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MULTIPLICITY RESULTS TO A CLASS
OF VARIATIONAL-HEMIVARIATIONAL INEQUALITIES

Gabriele Bonanno — Patrick Winkert

Abstract. This paper deals with variational-hemivariational inequalities
involving the p-Laplace operator and a nonlinear Neumann boundary con-

dition. Based on an abstract critical point result, which is developed at

the beginning of the paper, it is shown the existence of at least three solu-
tions to such inequalities whereby the cases p > N and p ≤ N are treated

separately. The applicability of these results is emphasized with suitable

examples.

1. Introduction

Let Ω be a non-empty, bounded, open subset of the real Euclidian space RN ,
N ≥ 1, with C1-boundary Γ := ∂Ω and let q ∈ L∞(Ω) satisfying q ≥ 0, q 6≡ 0.
We consider the following problem: Find u ∈ K such that, for all v ∈ K∫

Ω

|∇u(x)|p−2∇u(x) · ∇(v(x)− u(x)) dx(1.1)

+
∫

Ω

q(x)|u(x)|p−2u(x)(v(x)− u(x)) dx

+
∫

Ω

λα(x)F ◦(u(x); v(x)− u(x)) dx

+
∫

Γ

µβ(x)G◦(γu(x); γv(x)− γu(x)) dσ ≥ 0,
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where K is a closed convex subset of the usual Sobolev space W 1,p(Ω), 1 < p <

∞, containing the zero function while α ∈ L1(Ω), β ∈ L1(Γ), fulfill α(x) ≥ 0
for almost all x ∈ Ω, α 6≡ 0 and β(x) ≥ 0 for almost all x ∈ Γ. The values λ

and µ are real parameters with λ > 0 and µ ≥ 0 specified later. By F ◦ and
G◦ we denote Clarke’s generalized directional derivatives of the locally Lipschitz
continuous functions F,G: R → R given in the form

F (ξ) =
∫ ξ

0

f(t) dt, G(ξ) =
∫ ξ

0

g(t) dt,

with locally essentially bounded functions f, g: R → R. As usual, we denote by
γ:W 1,p(Ω) → Lp(Γ) the well-known trace operator being linear and compact.

The aim of this paper is to provide multiplicity results to inequality (1.1).
We present different existence theorems showing the existence of at least three
distinct solutions of (1.1) provided the number λ belongs to a specific interval
and the parameter µ is sufficiently small. Since C(Ω) is compactly embedded
into W 1,p(Ω) when p > N , the various cases p ≤ N and p > N are discussed
separately with different assumptions on the data f and g. Our main results
are stated in Theorem 3.1 (p > N , see Section 3) and Theorem 4.1 (p ≤ N , see
Section 4). The main idea in the proofs is the usage of an appropriate abstract
three-critical-point-result for non-smooth functionals which is proved in Section 2
based on results in [8].

Existence and multiplicity results for variational-hemivariational inequalities
have been obtained under different structure and regularity conditions on the
nonlinear functions by various authors. We refer, for example, to [4], [23], [24],
[28] and [36] as well as the references therein. It is clear that problem (1.1) be-
comes a hemivariational inequality if K coincides with the whole space W 1,p(Ω).
Such inequalities have been handled for example in [2], [3], [13], [15], [29], [34]
and [35]. In the context of infinitely many solutions to (1.1) we refer to the
recent results stated in [9] and [41] for p > N while existence results to (1.1) via
the method of sub- and supersolution can be found in [14] and [16].

Let us comment on some relevant special cases of (1.1).

(A) If K = W 1,p(Ω) and F , G are smooth, problem (1.1) reduces to

∫
Ω

|∇u(x)|p−2∇u(x) · ∇ϕ(x) dx +
∫

Ω

q(x)|u(x)|p−2u(x)ϕ(x) dx

+
∫

Ω

λα(x)F ′(u(x))ϕ(x) dx +
∫

Γ

µβ(x)G′(γu(x))γϕ(x) dσ = 0,
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for all ϕ ∈ W 1,p(Ω) which means that u ∈ W 1,p(Ω) is the weak solution
of the nonlinear boundary value problem

(1.2)
−∆pu(x) + q(x)|u(x)|p−2u(x) + λα(x)F ′(u(x)) = 0 in Ω,

∂u

∂ν
(x) + µβ(x)G′(γu(x)) = 0 on Γ,

where (∂u/∂ν)(x) = |∇u|p−2(∂u/∂n)(x) with (∂u/∂n)(x) being the
outer normal derivative of u at x ∈ Γ. Regarding existence and multi-
plicity of solutions to (1.2) we point out (without guarantee of complete-
ness) the papers in [20]–[22], [30], [32], [37], [46], [48], and the references
therein. Referring to homogeneous Neumann problems, the existence of
at least three solutions in case p > N was shown with different methods
for example in [1], [5] and [6] (see also [7] for infinitely many solutions)
while the more complicated case p ≤ N was recently studied in [19].

(B) In case f = g = 0, (1.1) is a classical variational inequality of the form

u ∈ K :
∫

Ω

|∇u(x)|p−2∇u(x) · ∇(v(x)− u(x)) dx

+
∫

Ω

q(x)|u(x)|p−2u(x)(v(x)− u(x)) dx ≥ 0

for all v ∈ K whose treatment is well-known (see for example the mono-
graph of Kinderlehrer in [25]).

(C) As mentioned above, problem (1.1) reduces to a so-called hemivaria-
tional inequality provided K = W 1,p(Ω). This contains as a special
case the subsequent elliptic inclusion

(1.3)
−∆pu(x) + q(x)|u(x)|p−2u(x) + λα(x)∂F (u(x)) 3 0 in Ω,

∂u

∂ν
(x) + µβ(x)∂G(γu(x)) 3 0 on Γ,

whereby the multivalued functions ∂F , ∂G stand for Clarke’s gener-
alized gradient (see Section 2 for more details). Concerning multiple
solutions such inclusions have been studied in [31] and [47]. Regarding
the existence of infinitely many solutions for homogeneous problems of
type (1.3) we also mention the paper of Candito [11] and the work of
Kristály–Motreanu (see [27]) where in the second paper the authors do
not require that W 1,p(Ω) is continuously embedded into C(Ω). Like-
wise, we draw attention to a paper of Kristály–Moroşanu in which a new
competition phenomena between oscillatory and pure power terms has
been described (cf. [26]).
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It should be noted that our variational-hemivariational inequality is equiva-
lent to the multi-valued variational inequality

(1.4) u ∈ K :



η(x) ∈ ∂F (u(x)) a.e. in Ω, ξ(x) ∈ ∂G(γu(x)) a.e. in Γ,∫
Ω

|∇u(x)|p−2∇u(x) · ∇(v(x)− u(x)) dx

+
∫

Ω

q(x)|u(x)|p−2u(x)(v(x)− u(x)) dx

+
∫

Ω

λα(x)η(x)(v(x)− u(x)) dx

+
∫

Γ

µβ(x)ξ(x)(γv(x)− γu(x)) dσ ≥ 0, for all v ∈ K,

provided the elements of ∂F, ∂G fulfill a suitable growth condition and K has
lattice structure, which means, if u, v ∈ K, then max{u, v},min{u, v} ∈ K. In
other words, u is a solution of (1.1) if and only if u is a solution of (1.4). This
interesting result was recently published in [12].

We also would like to mention the recent work in [44] and references therein
concerning three critical points theorems involving smooth functionals. For more
information about (variational-)hemivariational inequalities we refer the reader
to the monographs in [42] and [43].

2. Preliminaries

Let us recall some basic facts on non-smooth analysis which we will need in
later considerations. Let (X, ‖ · ‖) be a real Banach space and denote by X∗

its dual space while the duality pairing between X and X∗ is denoted by 〈 · , · 〉.
A function f :X → R is said to be locally Lipschitz continuous if for every x ∈ X

there exist a neighborhood Ux of x and a constant Lx ≥ 0 such that

|f(y)− f(z)| ≤ Lx‖y − z‖, for all y, z ∈ Ux.

The term f◦(x; y), x, y ∈ X stands for the generalized directional derivative of
f at the point x along the direction y which is given by

f◦(x; y) := lim sup
z→x, t→0+

f(z + ty)− f(z)
t

,

(see [18, Chapter 2]). Let f1, f2:X → R be locally Lipschitz continuous functions.
Then we have

(2.1) (f1 + f2)◦(x; y) ≤ f◦1 (x; y) + f◦2 (x; y), for all x, y ∈ X.

The generalized gradient of a locally Lipschitz continuous function f at x, de-
noted by ∂f(x), is the set

∂f(x) := {x∗ ∈ X∗ : 〈x∗, y〉 ≤ f◦(x; y), for all y ∈ X}.
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An element x ∈ X is a (generalized) critical point of f if it satisfies the condition

f◦(x; y) ≥ 0, for all y ∈ X,

or equivalently, 0 ∈ ∂f(x) (see [17]).
Let I:X → ]−∞,+∞] be a non-smooth function represented as a sum of

a locally Lipschitz continuous function f :X → R and a convex, proper and
lower semicontinuous function j:X → ]−∞,+∞], that is I := f + j. An element
u ∈ X is a (generalized) critical point of I if

f◦(u; v − u) + j(v)− j(u) ≥ 0, for all v ∈ X

is satisfied (see [39, Chapter 3] and [40]).
Now, let us give the assumptions concerning our first result. For a reflexive

Banach space X, the functional Φ:X → R is assumed to be sequentially weakly
lower semicontinuous and coercive while Υ:X → R is supposed to be sequentially
weakly upper semicontinuous. By λ we denote a positive real parameter, j:X →
]−∞,+∞] is a convex, proper and lower semicontinuous functional and D(j)
stands for the effective domain of j. Then we define

(2.2) Ψ := Υ− j and Jλ := Φ− λΨ = (Φ− λΥ) + λj := Θλ + λj,

while it is supposed that

D(j) ∩ Φ−1(]−∞, r[) 6= ∅, for all r > inf
X

Φ.

Now we define

ϕ1(r) = inf
y∈Φ−1(]−∞,r[)

(
sup

x∈Φ−1(]−∞,r[)

Ψ(x)
)
−Ψ(y)

r − Φ(y)
, for all r > inf

X
Φ,

respectively,

ϕ2(r) = sup
y∈Φ−1(]r,+∞[)

Ψ(y)−
(

sup
x∈Φ−1(]−∞,r])

Ψ(x)
)

Φ(y)− r
, for all r < sup

X
Φ.

We have the following result.

Theorem 2.1. Assume that there is r ∈
]
inf
X

Φ, sup
X

Φ
[

such that ϕ1(r) <

ϕ2(r). Further suppose that the functional Jλ is bounded from below and satisfies
the (PS)-condition for each λ ∈ Λ := ]1/ϕ2(r), 1/ϕ1(r)[. Then, for each λ ∈ Λ,
Jλ has three distinct critical points.

Proof. First, we observe that, thanks to [40, Corollary 1.3], Jλ is coercive.
Now, we want to show that Jλ has a local minima u1 ∈ Φ−1(]−∞, r[) and a local
minima u2 ∈ Φ−1(]r, +∞[). Let λ ∈ Λ be fixed. We are going to show that there
is u1 ∈ D(j)∩Φ−1(]−∞, r[) such that Jλ(u1) ≤ Jλ(u) for all u ∈ Φ−1(]−∞, r[).
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Taking into account 1/λ > ϕ1(r), we find u ∈ D(j) such that Φ(u) < r and
Jλ(u) = Φ(u) − λΨ(u) < r − λ sup

Φ(x)<r

Ψ(x). Putting L := (r − Φ(u))/λ + Ψ(u)

yields

(2.3) sup
Φ(x)<r

Ψ(x) < L.

Let us take ΨL(u) = min{Ψ(u), L}. As j is sequentially weakly lower semicon-
tinuous (see [10, Corollary III.8]), we can easily prove that ΨL is sequentially
weakly upper semicontinuous. We take J = Φ−λΨL and note that J is sequen-
tially weakly lower semicontinuous and coercive which guarantees that its global
minimum, namely u0, exists (see [45, Theorem 1.2]). If J(u0) = J(u), we put
u1 = u, so u1 ∈ Φ−1(]−∞, r[) is a local minima of Jλ. Let us consider the case
J(u0) < J(u). Then, we obtain

Φ(u0)− λΨL(u0) < Φ(u)− λΨL(u),

thus

Φ(u0) < λΨL(u0) + Φ(u)− λΨL(u) ≤ λL + Φ(u)− λΨ(u) = r.

Thanks to (2.3) we see at once that Ψ(u0) < L. Hence, it follows

(2.4) Φ(u0)− λΨ(u0) = Φ(u0)− λΨL(u0) ≤ Φ(u)− λΨL(u), for all u ∈ X.

With the aid of (2.3), (2.4) results in

Φ(u0)− λΨ(u0) ≤ Φ(u)− λΨ(u), for all u ∈ Φ−1(]−∞, r[).

Taking u1 = u0 proves the other case and hence, u1 ∈ Φ−1(]−∞, r[) is a local
minima of Jλ.

Now we prove the existence of a local minima u2 ∈ Φ−1(]r,∞[). Since λ >

1/ϕ2(r), there exists v ∈ D(j) such that Φ(v) > r and

(2.5) Φ(v)− λΨ(v) < r − λ sup
Φ(x)≤r

Ψ(x).

Let us introduce a functional Φr:X → R defined by Φr(x) := max{Φ(x), r}.
Clearly, Φr is sequentially weakly lower semicontinuous and coercive. Then,
J := Φr−λΨ has the same properties, so there exists a global minimum v0 of J ,
that is,

(2.6) Φr(v0)− λΨ(v0) ≤ Φr(x)− λΨ(x), for all x ∈ X.

Let us show that v0 ∈ Φ−1(]r,∞[). We argue indirectly and assume that v0 ∈
Φ−1(]−∞, r]). Then, due to (2.6) with the special choice x = v and the fact that
Φ(u) > r, it follows

r − λΨ(v0) ≤ Φ(v)− λΨ(v).
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Applying (2.5) yields

r − λΨ(v0) ≤ Φ(v)− λΨ(v) < r − λΨ(v0),

which is a contradiction. Hence, u2 := v0 ∈ Φ−1(]r,∞[) is a local minima of Jλ.
Now, we may apply Corollary 2.1 in [35] to obtain the existence of at least

three critical points of Jλ. This completes the proof. �

Now, we present a variant of Theorem 2.1 where the (PS)-condition and
the boundedness from below of Jλ are not required. To this end, let K be
a non-empty closed convex subset of X containing the zero of X and let j:X →
]−∞,+∞] be defined as

j(u) =

{
0 if u ∈ K,

+∞ otherwise.

Clearly, j is convex, proper and lower semicontinuous. So, we can consider the
functionals as defined in (2.2). Assume also that

(1) infX Φ = Φ(0) = Ψ(0) = 0;
(2) Φ is convex.

Moreover, for fixed λ > 0, suppose that

(3) for all x1, x2 ∈ X which are local minima of the functional Φ−λΨ such
that Ψ(x1) ≥ 0 and Ψ(x2) ≥ 0, one has

inf
t∈[0,1]

Ψ(tx1 + (1− t)x2) ≥ 0;

(4) there exist a real Banach space X̃ and a locally Lipschitz function
Θ̃λ: X̃ → R such that X is compactly embedded in X̃ and Θ̃λ

∣∣
X

= Θλ.

We obtain the following result.

Theorem 2.2. Assume that there are r1, r2 > 0 and v ∈ K, with 2r1 <

Φ(v) < r2/2, such that

sup
u∈Φ−1(]−∞,r1[)

Υ(u)

r1
<

2
3

Υ(v)
Φ(v)

;(2.7)

sup
u∈Φ−1(]−∞,r2[)

Υ(u)

r2
<

1
3

Υ(v)
Φ(v)

.(2.8)

Furthermore, suppose that Φ(u) ≥ r2 for all u ∈ ∂K. Then, for each λ ∈ Λ,
where Λ is given through

Λ :=

]
3
2

Φ(v)
Υ(v)

,min

{
r1

sup
u∈Φ−1(]−∞,r1[)

Υ(u)
,

r2/2
sup

u∈Φ−1(]−∞,r2[)

Υ(u)

}[
,
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Jλ has three distinct critical points ui ∈ K (i = 1, 2, 3) such that Φ(ui) < r2 for
i ∈ {1, 2, 3}.

Proof. Put ρ1 = r1 and ρ2 = r2/2. Because of 0 ∈ K and the definition of
j, one has

ϕ1(ρ1) ≤
sup

u∈Φ−1(]−∞,ρ1[)

Ψ(u)

ρ1
≤

sup
u∈Φ−1(]−∞,r1[)

Υ(u)

r1

and

ϕ1(ρ2) ≤
sup

u∈Φ−1(]−∞,ρ2[)

Ψ(u)

ρ2
≤

sup
u∈Φ−1(]−∞,r2[)

Υ(u)

r2/2
.

On the other hand, since (2.7) implies sup
u∈Φ−1(]−∞,ρ1[)

Ψ(u) < Ψ(v) and thanks to

Φ(u) ≥ 0 for all u ∈ X, we obtain

inf
u∈Φ−1(]−∞,ρ1[)

sup
v∈Φ−1([ρ1,ρ2[)

Ψ(v)−Ψ(u)
Φ(v)− Φ(u)

≥ 2
3

Ψ(v)
Φ(v)

.

Hence,

max{ϕ1(ρ1), ϕ1(ρ2)} < inf
u∈Φ−1(]−∞,ρ1[)

sup
v∈Φ−1([ρ1,ρ2[)

Ψ(v)−Ψ(u)
Φ(v)− Φ(u)

.

Therefore, owing to [3, Theorem 3.1] the functional Jλ admits two local minima
u1, u2 ∈ K such that Φ(u1) < ρ1 and ρ1 ≤ Φ(u2) < ρ2.

Now put Υr2/2λ(u) = min{Υ(u), r2/2λ} and Fλ(u) = Φ(u) − λΥr2/2λ(u) +
λj(u) for all u ∈ X. Since Φ−λΥr2/2λ is coercive, then [35, Proposition 2.3] en-
sures that Fλ satisfies the (PS)c-condition for all c ∈ R. Put c = inf

γ∈Γ
max

t∈[0,1]
Fλ(γ(t)),

where Γ = {γ ∈ C([0, 1]) : γ(0) = u1, γ(1) = u2}. It follows that

c ≤ max
t∈[0,1]

Fλ(tu1 + (1− t)u2) ≤ max
t∈[0,1]

(tΦ(u1) + (1− t)Φ(u2)) < ρ2.

Since

Fλ(u) = Φ(u)− λΥr2/2λ(u) ≥ Φ(u)− λr2/2λ ≥ r2/2 > c, for all u ∈ ∂K,

we have that Fc
λ = {x ∈ X : Fλ(x) ≥ c} is closed (see [33, Lemma 2.1]).

Therefore, [33, Theorem 4.2] ensures the existence of a critical point u3 of Fλ

such that c = Fλ(u3). We claim that Υ(u3) < r2/2λ. Arguing by contradiction,
we assume that Υ(u3) ≥ r2/2λ. So, one has Fλ(u3) = c < r2/2, that is

Φ(u3)− λΥr2/2λ(u3) < r2/2, Φ(u3)− r2/2 < r2/2, Φ(u3) < r2.

Therefore, since λ ∈ Λ and, in particular,

λ <
r2/2

sup
u∈Φ−1(]−∞,r2[)

Υ(u)
,
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we conclude that Υ(u3) < r2/2λ. But this is a contradiction, so our claim is
proved. It follows that u3 is also a critical point of Jλ. �

In the following, we consider an equivalent norm on the space W 1,p(Ω) given
by

(2.9) ‖u‖W 1,p(Ω) :=
( ∫

Ω

(|∇u(x)|p + q(x)|u(x)|p) dx

)1/p

,

(see for instance [38, Section 1.1.15]).

3. The case p > N

In this section we prove the existence of multiple solutions to problem (1.1)
if p > N . We recall that if p > N , the space W 1,p(Ω) is compactly embedded in
C(Ω), that is, there exists a positive constant c such that

‖u‖C(Ω) ≤ c‖u‖W 1,p(Ω).

First, we suppose there exist two constants a1, a2 > 0 such that

(3.1)
max
|t|≤a1

(−F (t))

ap
1

<
1

cp‖q‖L1(Ω)

(−F (a2))
ap
2

and take λ ∈ Λ, where Λ is given by

(3.2) Λ :=

]
‖q‖L1(Ω)

p‖α‖L1(Ω)

ap
2

(−F (a2))
,

1
pcp‖α‖L1(Ω)

ap
1

max
|t|≤a1

(−F (t))

[
.

Thanks to (3.1) we observe that the interval Λ is non-empty.
Put

(3.3)

δ := min

{ap
1 − pcpλ‖α‖L1(Ω) max

|t|≤a1

(−F (t))

pcp‖β‖L1(Γ) max
|t|≤a1

(−G(t))
,

pλ‖α‖L1(Ω)(−F (a2))− ap
2‖q‖L1(Ω)

p‖β‖L1(Γ) min{0,−G(a2)}

}
,

δ̃ =
1

max
{

0, p max{‖α‖L1(Ω), ‖β‖L1(Γ)}cp lim sup
|ξ|→+∞

(−G(ξ))
|ξ|p

}
δ := min{δ, δ̃}.

Since λ ∈ Λ, a simple computation shows that δ > 0.
If lim sup

|ξ|→+∞

(−G(ξ))
|ξ|p ≤ 0 and max

|t|≤a1

(−G(t)) = 0 as well as G(a2) ≥ 0 we read

δ = +∞.
Our main result in this section is the following.
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Theorem 3.1. Let α ∈ L1(Ω), β ∈ L1(Γ) be two non-negative and non-
zero functions. Let f : R → R be a locally essentially bounded function and put
F (ξ) =

∫ ξ

0
f(t) dt for every ξ ∈ R. Assume that

(H1)
max
|t|≤a1

(−F (t))

ap
1

<
1

cp‖q‖L1(Ω)

(−F (a2))
ap
2

;

(H2) lim sup
|ξ|→+∞

(−F (ξ))
ξp

≤ 0,

with positive constants a1, a2 satisfying a1 < a2 and a2 ∈ K. Then, for each
λ ∈ Λ, where Λ is defined in (3.2), and for each locally essentially bounded
function g: R → R, whose potential G(ξ) =

∫ ξ

0
g(t) dt for every ξ ∈ R satisfies

(H3) lim sup
|ξ|→+∞

(−G(ξ))
|ξ|p

< +∞,

there exists δ > 0 given by (3.3) such that, for each µ ∈ [0, δ[, problem (1.1) has
at least three distinct solutions.

Proof. Our aim is to apply Theorem 2.1. Let λ, g and µ be fixed satisfy-
ing the assumptions and let X be the space W 1,p(Ω) equipped with the norm
‖ · ‖W 1,p(Ω).

We set, for any u ∈ X,

Φ(u) :=
1
p
‖u‖p

W 1,p(Ω), j(u) :=

{
0 if u ∈ K,

+∞ otherwise,

Υ(u) :=
∫

Ω

α(x)[−F (u(x))] dx +
µ

λ

∫
Γ

β(x)[−G(γu(x)] dσ,

Ψ(u) := Υ(u)− j(u), Jλ(u) := Φ(u)− λΨ(u).

Then

Jλ(u) =
1
p
‖u‖p

W 1,p(Ω) − λ

∫
Ω

α(x)[−F (u(x))] dx

− µ

∫
Γ

β(x)[−G(γu(x)] dσ + λj(u).

Let r = 1
p (a1

c )p, then Φ(a2) > r, that means r ∈
]
inf
X

Φ, sup
X

Φ
[

=
]
0, sup

X
Φ

[
.

Let v ∈ Φ−1(]−∞, r[). Then due to 1
p‖v‖

p
W 1,p(Ω) < r combined with ‖v‖C(Ω)



Multiplicity Results to Variational-Hemivariational Inequalities 503

≤ c‖v‖W 1,p(Ω), we have |v(x)| ≤ a1 for every x ∈ Ω. We obtain

ϕ1(r) ≤
sup

‖w‖p≤pr

( ∫
Ω

α(x)[−F (w(x))] dx +
µ

λ

∫
Γ

β(x)[−G(γw(x))] dσ − j(w)
)

r

≤

(
‖α‖L1(Ω) max

|t|≤a1

(−F (t)) +
µ

λ
‖β‖L1(Γ) max

|t|≤r
(−G(r))

)
r

= pcp‖α‖L1(Ω)

max
|t|≤a1

(−F (t))

ap
1

+ pcp µ

λ
‖β‖L1(Γ)

max
|t|≤a1

(−G(t))

ap
1

.

On the other side we have

Ψ(a2)
Φ(a2)

≥
p‖α‖L1(Ω)

‖q‖L1(Ω)

[−F (a2)]
ap
2

+
‖β‖L1(Γ)µp

λ‖q‖L1(Ω)

min{0,−G(a2)}
ap
2

.

As µ < δ (see (3.3)), it follows

(3.4)
µ <

ap
1 − pcpλ‖α‖L1(Ω) max

|t|≤a1

(−F (t))

pcp‖β‖L1(Γ) max
|t|≤a1

(−G(t))
and

µ <
pλ‖α‖L1(Ω)(−F (a2))− ap

2‖q‖L1(Ω)

p‖β‖L1(Γ) min{0,−G(a2)}
.

From (3.4) we obtain

pcp‖α‖L1(Ω) max
|t|≤a1

(−F (t))

ap
1

+
µ

λ

pcp‖β‖L1(Γ) max
|t|≤a1

(−G(t))

ap
1

<
1
λ

,

respectively,

p‖α‖L1(Ω)

‖q‖L1(Ω)

[−F (a1)]
ap
2

+
‖β‖L1(Γ)µp

λ‖q‖L1(Ω)

min{0,−G(a2)}
ap
2

>
1
λ

.

Hence

(3.5) ϕ1(r) <
1
λ

<
Ψ(a2)
Φ(a2)

.

In particular, we obtain from the calculations above that

sup
Φ(x)<r

Ψ(x)

r
≤

sup
Φ(x)≤r

Ψ(x)

r
<

Ψ(a2)
Φ(a2)

,

where 0 < r < Φ(a2). This leads to

(3.6) ϕ2(r) ≥
Ψ(a2)− sup

Φ(x)≤r

Ψ(x)

Φ(a2)− r
≥

Ψ(a2)− r
Ψ(a2)
Φ(a2)

Φ(a2)− r
=

Ψ(a2)
Φ(a2)

.
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Combining (3.5) and (3.6) guarantees

ϕ1(r) <
1
λ

< ϕ2(r).

Let us now prove that Jλ is coercive. Since µ < δ and due to (H3), there exists
a constant k > 0 such that

lim sup
|η|→+∞

max
|t|≤η

(−G(t))

ηp
< k and µk <

1
max{‖α‖L1(Ω), ‖β‖L1(Γ)}pcp

.

Thus, we get an estimate of the form

(3.7) −G(s) ≤ ksp + b1 for all s ∈ R,

with a non-negative constant b1. Putting τ fixed such that

0 < τ <

(
1

max{‖α‖L1(Ω), ‖β‖L1(Γ)}pcp
− µk

)
1
λ

yields, with the aid of hypothesis (H2),

(3.8) −F (s) ≤ τsp + b2, for all s ∈ R,

with b2 being non-negative. From (3.7) and (3.8) applied on the functional Jλ it
follows, for u ∈ D(j) (otherwise we are done),

Jλ(u) =Φ(u)− λΨ(u)

≥
[
1
p
− λτcp max{‖α‖L1(Ω), ‖β‖L1(Γ)} − µkcp max{‖α‖L1(Ω), ‖β‖L1(Γ)}

]
× ‖u‖p

W 1,p(Ω) − λb2‖α‖L1(Ω) − µb1‖β‖L1(Γ),

where
1
p
− λτcp max{‖α‖L1(Ω), ‖β‖L1(Γ)} − µkcp max{‖α‖L1(Ω), ‖β‖L1(Γ)} > 0.

This proves the coercivity of Jλ. In order to prove the Palais–Smale condition for
Jλ, we have to apply [35, Proposition 2.3]. Now we are able to apply Theorem 2.1
obtaining the existence of three distinct critical points of Jλ denoted by u1, u2

and u3. Let u := u1 be the first critical point of Jλ, then one has

(3.9) (Φ− λΥ)◦(u; v − u) + λj(v)− λj(u) ≥ 0 for all v ∈ X.

Clearly, from (3.9) we see at once that u ∈ K (otherwise (3.9) fails). Hence it
follows

(3.10) (Φ− λΥ)◦(u; v − u) ≥ 0 for all v ∈ K.

The left-hand side of (3.10) can be estimated using (2.1)

Φ′(u; v − u) + λ(−Υ)◦(u; v − u) ≥ 0 for all v ∈ K,
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which means

(3.11)
∫

Ω

|∇u(x)|p−2∇u(x) · ∇(v(x)− u(x)) dx

+
∫

Ω

q(x)|u(x)|p−2u(x)(v(x)− u(x)) dx + λ(−Υ)◦(u, v − u) ≥ 0,

for all v ∈ K. Applying again (2.1) combined with the formula (2) in [18, p. 77]
leads to

λ(−Υ)◦(u; v − u) ≤λ

∫
Ω

α(x)F ◦(u(x); v(x)− u(x)) dx(3.12)

+ µ

∫
Γ

β(x)G◦(γu(x); γv(x)− γu(x)) dσ.

Finally, from (3.11) and (3.12) we have∫
Ω

|∇u(x)|p−2∇u(x) · ∇(v(x)− u(x)) dx

+
∫

Ω

q(x)|u(x)|p−2u(x)(v(x)− u(x)) dx

+ λ

∫
Ω

α(x)F ◦(u(x); v(x)− u(x)) dx

+ µ

∫
∂Ω

β(x)G◦(γu(x); γv(x)− γu(x)) dσ ≥ 0 for all v ∈ K.

This proves that u = u1 is a solution of our problem (1.1). The same calculations
can be done for u2, respectively u3, which completes the proof of the theorem.�

Let us give a simple example to Theorem 3.1.

Example 3.2. Let N < p ≤ 11, let K be a closed convex subset of W 1,p(Ω)
with 2 ∈ K and let q(x) ≡ 1

cp|Ω| for all x ∈ Ω. We define the function f : R → R
by

f(t) =

{
2e−t2t if t < −1 and t > 2,

−2e−t2t17(9− t2)− 1 if − 1 ≤ t ≤ 2.

Putting a1 = 1 and a2 = 2 we conclude

max
|t|≤a1

[−F (t)]

ap
1

= max
|t|≤1

[e−t2t18 + t] = e−1 + 1 <
e−22

218 + 2
2p

=
[−F (a2)]

ap
2

.

Hence, condition (H1) of Theorem 3.1 is satisfied and (H2) is obviously true. Let
g: R → R be defined by

g(t) =

{
−tq if t ≤ 0,

−2tq if t > 0

with q < p − 1. Then, assumption (H3) is also fulfilled. The application of
Theorem 3.1 yields the existence of three nontrivial solutions to (1.1).
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Let us now show a special version of Theorem 3.1 when K is a ball. First, we
show that every solution of (1.1) is non-negative provided the functions f and
g are non-positive along with the assumption that the closed convex set K has
partially lattice structure.

Proposition 3.3. Let p > N and assume that f(t) ≤ 0 and g(t) ≤ 0 for
almost all t ∈ R. Let u ∈ K be a solution of (1.1) such that u+ = max{u, 0} ∈ K.
Then, u(x) ≥ 0 for all x ∈ Ω.

Proof. Let u ∈ K ⊂ W 1,p(Ω) be a solution of (1.1). Since f and g are non-
positive, it is clear that F and G are non-increasing. Hence, we have F ◦(ξ; η −
ξ) ≤ 0 and G◦(ξ; η − ξ) ≤ 0 for all ξ, η ∈ R satisfying η − ξ ≥ 0. Therefore, for
all v ∈ K such that v(x)− u(x) ≥ 0 for all x ∈ Ω, it follows∫

Ω

λα(x)F ◦(u(x); v(x)− u(x)) dx ≤ 0,∫
Γ

µβ(x)G◦(γu(x); γv(x)− γu(x)) dσ ≤ 0.

Applying this to (1.1) yields∫
Ω

|∇u(x)|p−2∇u(x) · ∇(v(x)− u(x)) dx

+
∫

Ω

q(x)|u(x)|p−2u(x)(v(x)− u(x)) dx ≥ 0,

for all v ∈ K such that v(x)− u(x) ≥ 0 for all x ∈ Ω.
Now, let A := {x ∈ Ω : u(x) < 0}. Since u+(x) ≥ u(x) for all x ∈ Ω and

thanks to u+ ∈ K, we may choose v = u+ ∈ K as test function to derive

−
∫

A

|∇(u(x))|p dx−
∫

A

q(x)|u(x)|p dx ≥ 0,

meaning ‖u‖W 1,p(A) ≤ 0. This proves the non-negativity of u. �

Remark 3.4. Note that if K is the ball B(0,M) with center 0 and radius
M > 0 it clearly holds u+ ∈ K which can be easily seen from the estimate
|u+(x)| ≤ |u(x)| for all x ∈ Ω.

Next, suppose the existence of three positive constants a1, a2, and a3 such
that

[−F (a1)]
ap
1

<
2

3cp‖q‖L1(Ω)

[−F (a2)]
ap
2

,
[−F (a3)]

ap
3

<
1

3cp‖q‖L1(Ω)

[−F (a2)]
ap
2

.

Taking

(3.13) Λ =
]

3‖q‖L1(Ω)

2p‖α‖L1(Ω)

ap
2

[−F (a2)]
,

min
{

1
pcp‖α‖L1(Ω)

ap
1

[−F (a1)]
,

1
pcp‖α‖L1(Ω)

ap
3

2[−F (a3)]

}[
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we see that Λ is non-empty. Let λ ∈ Λ and put the number

(3.14) δ = min
{

ap
1 − λpcp‖α‖L1(Ω)[−F (a1)]

pcp‖β‖L1(Γ)[−G(a1)]
,
ap
3 − λ2pcp‖α‖L1(Ω)[−F (a3)]

2pcp‖β‖L1(Γ)[−G(a3)]

}
,

which is obviously positive. If K is the ball B(0,M), we have the following
result.

Theorem 3.5. Let K = B(0,M) and let α ∈ L1(Ω), β ∈ L1(Γ) be two non-
negative and non-zero functions. Let f : R → R be a locally essentially bounded
function such that f(t) ≤ 0 for almost all t ∈ R. Put F (ξ) =

∫ ξ

0
f(t) dt for every

ξ ∈ R and suppose that

(H1)
[−F (a1)]

ap
1

<
2

3cp‖q‖L1(Ω)

[−F (a2)]
ap
2

;

(H2)
[−F (a3)]

ap
3

<
1

3cp‖q‖L1(Ω)

[−F (a2)]
ap
2

,

with positive constants a1, a2 and a3 satisfying

(3.15) 21/pa1 < c‖q‖1/p
L1(Ω)a2 <

1
21/p

a3,

with a2 ∈ K and a3 ≤ c‖q‖1/p
L1(Ω)M . Then, for each λ ∈ Λ, where Λ is defined

in (3.13), and for each locally essentially bounded function g: R → R such that
g(t) ≤ 0 for almost all x ∈ R and with G(ξ) :=

∫ ξ

0
g(t) dt for every ξ ∈ R, there

exists δ > 0 given by (3.14) such that for each µ ∈ [0, δ[, problem (1.1) has at
least three distinct solutions ui (i = 1, 2, 3) satisfying 0 ≤ ui(x) < a3 for all
x ∈ Ω and all i ∈ {1, 2, 3}.

Proof. The ideas of the proof are mainly based on the proof of Theorem 3.1
with the difference that we want to apply Theorem 2.2 instead of Theorem 2.1.
Let Φ, j, Υ, Ψ and Jλ as in the proof of Theorem 3.1 and let r1 = 1

p (a1
c )p. Then

we conclude

sup
u∈Φ−1(]−∞,r1[)

Υ(u)

r1
≤ pcp‖α‖L1(Ω)

[−F (a1)]
ap
1

+ pcp µ

λ
‖β‖L1(Γ)

[−G(a1)]
ap
1

.

On the other side, for r2 = 1
p (a3

c )p we obtain

sup
u∈Φ−1(]−∞,r2[)

Υ(u)

r2
≤ pcp‖α‖L1(Ω)

[−F (a3)]
ap
3

+ pcp µ

λ
‖β‖L1(Γ)

[−G(a3)]
ap
3

.

By assumption we have µ < δ which results in

µ <
ap
1 − λpcp‖α‖L1(Ω)[−F (a1)]

pcp‖β‖L1(Γ)[−G(a1)]
and µ <

ap
3 − λ2pcp‖α‖L1(Ω)[−F (a3)]

2pcp‖β‖L1(Γ)[−G(a3)]
.
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Combining these estimates above yields

(3.16)

sup
u∈Φ−1(]−∞,r1[)

Υ(u)

r1
<

1
λ

and

sup
u∈Φ−1(]−∞,r2[)

Υ(u)

r2/2
<

1
λ

.

We observe that
Υ(a2)
Φ(a2)

≥
p‖α‖L1(Ω)

‖q‖L1(Ω)

[−F (a2)]
ap
2

.

Furthermore, since λ ∈ Λ, we have

3‖q‖L1(Ω)

2p‖α‖L1(Ω)

ap
2

[−F (a2)]
< λ.

Hence, it follows

(3.17)
2
3

Υ(a2)
Φ(a2)

>
1
λ

.

Now, we see that from (3.16) and (3.17) the estimates in (2.7) and (2.8), respec-
tively, are satisfied. Taking into account (3.15) a simple calculation leads to

2r1 < Φ(a2) <
r2

2
.

Let u ∈ ∂K, then, due to a3 ≤ c‖q‖1/p
L1(Ω)M , we have

Φ(u) =
1
p
Mp‖q‖L1(Ω) ≥

1
p

(
a3

c

)p

= r2.

Now we may apply Theorem 2.2 obtaining the existence of three distinct critical
points ui ∈ K (i = 1, 2, 3) of Jλ satisfying Φ(ui) < r2 for all x ∈ Ω and i = 1, 2, 3.
Similar to the proof of Theorem 3.1 it can be easily shown that these critical
points are solutions of our original problem (1.1). Thanks to Proposition 3.3 and
Remark 3.4 we conclude that these solutions are non-negative and owing to the
embedding W 1,p(Ω) ↪→ C(Ω), we see that ui(x) < a3 is satisfied for all x ∈ Ω
and for i = 1, 2, 3. This completes the proof of the theorem. �

We close this section with an application of Theorem 3.5.

Example 3.6. Let p > N with p ≥ 2 and denote by K = B(0,M) the ball
with center zero and radius M ≥ 4 while q(x) ≡ 1

cp|Ω| for all x ∈ Ω. Further,
let g: R → R be a non-positive, locally essentially bounded function and let
f : R → R be defined through

f(t) =


−h(t) if t < 0 and t ≥ 4,

−1 if 0 ≤ t < 1 and 2 ≤ t < 4,

−3 · 22pt2 if 1 ≤ t < 2,
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with a non-negative, locally essentially bounded function h: R → R. Put a1 = 1,
a2 = 2, a3 = 4, then we have

21/pa1 < c‖q‖1/p
L1(Ω)a2 <

1
21/p

a3, a3 ≤ c‖q‖1/p
L1(Ω)M and a2 ∈ K.

A simple calculation shows

[−F (a1)]
ap
1

=
−

∫ a1

0

−1 dt

ap
1

= a1 = 1,

[−F (a2)]
ap
2

=

∫ a1

0

1 dt +
∫ a2

a1

3 · 22pt2 dt

ap
2

=
1 + 22p(23 − 1)

2p
= 7 · 2p + 2−p,

[−F (a3)]
ap
3

=

∫ a1

0

1 dt +
∫ a2

a1

3 · 22pt2 dt +
∫ a3

a2

1 dt

ap
3

=
1 + 22p(23 − 1) + (4− 2)

4p
= 2−2p + 9.

Hence, due to p ≥ 2, it results in

[−F (a1)]
ap
1

= 1 <
14
3

2p +
2
3
2−p =

2
3

[−F (a2)]
ap
2

,

[−F (a3)]
ap
3

= 2−2p + 9 <
7
3
· 2p +

1
3
2−p =

1
3

[−F (a2)]
ap
2

.

Now we may apply Theorem 3.5 to obtain the existence of three distinct solu-
tions ui (i = 1, 2, 3) to problem (1.1) which are bounded through 0 ≤ ui(x) < 4
for i = 1, 2, 3.

4. The case p ≤ N

In this section we study the case p ≤ N . From now on it is supposed that
α ∈ L∞(Ω), β ∈ L∞(Γ) and there exist constants b1, b2 ≥ 0 such that

(4.1) |f(t)| ≤ b1 + b2|t|s−1

for all t ∈ R while s ∈ ]1, Np/(N − p)[ if p < N as well as s ∈ ]1,+∞[ if p = N .
Thanks to the Sobolev embedding and the trace embedding there are positive
constants cs and C satisfying

(4.2) ‖u‖Ls(Ω) ≤ cs‖u‖W 1,p(Ω), ‖u‖Lp(Γ) ≤ C‖u‖W 1,p(Ω)

for all u ∈ W 1,p(Ω). Applying the constants b1, b2 from (4.1) along with the
constants c1 and cs in (4.2) we put

(4.3) K1 := ‖α‖L∞(Ω)b1c1p
1/p, K2 := ‖α‖L∞(Ω)b2c

s
s

ps/p

s
.
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Now we assume there are two constants a1, a2 >0 fulfilling a1 <
(‖q‖L1(Ω)

p

)1/p

a2

with a2 ∈ K such that

(4.4) K1
1

ap−1
1

+ K2a
s−p
1 <

p‖α‖L1(Ω)

‖q‖L1(Ω)

[−F (a2)]
ap
2

.

Due to (4.4) we see at once that

Λ̃ :=

 ‖q‖L1(Ω)

p‖α‖L1(Ω)

ap
2

[−F (a2)]
,

1
K1

1

ap−1
1

+ K2a
s−p
1


is non-empty. Furthermore, let g: R → R be a locally essentially bounded func-
tion and set G(ξ) =

∫ ξ

0
g(t) dt for ξ ∈ R. We suppose that

[−G(ξ)] ≤ b3|ξ|p

for all ξ ∈ R with b3 being a non-negative constant. Similar to the case p > N

we put

(4.5)

δ := min


1− λ

(
K1

1
ap−1
1

+ K2a
s−p
1

)
‖β‖L∞(Γ)b3Cpp

,

1− λ

(
p‖α‖L1(Ω)

‖q‖L1(Ω)

[−F (a2)]
ap
2

)
p‖β‖L1(Γ)

‖q‖L1(Ω)

min{0,−G(a2)}
ap
2

 ,

δ̃ =
1

max{‖α‖L∞(Ω), ‖β‖L∞(Γ)}pcp
pb3

,

δ := min{δ, δ̃},

with λ ∈ Λ̃.
Now we can formulate the main result in this section.

Theorem 4.1. Let α ∈ L∞(Ω), β ∈ L∞(Γ) be two non-negative, non-zero
functions and let f : R → R be a locally essentially bounded function satisfying
the subcritical growth in (4.1). Put F (ξ) =

∫ ξ

0
f(t) dt for all ξ ∈ R and suppose

that

(H1) K1
1

ap−1
1

+K2a
s−p
1 <

p‖α‖L1(Ω)

‖q‖L1(Ω)

[−F (a2)]
ap
2

with positive constants a1, a2

satisfying a1 < (‖q‖L1(Ω)/p)1/pa2 and a2 ∈ K;

(H2) lim sup
|ξ|→+∞

[−F (ξ)]
|ξ|p

≤ 0.

Then, for each λ ∈ λ̃ and for each locally essentially bounded function g: R → R
whose potential G(ξ) =

∫ ξ

0
g(t) dt, ξ ∈ R, fulfills

(H3) [−G(ξ)] ≤ b3|ξ|p for all ξ ∈ R with b3 being non-negative,
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there exists δ stated in (4.5) such that, for each µ ∈ [0, δ[, problem (1.1) possesses
at least three distinct solutions.

Proof. Similar to the proof of Theorem 3.1 we are going to apply Theo-
rem 2.1 getting the assertion. Let λ, µ and g be fixed satisfying the assumptions
and as before, let X := W 1,p(Ω) be endowed with the norm ‖ · ‖W 1,p(Ω) given
in (2.9). Now, we set again, for any u ∈ X,

Φ(u) :=
1
p
‖u‖p

W 1,p(Ω), j(u) :=

{
0 if u ∈ K,

+∞ otherwise,

Υ(u) :=
∫

Ω

α(x)[−F (u(x))] dx +
µ

λ

∫
Γ

β(x)[−G(γu(x)] dσ,

Ψ(u) := Υ(u)− j(u), Jλ(u) := Φ(u)− λΨ(u)

leading to

Jλ(u) =
1
p
‖u‖p

W 1,p(Ω) − λ

∫
Ω

α(x)[−F (u(x))] dx

− µ

∫
Γ

β(x)[−G(γu(x)] dσ + λj(u).

First, we observe that ϕ1(r) ≤ (1/r) sup
Φ(u)<r

Υ(u). With the aid of assumption

(H3) along with the subcritical growth on f and the embeddings in (4.2), we
may estimate Υ through

Υ(u) =
∫

Ω

α(x)[−F (u(x))] dx +
µ

λ

∫
Γ

β(x)[−G(γu(x)] dσ

≤‖α‖L∞(Ω)b1‖u‖L1(Ω) + ‖α‖L∞(Ω)
b2

s
‖u‖s

Ls(Ω) +
µ

λ
‖β‖L∞(Γ)b3‖γu‖p

Lp(Γ)

≤‖α‖L∞(Ω)b1c1‖u‖W 1,p(Ω) + ‖α‖L∞(Ω)
b2

s
cs
s‖u‖s

W 1,p(Ω)

+
µ

λ
‖β‖L∞(Γ)b3C

p‖u‖p
W 1,p(Ω)

≤ K1

p1/p
‖u‖W 1,p(Ω) +

K2

ps/p
‖u‖s

W 1,p(Ω) +
µ

λ
‖β‖L∞(Γ)b3C

p‖u‖p
W 1,p(Ω).

Since Φ(u) < r is equivalent to ‖u‖W 1,p(Ω) < (pr)1/p, we obtain, by setting
r = ap

1,

ϕ1(r) ≤
K1r

1/p + K2r
s/p +

µ

λ
‖β‖L∞(Γ)b3C

prp

r

=K1
1

ap−1
1

+ K2a
s−p
1 +

µ

λ
‖β‖L∞(Γ)b3C

pp.

On the other hand, we have

Ψ(a2)
Φ(a2)

≥
p‖α‖L1(Ω)

‖q‖L1(Ω)

[−F (a2)]
ap
2

+
p‖β‖L1(Γ)

‖q‖L1(Ω)

µ

λ

min{0,−G(a2)}
ap
2

.
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Then, since µ < δ, there holds

µ <

1− λ

(
K1

1
ap−1
1

+ K2a
s−p
1

)
‖β‖L∞(Γ)b3Cpp

and µ <

1− λ

(
p‖α‖L1(Ω)

‖q‖L1(Ω)

[−F (a2)]
ap
2

)
p‖β‖L1(Γ)

‖q‖L1(Ω)

min{0,−G(a2)}
ap
2

.

This yields

K1
1

ap−1
1

+ K2a
s−p
1 +

µ

λ
‖β‖L∞(Γ)b3C

pp <
1
λ

,

and
p‖α‖L1(Ω)

‖q‖L1(Ω)

[−F (a2)]
ap
2

+
p‖β‖L1(Γ)

‖q‖L1(Ω)

µ

λ

min{0,−G(a2)}
ap
2

>
1
λ

.

Finally, from the estimates above, we conclude

ϕ1(r) <
1
λ

<
Ψ(a2)
Φ(a2)

.

As already mentioned in the proof of Theorem 3.1, it holds, in particular,

sup
Φ(x)<r

Ψ(x)

r
≤

sup
Φ(x)≤r

Ψ(x)

r
<

Ψ(a2)
Φ(a2)

, 0 < r < Φ(a2).

Thus, we derive

ϕ2(r) ≥
Ψ(a2)− sup

Φ(x)≤r

Ψ(x)

Φ(a2)− r
≥

Ψ(a2)− r
Ψ(a2)
Φ(a2)

Φ(a2)− r
=

Ψ(a2)
Φ(a2)

.

Combining these estimates yields

ϕ1(r) <
1
λ

< ϕ2(r).

Finally, we note that the functional Jλ is coercive and satisfies the Palais–Smale
condition (cf. the proof of Theorem 3.1). Hence, the assumptions of Theorem 2.1
are satisfied which ensures the existence of three distinct critical points of Jλ.
That these critical points are solutions of (1.1) can be shown using the same
arguments as in the end of the proof of Theorem 3.1. That finishes the proof of
the theorem. �

We conclude with an application of Theorem 4.1.

Example 4.2. Let m be a positive constant specified later and let s ∈
]1, Np/(N − p)[ if p < N as well as s ∈ ]1,+∞[ if p = N . We define the
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functions f : R → R and g: R → R through

(4.6)

f(t) =


−C̃ if t < 0,

−1− |t|s−1 if 0 ≤ t ≤ m,

− (1 + m2)(1 + ms−1)
1 + t2

if t > m,

g(t) =

{
−|t|p−1 if t ≤ 1,

−2|t|p−1 if t > 1,

with C̃ being a positive constant. Hence, for every constant m > 0, the mapping
f fulfills the subcritical growth in (4.1) with b1 = max{1, C̃} and b2 = 1. With
the aid of these constants we define the numbers K1 and K2 as in (4.3). Now,
fix m such that

(4.7) m > max
{(

p

‖q‖L1(Ω)

)1/p

,

(
s
K1 + K2

p

‖q‖L1(Ω)

‖α‖L1(Ω)

)1/(s−p)}
.

Thanks to condition (4.7) it is clear that inequality

1 <

(‖q‖L1(Ω)

p

)1/p

m

holds true. Moreover, we have

−F (m)
mp

=
ms−p

s
+

1
mp−1

>
K1 + K2

p

‖q‖L1(Ω)

‖α‖L1(Ω)
.

Setting a1 = 1 and a2 = m we see at once that condition (H1) in Theorem 4.1
is satisfied. Additionally, for ξ1 > m and ξ2 < 0, we point out that

[−F (ξ1)]
|ξ1|p

=(1 + m2)(1 + ms−1)
arctan(ξ1)
|ξ1|p

→ 0 as ξ1 → +∞,

[−F (ξ2)]
|ξ2|p

= C̃
|ξ2|
|ξ2|p

→ 0 as ξ2 → −∞

ensuring that (H2) is fulfilled as well. Since assumption (H3) holds for b3 = 2/p,
Theorem 4.1 can be applied to problem (1.1) with the special data in (4.6) which
yields the existence of three distinct solutions of (1.1).
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