
given to one-parameter ε > 0 by

vε(x) = cn,pε
(n−p)/p(p−1)(εp/(p−1) + |x|p/(p−1))(p−n)/p,

where cn,p is normalized so that ||vε||p∗ = 1, see [3] or [37].
According to [21], wε = ηvε ∈ W 1,p

0 (Bδ(0)) and satisfies

(3.1)

||∇wε||pp = K(n, 2)−p + O(εp+(n−p2)/(p−1)),

||wε||pp∗ = 1 + O(εn),

||wε||pp =

{
an,pε

p + O(εp+(n−p2)/(p−1)) if n > p2,

an,pε
p| log ε|+ O(εp) if n = p2,

where

an,p = cp
n,pωn−1

(p− 1)Γ
(

n− p2

p

)
Γ
(

np− n

p

)
pΓ(n− p)

for n > p2,

an,p = cp
n,pωn−1 for n = p2.

Here ωn−1 stands for the area of the round unit sphere Sn−1.
On the other hand, when σ > p, straightforward computations yield

∫
Bδ(0)

|x|σ|∇wε|p dx =



O(εσ) if σ <
n− p

p− 1
,

O(εσ| log ε|) if σ =
n− p

p− 1
,

O(ε(n−p)/(p−1)) if σ >
n− p

p− 1
.

In particular,

(3.2)
∫

Bδ(0)

|x|σ|∇wε|p dx =

{
o(εp) if n > p2,

O(εp) if n = p2.

In conclusion, a combination between (3.1) and (3.2) produces, for n ≥ p2 and
λ > 0,

cp,a ≤
K(n, p)−p − an,pλεp + o(εp)

m−1
a (1 + O(εn))

< maK(n, p)−p

provided ε > 0 is small enough.
For n = p2 and λ > 0, again we have

cp,a ≤
K(n, p)−p − an,pλεp| log ε|+ O(εp)

m−1
a (1 + O(εn))

< maK(n, p)−p

for ε > 0 small too.
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By Lemma 2.1, the constrained functional Ψp,a|Ep
admits a minimizer u

which can be taken nonnegative. In particular, u satisfies for some Lagrange
multiplier µ ∈ R, {

−Lp,au = µup∗−1 + λup−1 in Ω,

u = 0 on ∂Ω.

Since u ∈ Ep, we have µ = Ψp,a(u). Using now that λ < λ1(−Lp,a), one obtains
µ > 0. Finally, one easily checks that µ1/(p∗−p)u is a positive solution of (1.4).

If the condition a(x) = a(x0)+ o(|x−x0|p) is assumed around x0, then (3.2)
is replaced by∫

Ω

|x− x0|p|∇wε|p dx =

{
bεp + o(εp) if n > p2,

bεp| log ε|+ O(εp) if n = p2,

for constants b > 0 small enough. The rest of the proof then follows. �

Proof of Theorem 1.2. The building strategy for λ∗ changes when 0 <

σ ≤ p since estimates with bubbles has no effect. In this case, the validity of
(1.10) is essential. Indeed, by (1.7) and (1.10) we can write

m−1
a K(n, p)p

∫
Ω

a(x)|∇u|p dx

≥K(n, p)p

∫
Ω

|∇u|p dx + C0m
−1
a K(n, p)p

∫
Ω

|x− x0|σ|∇u|p dx

≥
( ∫

Ω

|u|p
∗
dx

)p/p∗

+ C0K0(n, p, σ,Ω, x0)−pm−1
a K(n, p)p

∫
Ω

|u|p dx.

Consider the set Θ of values λ > 0 for which the inequality

m−1
a K(n, p)p

∫
Ω

a(x)|∇u|p dx ≥
( ∫

Ω

|u|p
∗
dx

)p/p∗

+ λm−1
a K(n, p)p

∫
Ω

|u|p dx

holds for all u ∈ C∞
0 (Ω).

Remark that the set Θ is non-empty, since C0K0(n, p, σ,Ω, x0)−p belongs
to Θ. Let λ∗ := supΘ. In particular, λ∗ ≥ C0K0(n, p, σ,Ω, x0)−p. Note also
that λ∗ is finite and Θ is a closed set, since the inequality

(3.3) m−1
a K(n, p)p

∫
Ω

a(x)|∇u|p dx

≥
( ∫

Ω

|u|p
∗
dx

)p/p∗

+ λ∗m−1
a K(n, p)p

∫
Ω

|u|p dx.

holds for all u ∈ C∞
0 (Ω).

It now suffices to prove that cp,a < maK(n, p)−p for any λ ∈ (λ∗,+∞) and
λ∗ < λ1(−Lp,a). The first assertion follows immediately from the definition
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of λ∗. In fact, since λ 6∈ Θ for any λ > λ∗, there exists u0 ∈ C∞
0 (Ω) such that

(3.4) m−1
a K(n, p)p

∫
Ω

a(x)|∇u0|p dx

<

( ∫
Ω

|u0|p
∗
dx

)p/p∗

+ λm−1
a K(n, p)p

∫
Ω

|u0|p dx,

or equivalently, cp,a < maK(n, p)−p. For the second one, we choose an eigenfunc-
tion ϕ1 corresponding to the first eigenvalue λ1(−Lp,a) of the operator −Lp,a as
a test function in (3.3). So, we are led to

λ1(−Lp,a)
∫

Ω

|ϕ1|p dx =
∫

Ω

a(x)|∇ϕ1|p dx > λ∗
∫

Ω

|ϕ1|p dx,

so that the assertion follows. Proceeding now exactly as in the previous proof,
one derives a positive solution of (1.4) for any λ ∈ (λ∗, λ1(−Lp,a)). �

4. Proof of Theorems 1.3 and 1.4

The proof of Theorems 1.3 and 1.4 is based on the Pohoz̆aev type integral
identity (2.1) given in Lemma 2.2.

Proof of Theorem 1.3. Assume, by contradiction, that (1.4) admits
a positive C1 solution u and that, without loss of generality, x0 = 0. By the
Hopf lemma due to Pucci, Serrin and Zhou (Theorem 1’ of [35]), the gradient of
u never vanishes on ∂Ω. Since Ω is star-shaped with respect to the origin, x · ν
is nonnegative and non-identically zero on ∂Ω. So, thanks to the positivity of
the function a, the left-hand side of (2.1) is positive too. But, by assumption,
we have ∇a(x) · x ≥ 0 for all x ∈ Ω and, therefore, the equation (2.1) would be
violated if λ ≤ 0. �

Proof of Theorem 1.4. Arguing as in the preceding proof and using the
assumption ∇a(x) · x ≥ σC0|x|σ for all x ∈ Ω, the identity (2.1) yields

λ

∫
Ω

|u|p dx >
σ

p
C0

∫
Ω

|x|σ|∇u|p dx.

Using now that 0 < σ ≤ p and evoking the sharp Hardy-Sobolev inequality
(1.10), one gets

λ

∫
Ω

|u|p dx >
σ

p
C0K0(n, p, σ,Ω, 0)−p

∫
Ω

|u|p dx,

so that λ > λ∗ =: σ
p C0K0(n, p, σ,Ω, 0)−p. Consequently, for star-shaped domains

about the origin, the problem (1.4) has no positive C1 solution for any λ ∈
(−∞, λ∗]. �
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5. Bounds for λ∗ and λ∗

This section deals mainly with upper and lower bounds for λ∗ and λ∗ for
some interesting examples of non-uniformly elliptic operators Lp,a of the type
div(a(x)|∇u|p−2∇u).

We first focus on the constant λ∗ provided in Theorem 1.2. Let x0 ∈ Ω be a
global minimum point of a(x) and assume that the function a(x) satisfies (1.7),
namely there exist constants 0 < σ ≤ p and C0 > 0 such that

a(x) ≥ a(x0) + C0|x− x0|σ

for all x ∈ Ω. The construction of λ∗ produces

(5.1) λ∗ ≥ C0K0(n, p, σ,Ω, x0)−p.

We recall that when σ = p, the exact value of the best constant K0(n, p, σ,Ω, x0)
associated to the Hardy-Sobolev inequality (1.10) is given by

(5.2) K0(n, p, p, Ω, x0) =
p

n
.

Unfortunately, the value of this optimal constant is not known for 0 < σ < p,
although some rough bounds can easily be deduced. Since λ∗ < λ1(−Lp,a),
upper bounds for λ∗ can be obtained explicitly in terms of Ω. Nevertheless,
when σ = p and a(x) also satisfies

(5.3) a(x) ≤ a(x0) + D0|x− x0|p

around x0 for some constant D0 > 0, then estimates on bubbles concentrated at
x0 readily lead to an upper bound for λ∗ depending only on the dimension n. In
fact, for the bubbles wε defined in the proof of Theorem 1.1, we have

(5.4)
∫

Ω

a(x0)|∇wε|p dx = maK(n, p)−p + O(εp+(n−p2)/(p−1))

and

(5.5)
∫

Ω

|x− x0|p|∇wε|p dx =

{
bn,pε

p + o(εp) if n > p2,

bn,pε
p| log ε|+ O(εp) if n = p2,

with

bn,p = cp
n,pωn−1

(
n− p

p− 1

)p

(
p− 1

)
Γ
(

n− p2

p

)
Γ
(

np + p2 − n

p

)
pΓ(n)

for n > p2,

bn,p = ppcp
n,pωn−1 for n = p2.
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Thus, choosing u = wε in (3.3), using the inequality (5.3) and after the bubbles
estimates (3.1), (5.4) and (5.5), we deduce that

(5.6) λ∗ ≤ D0
bn,p

an,p
.

By contrast, note that the constant λ∗ provided in Theorem 1.4 appears in an
explicit way. Precisely, assume that Ω is a star-shaped domain with respect
to x0 ∈ Ω and the function a(x) satisfies (1.8), precisely there exist constants
0 < σ ≤ p and C0 > 0 such that

∇a(x) · (x− x0) ≥ σC0|x− x0|σ

for all x ∈ Ω. By definition,

λ∗ :=
σ

p
C0K0(n, p, σ,Ω, x0)−p.

On the other hand, the condition (1.8) implies (1.7), so that

(5.7) λ∗ :=
σ

p
C0K0(n, p, σ,Ω, x0)−p ≤ σ

p
λ∗.

Before going further, it can easily be checked from Lemma 2.2 and (5.7) that
λ∗ = 0 for σ = 0 and

lim
σ→0+

λ∗ = 0

for any star-shaped bounded C1 domain Ω.
We now derive the value of λ∗ for σ = 0 and its asymptotic behavior for σ

near zero. Namely, λ∗ = 0 for σ = 0 and, however,

lim inf
σ→0+

λ∗ ≥ λ1(−∆p) > 0.

When σ = 0, the term of diffusion a(x) = 1 + |x − x0|σ becomes the constant
function a(x) = 2, so that ma = 2. Thus, the Euclidean sharp Sobolev inequality
(1.9) can be rewritten as( ∫

Ω

|u|p
∗
dx

)p/p∗

≤ m−1
a K(n, p)p

∫
Ω

a(x)|∇u|p dx.

In particular, we deduce that λ∗ ≥ 0. The reverse inequality follows from a direct
combination between the estimates of bubbles (3.1) and the inequality (3.3).
Finally, from (5.1), we have

lim inf
σ→0+

λ∗ ≥ lim inf
σ→0+

K0(n, p, σ,Ω, x0)−p.
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It remains then to show that lim
σ→0+

K0(n, p, σ,Ω, x0)−p = λ1(−∆p). But the

inequality∫
Ω

|u|p dx ≤ K0(n, p, σ,Ω, x0)p

∫
Ω

|x− x0|σ|∇u|p dx

≤ K0(n, p, σ,Ω, x0)p(diam Ω)σ

∫
Ω

|∇u|p dx

implies lim sup
σ→0+

K0(n, p, σ,Ω, x0)−p ≤ λ1(−∆p).

In order to achieve the desired limit, we evoke a result of [39] which asserts
the existence, for each 0 < σ < p, of a weak solution ϕσ ∈ W 1,p

0,σ (Ω) of the
problem{

−div(|x− x0|σ|∇u|p−2∇u) = K0(n, p, σ,Ω, x0)−p|u|p−2u in Ω,

u = 0 on ∂Ω,

with ||ϕσ||Lp(Ω) = 1, where W 1,p
0,σ (Ω) denotes the completion of C1

0 (Ω) under the
norm

||u||W 1,p
0,σ

:=
( ∫

Ω

|x− x0|σ|∇u|p dx

)1/p

.

According to the proof of Theorem 1.4 of[12], namely pages 673 and 674, up to
a subsequence, ∇ϕσ converges to ∇ϕ almost everywhere, where ϕ ∈ W 1,p

loc (Ω \
{x0}). Probably, an alternative proof of this convergence can be given by using
the ideas of [14]. For a fixed number 0 < γ < p, there exist constants c0, c1 > 0,
independent of σ, such that∫

Ω

|x− x0|γ |∇ϕσ|p dx ≤ c0

∫
Ω

|x− x0|σ|∇ϕσ|p dx

= c0K0(n, p, σ,Ω, x0)−p

∫
Ω

ϕp
σ dx = K0(n, p, σ,Ω, x0)−p ≤ c1

for all 0 < σ < γ. In particular, the sequence (ϕσ) is bounded in W 1,p
0,γ (Ω) and

then, by a natural extension of Lemma 2.1 of [13] to p 6= 2, namely Theorem 2.1
of [39], ϕσ converges, modulo a subsequence, to ϕ in Lp(Ω), so that ||ϕ||Lp(Ω) = 1.
Finally, Fatou’s lemma yields∫

Ω

|∇ϕ|p dx ≤ lim inf
σ→0+

∫
Ω

|x− x0|σ|∇ϕσ|p dx

= lim inf
σ→0+

K0(n, p, σ,Ω, x0)−p

∫
Ω

|ϕσ|p dx = lim inf
σ→0+

K0(n, p, σ,Ω, x0)−p,

so that

lim inf
σ→0+

K0(n, p, σ,Ω, x0)−p ≥ λ1(−∆p).
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6. Open related problems

Motivated by the discussion done in the previous section on bounds of λ∗

and λ∗, it naturally arises some interesting issues. First of all, under the condition
(1.8), we saw that

λ∗ :=
σ

p
C0K0(n, p, σ,Ω, x0)−p ≤ σ

p
λ∗.

In particular, this inequality produces a gap whenever 0 < σ < p. Besides, when
σ = p, one has λ∗ =: (np/pp)C0 ≤ λ∗. So, two interesting questions arises under
the condition (1.8):

(a) what happens when λ ∈ (λ∗, λ∗] in the case 0 < σ < p;
(b) whether or not λ∗ is equal to λ∗ in the case σ = p.

The question (b) is affirmative for n = p2 under the condition (1.8) with equality
or, equivalently,

a(x) = a(x0) + C0|x− x0|p in Ω.

Precisely, when n = p2, one has bn,p/an,p = pp and, thanks to (5.6), the equality
λ∗ = λ∗ follows. This fact was established by Egnell [18] in the case p = 2. On
the other hand, when n > p2, one easily checks that

λ∗ := C0
np

pp
< C0

bn,p

an,p
.

Surely it would be interesting to understand (a) and (b) in the apparently simpler
situation a(x) = 1 + |x − x0|σ with x0 ∈ Ω. In this example, the number
λ∗ corresponds to the optimal constant λ associated to the weighted Sobolev
inequality( ∫

Ω

|u|p
∗
dx

)p/p∗

+ λK(n, p)p

∫
Ω

|u|p dx ≤ K(n, p)p

∫
Ω

(1 + |x− x0|σ)|∇u|p dx.

Summarizing, we have λ∗ < λ∗ whenever 0 < σ < p, λ∗ = (n/p)p ≤ λ∗ when
σ = p and, by last, λ∗ = λ∗ when σ = p and n = p2.

Perhaps the question (b) can be answered from a view point of optimal
constants which consists in knowing the dependence of λ∗ on Ω and x0 and, better
yet, in determining its exact value. Still on the example a(x) = 1 + |x − x0|σ,
a related question is to understand what occurs if x0 does not belong to Ω. This
is the case when its minimum value is achieved on the boundary of Ω.

Another particularly interesting example corresponding to σ = p is

a(x) = a(x0) + ((x− x0)tB(x− x0))p/2 on Ω,

where B is a positive definite symmetric matrix. In this case,

λ∗ = K0(n, p,B,Ω, x0)−p ≤ λ∗,
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where K0(n, p,B,Ω, x0)p is the best constant on C∞
0 (Ω) to∫

Ω

|u|p dx ≤ K0(n, p,B,Ω, x0)p

∫
Ω

((x− x0)tB(x− x0))p/2|∇u|p dx,

and no answer to the question (b) is known even in dimension n = p2.
Finally, concerning with operators Lp,a, it would be important to know what

happens if a(x) has a behavior around x0 distinct of those described in (1.6), (1.7)
and (1.8). In particular, it may occur that the function a(x) behaves differently
around x0 on each one direction of Rn.
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