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QUASILINEAR ELLIPTIC EQUATIONS
WITH SINGULAR POTENTIALS

AND BOUNDED DISCONTINUOUS NONLINEARITIES

Anran Li — Hongrui Cai — Jiabao Su

Abstract. In this paper we study the quasilinear equation

(P)

(
−div(|∇u|p−2∇u) + V (|x|)|u|p−2u = Q(|x|)f(u), x ∈ RN ,

u(x) → 0, |x| → ∞.

with singular radial potentials V , Q and bounded measurable function f .

The approaches used here are based on a compact embedding from the space

W 1,p
r (RN ; V ) into L1(RN ; Q) and a new multiple critical point theorem for

locally Lipschitz continuous functionals.

1. Introduction

In this paper we are concerned with the quasilinear elliptic equation on RN

(P)

{
−div(|∇u|p−2∇u) + V (|x|)|u|p−2u = Q(|x|)f(u), x ∈ RN ,

u(x) → 0, |x| → ∞,
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where 1 < p < N , N ≥ 3 and V,Q: (0,∞) 7→ (0,∞) are two continuous functions
satisfying the assumptions

(V) there exist real numbers a and a0 such that

lim inf
r→∞

V (r)
ra

> 0, lim inf
r→0

V (r)
ra0

> 0.

(Q) there exist real numbers b and b0 such that

lim sup
r→∞

Q(r)
rb

< ∞, lim sup
r→0

Q(r)
rb0

< ∞.

The nonlinear function f satisfies the following conditions:

(f1) f : R → R is a measurable function;
(f2) there is C1 > 0 such that |f(u)| ≤ C1, for u ∈ R;
(f3) there is C2 > 0 such that F (u) =

∫ u

0
f(t) dt ≥ C2|u|, for u ∈ R;

(f4) f(−u) = −f(u), u ∈ R.

The function f(u) = sgnu satisfies the conditions (f1)–(f4). By (f1) and (f2),
F (u) =

∫ u

0
f(t) dt is locally Lipschitz continuous, and it may not be differentiable

since there is no continuous function satisfying simultaneously (f3) and f(0) = 0.
It follows from (f4) that (P) has a trivial solution u = 0, we are interested in
multiple nontrivial solutions related to (P) in some sense due to the symmetry
of nonlinearity f .

We will apply the variational methods to (P). To this end we establish the
variational framework associated to (P). Denote by D1,p

r (RN ) the completion of
radial functions C∞

0,r(RN ) under the norm

‖∇u‖Lp =
( ∫

RN

|∇u|p dx

)1/p

.

Define for p > 1

Lp(RN ;V ) :=
{

u: RN 7→ R
∣∣∣∣ u is Lebesgue measurable,∫

RN

V (|x|)|u|p dx < ∞
}

.

Then define
W 1,p

r (RN ;V ) := D1,p
r (RN ) ∩ Lp(RN ;V ),

which is a Banach space (see [1], [15]) equipped with the norm

‖u‖W 1,p
r (RN ;V ) =

( ∫
RN

(|∇u|p + V (|x|)|u|p) dx

)1/p

.

Define

L1(RN ;Q) :=
{

u : RN 7→ R
∣∣∣∣ u is Lebesgue measurable,

∫
RN

Q(|x|)|u| dx < ∞
}

.
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In [12], the following compact embedding theorem has been established.

Theorem 1.1 (Theorem 2.1 in [12]). Assume (V) and (Q) with

b0 > min
{

N − p

p
−N,

p(N − 1) + a0(p− 1)
p2

−N

}
,

b < max
{

N − p

p
−N,

p(N − 1) + a(p− 1)
p2

−N

}
.

Then the embedding W 1,p
r (RN ;V ) ↪→ L1(RN ;Q) is compact.

By the above compact embedding from W 1,p
r (RN ;V ) into L1(RN ;Q), the

functional related to (P)

(1.1) Φ(u) =
1
p

∫
RN

(|∇u|p + V (|x|)|u|p) dx−
∫

RN

Q(|x|)F (u) dx

is well defined on W 1,p
r (RN;V ) and is locally Lipschitz continuous on W 1,p

r (RN;V )
when (f1) and (f2) are assumed. In addition, Φ is an even functional when (f4) is
assumed. We will apply the nonsmooth critical point theory built in [2] to study
(P) by looking for critical points of Φ on W 1,p

r (RN ;V ).
The main result in this paper reads as follows.

Theorem 1.2. Assume (V) and (Q) with

b0 > min
{

N − p

p
−N,

p(N − 1) + a0(p− 1)
p2

−N

}
,

b < max
{

N − p

p
−N,

p(N − 1) + a(p− 1)
p2

−N

}
.

If f satisfies (f1)–(f4), then the functional Φ related to (P) has infinitely many
critical points uk ∈ W 1, p

r (RN ;V ) with negative energy Φ(uk) := ck → 0 as
k →∞.

We give some comments, explanations and comparisons. We have pointed
out that there is no continuous function f that satisfies the assumptions (f1)–(f4).
Therefore the problem (P) is a kind of nonlinear partial differential equation with
discontinuous nonlinearities. In the past decades many efforts have been devoted
in extending the theory of nonlinear partial differential equations (PDE) to PDE
with discontinuous nonlinearities (DPDE). We refer the readers to the pioneering
works [2]–[4] and the references therein for some historic developments and the
explanations in view of physical and mathematical aspects. The abstract meth-
ods for dealing with DPDE have been developed. In [2], the author established
variational methods for non-differentiable functional by using the generalized
gradients for locally Lipschitz continuous functions on Banach space introduced
by Clarke [5]. In [2] the concept of critical points, the Palais–Smale condition
and the deformation lemma to suitable classes of non-differentiable functionals
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were extended, and various minimax theorems also had been extended. Since
then, other kinds of non-smooth critical point theory were established, see the
references [6], and [9] and the references therein. In [6], the author studied the
existence of solution of some quasilinear equations via non-smooth Morse Theory.

In the literature most known results by applying non-smooth critical point
theory were concerned with nonlinear elliptic equations on a bounded domain Ω
of RN . Since the classical Sobolev embedding theorems worked well, in general
the nonlinearities have a subcritical growth and may be classified as sublinear,
asymptotically linear, or superlinear. See [2], [7], [9].

It is well known that the Sobolev compact embedding theorems play a crucial
role in dealing with elliptic problems via variational methods ([10], [17]). When
one deals with the semilinear elliptic problem on a bounded domain Ω of RN ,
the classical Sobolev embedding from H1(Ω) into Lq(Ω) is compact for all 1 ≤
q < 2∗ := 2N/(N − 2), N ≥ 3. The case 1 ≤ q < 2 is from a fact of continuous
embedding Lq(Ω) ⊂ Ls(Ω) for 1 ≤ s ≤ q. On the whole space RN , the embedding
H1(RN ) ↪→ Lq(RN ) is only continuous for q ∈ [2, 2∗] and is not compact for
any q. Restricted to the radial case, H1

r (RN ) ↪→ Lq(RN ) are compact for all
q ∈ (2, 2∗) (see [11], [17]), and it is not true for q = 2 and q = 2∗. When
radial potentials are involved, the compactness of the embedding may be valid
for a wider range of q. In [14], [15], the authors developed techniques and ideas
in establishing weighted Sobolev embedding from W 1,p

r (RN ;V ) into Lq(RN ;Q)
with singular radial potentials V and Q for q ≥ p that provided a basic tool
in studying (P) with super-p-linear nonlinearity. In [13] the authors further
explored the effects of the potentials and extend with 1 < q < p and then
to study (P) with sub-p-linear nonlinearity. In [12] the compact embedding
W 1,p

r (RN ;V ) ↪→ L1(RN ;Q) (Theorem 1.1) was established and then was applied
to the solvability of the quasilinear problem (P) with a bounded continuous
nonlinearity f . Since there is no relation between Lq(RN ;Q) and Ls(RN ;Q) for
any q and s, the embedding from W 1,p

r (RN ;V ) into Lq(RN ;Q) are independent
from each other for q ≥ p, 1 < q < p and q = 1.

The novelty of this paper are two-fold. One is that we consider the quasilinear
elliptic equations (P) on the whole space RN with a bounded discontinuous
nonlinearity and the variational framework of (P) is based only on the compact
embedding Theorem 1.1. Another one is that we want to find multiple critical
points of Φ via nonsmooth critical point theory. There is not any an abstract
tool in the literature which can be applied directly to Theorem 1.2. We will
establish a new multiple critical point theorem for non-smooth functional which
extends one theorem in [16] for smooth functional. The result of Theorem 1.2
is completely new and completes the statement in the end of [12]. We point out
that this type of result is even new for the semilinear elliptic boundary value
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problem on bounded domains with discontinuous nonlinearities. In this case (f3)
may be replaced with other conditions and no weighted functions are involved.
See remarks below in the end of this paper.

The paper is organized as follows. In Section 2, we establish a multiple crit-
ical point theorem for locally Lipschitz continuous functionals. We will use the
variational framework for non-differentiable functionals built in [2]. In Section 3,
we give the proof of Theorems 1.2 and give further remarks.

2. A nonsmooth critical point theorem

In this section we establish an abstract critical point theorem for locally
Lipchitz functionals. We follow up with the variational framework built in [2]
for the non-differentiable functionals.

Let X be a real Banach space and X∗ be its dual space. For u ∈ X, u∗ ∈ X∗,
〈u∗, u〉 denotes the duality between X∗ and X. Let Φ: X → R be a locally Lip-
schitz continuous functional, that is, for each u ∈ X, there is a neighbuorhood N
of u and a constant K depending on N such that

|Φ(y)− Φ(z)| ≤ K‖y − z‖ for all y, z ∈ N.

For each v ∈ X, the generalized directed derivative Φ0(u; v) of Φ at u ∈ X in
the direction v is defined as

Φ0(u; v) = lim sup
h→0, λ↓0

1
λ

[Φ(u + h + λv)− Φ(u + h)].

The generalized directed derivative Φ0(u; · ) enjoys some basic properties [5]:
for each u ∈ X, the function v → Φ0(u; v) is continuous on v and satisfies
|Φ0(u; v)| ≤ K‖v‖, and furthermore, it is subadditive, positively homogenous,
and then is convex. We refer to [5] for these facts.

Definition 2.1 (Clarke [5]). Let Φ:X → R be a locally Lipschitz continuous
functional. The generalized gradient of Φ at u ∈ X, denoted by ∂Φ(u), is defined
to be the sub-differential of the convex function Φ0(u; v) at v = 0:

∂Φ(u) := {ω ∈ X∗ | 〈ω, v〉 ≤ Φ0(u; v) for all v ∈ X}.

We refer the readers to [2] for some general information about the generalized
gradient.

We need the following concepts.

Definition 2.2 ([2]). Let Φ: X → R be a locally Lipschitz functional. We
say that u0 ∈ X is a critical point of Φ if 0 ∈ ∂Φ(u0).
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Definition 2.3 ([2]). Let Φ: X → R be a locally Lipschitz functional. We
say that Φ satisfies the Palais–Smale condition if any sequence {un} ⊂ X along
which Φ(un) is bounded and

λ(un) = min
ω∈∂Φ(un)

‖ω‖X∗ → 0

possesses a convergent subsequence.

For c ∈ R, we denote

Φc = {u ∈ X | Φ(u) ≤ c}; Kc = {u ∈ X | 0 ∈ ∂Φ(u), Φ(u) = c}.

We note here that Kc is compact if Φ satisfies the Palais–Smale condition. See
Lemma 3.1 in [2]. The following deformation lemma for locally Lipschitz func-
tional was proved in [2].

Lemma 2.4 ([2]). Suppose that X is a reflexive Banach space, and Φ is
a locally Lipschitz functional and satisfies the Palais–Smale condition. If c is
a real number and N is any a neighbourhood of the set Kc, then for any ε0 > 0,
there exists ε ∈ (0, ε0) and a homomorphism η:X → X such that

(a) η(u) = u for u 6∈ Φc+ε0 \ Φc−ε0 ;
(b) η(Φc+ε \ N) ⊂ Φc−ε;
(c) if Kc = ∅, then η(Φc+ε) ⊂ Φc−ε;
(d) if Φ is even, then the homomorphism η:X → X is an odd mapping.

Now we apply Lemma 2.4 to establish the following abstract critical point
theorem for locally Lipschitz functionals. It can be regarded as the non-smooth
version of an abstract critical point theorem in Wang [16] (see Lemma 2.4 in [16])
for smooth functionals. For readers convenience we sketch a proof along with
the arguments of [16].

Theorem 2.5. Let X be a reflexive Banach space and Φ: X → R be a lo-
cally Lipschitz functional. Assume that Φ satisfies Palais–Smale condition and
is even, bounded from below, Φ(0) = 0. If for any k ∈ N, there exists a k-
dimensional subspaces Xk and ρk > 0, such that

(2.1) sup
u∈Xk∩Sρk

Φ(u) < 0,

where Sρ = {u ∈ X | ‖u‖ = ρ}, then Φ has a sequence of critical values ck < 0
satisfying ck → 0 as k →∞.

Proof. Let Σ be the class of closed symmetric subsets of X \ {0}. For
A ∈ Σ, we denote by γ(A) the genus of A (see [10]) defined as

γ(A) := min{k ∈ N | there exists an odd map φ ∈ C(A, Rk \ {0})}.



Quasilinear Elliptic Equations 445

One can refer to Proposition 7.5 in [10] for the properties of the genus γ. For
each k ∈ N, define the minimax value as

(2.2) ck := inf
A∈Σ, γ(A)≥k

sup
u∈A

Φ(u).

By the monotonicity property of the genus we have ck ≤ ck+1 for all k ∈ N.
A standard argument applying Lemma 2.4 shows that all ck are critical val-
ues of Φ. Assume that for some k, ck is not a critical value of Φ. Then by
Lemma 2.4(c), there exists ε > 0 small and an odd homomorphism η:X → X

such that η(Φck+ε) ⊂ Φck−ε.
Take A ∈ Σ such that γ(A) ≥ k and sup

u∈A
Φ(u) ≤ ck + ε, then A ⊂ Φck+ε. Set

Ã = η(A). Then Ã ∈ Σ and by the mapping property of the genus, we have

γ(Ã) = γ(η(A)) ≥ γ(A) ≥ k.

Thus from Ã = η(A) ⊂ Φck−ε, we deduce that

ck ≤ sup
u∈A

Φ(η(u)) ≤ ck − ε.

This is a contradiction.
Since γ(Xk ∩ Sρk

) = k ([10]), we have by (2.1) and (2.2) that ck < 0, for all
k ∈ N.

We now show that ck → 0, as k → ∞. Assume that ck → c < 0, k → ∞.
Since Φ satisfies the Palais–Smale condition, Kc is compact. Moreover, Kc is
symmetric and 0 6∈ Kc. Thus Kc ∈ Σ, γ(Kc) := ` < ∞.

By the properties of genus, there is a closed neighbourhood U of Kc such
that Kc is a subset of the interior U◦ of U and γ(U) = `.

By Lemma 2.4, there is ε > 0 with c + ε < 0 and an odd homeomorphism
η:X → X such that η(Φc+ε \ U◦) ⊂ Φc−ε. Therefore

γ(Φc+ε) ≤ γ(Φc+ε \ U◦) + γ(U) ≤ γ(η(Φc+ε \ U◦)) + ` ≤ γ(Φc−ε) + `.

Taking k ∈ N large such that c − ε < ck ≤ c. Then γ(Φc−ε) ≤ k. Otherwise
we would get γ(Φc−ε) ≥ k + 1 which implies a contradiction ck+1 ≤ c− ε < ck.
Therefore γ(Φc+ε) ≤ k + ` < ∞. But, it is obviously that γ(Φc+ε) = ∞. We
have a contradiction and thus c = 0. �

We finally cite the following abstract result from [2] for proving our existence
theorem.

Proposition 2.6 (Theorem 2.2 in [2]). Let X and Y be two Banach spaces.
Assume that X is reflexive, the embedding X ↪→ Y is continuous and X is dense
in Y . Let G̃ be a locally Lipschitz continuous functional in Y , and G = G̃|X ,
then

∂G(u) ⊂ ∂G̃(u), u ∈ X.
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3. Proof of Theorem 1.2

In this section we give the proof of Theorem 1.2 by applying Theorem 2.5.
We first investigate that under the assumptions of Theorem 1.2, the variational
framework of (P) fits in with the variational framework in Section 2.

By the embedding Theorem 1.1, the functional

Φ(u) =
1
p

∫
RN

(|∇u|p + V (|x|)|u|p) dx−
∫

RN

Q(|x|)F (u) dx, u ∈ W 1,p
r (RN ;V )

is well defined. Set the functional

Ψ(u) =
1
p

∫
RN

|∇u|p + V (|x|)|u|p dx, u ∈ W 1,p
r (RN ;V ).

Then Ψ is of class C1 on W 1,p
r (RN ;V ), and Ψ′ possesses the (S+) property on

W 1,p
r (RN;V ) (see [8], [13]) in the sense that for any sequence {un}⊂W 1,p

r (RN;V ),
if

un ⇀ u weakly in W 1,p
r (RN ;V ) and lim sup

n→∞
〈Ψ′(un), un − u〉 ≤ 0,

then

un → u strongly in W 1,p
r (RN ;V ).

Set

G̃(u) =
∫

RN

Q(|x|)F (u) dx, u ∈ L1(RN ;Q).

By (f1) and (f2), G̃ is a uniformly Lipschitz continuous functional on L1(RN ;Q).
In fact we have that

|G̃(u)− G̃(v)| ≤ Ĉ‖u− v‖L1(RN ;Q), for u, v ∈ L1(RN ;Q).

Set G = G̃|W 1,p
r (RN ;V ), then by Theorem 1.1, we see that G is a uniformly

Lipschitz continuous functional on W 1,p
r (RN ;V ):

|G(u)−G(v)| ≤ C̃‖u− v‖W 1,p
r (RN ;V ), for u, v ∈ W 1,p

r (RN ;V ).

The above constants Ĉ and C̃ are independent of the functions u, v.
Since Φ(u) = Ψ(u)−G(u), the functional Φ is a locally Lipschitz functional

on W 1,p
r (RN ;V ).

We begin to prove Theorem 1.2. First of all, we prove that Φ is coercive and
bounded from below.

Lemma 3.1. Assume that f satisfies (f1) and (f2), then the functional Φ is
coercive and bounded from below.
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Proof. For u ∈ W 1,p
r (RN ;V ), by (f2), we have

Φ(u) =
1
p

∫
RN

|∇u|p + V (|x|)|u|p dx−
∫

RN

Q(|x|)F (u) dx(3.1)

≥ 1
p
‖u‖p

W 1,p
r (RN ;V )

− C‖u‖L1(RN ;Q)

≥ 1
p
‖u‖p

W 1,p
r (RN ;V )

− C‖u‖W 1,p
r (RN ;V ).

Since p > 1, by (3.1) we have

(3.2) Φ(u) →∞ as ‖u‖W 1,p
r (RN ;V ) →∞.

and Φ is bounded from below. �

Next, we show that Φ satisfies the Palais-Smale condition. We will use Propo-
sition 2.6. Set

X = W 1,p
r (RN ;V ), Y = W 1,p

r (RN ;V )
‖·‖L1(RN ;Q)

.

By Theorem 1.1, X and Y fit in with the conditions on spaces in Proposition 2.6
in the sense that X is reflexive, the embedding X ↪→ Y is continuous (and
compact), and X is dense in Y . In the proof of the following lemma we use the
notation X instead of W 1,p

r (RN ;V ).

Lemma 3.2. Assume that f satisfies (f1) and (f2), then the functional Φ
satisfies the Palais–Smale condition.

Proof. Let {un} ⊂ X be such that Φ(un) is bounded and

(3.3) λ(un) = min
ω∈∂Φ(un)⊂X∗

‖ω‖X∗ → 0 as n →∞.

By the coercivity (3.2), {un} is bounded in X. By the reflexivity of X and the
compactness of the embedding X ↪→ Y , up to a subsequence if necessary, we
may assume that there is u ∈ X such that

un ⇀ u, weakly in X, n →∞,(3.4)

un → u, strongly in Y ⊂ L1(RN ;Q), n →∞.(3.5)

By the properties of the generalized gradient (see [2]), for each n ∈ N, there
exists u∗n ∈ ∂Φ(un) ⊂ X∗, such that

(3.6) λ(un) = ‖u∗n‖X∗ ,

and there exists v∗n ∈ ∂G(un) ⊂ X∗ such that

(3.7) 〈u∗n, v〉 =
∫

RN

(|∇un|p−2∇un∇v+V (|x|)|un|p−2unv) dx−〈v∗n, v〉, v ∈ X.
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Taking v = un − u in (3.7), then

(3.8) 〈Ψ′(un), un − u〉

=
∫

RN

(|∇un|p−2∇un∇(un − u) + V (|x|)|un|p−2un(un − u)) dx

= 〈u∗n, un − u〉+ 〈v∗n, un − u〉.

By (3.3), (3.4) and (3.6), it follows that

(3.9) 〈u∗n, un − u〉 → 0, as n →∞.

By Proposition 2.6, we see that v∗n ∈ ∂G(un) ⊂ ∂G̃(un) ⊂ Y ∗. Since G̃ is
uniformly Lipschitz continuous on Y , we have by the properties of the generalized
gradient (see [2]) that

(3.10) ‖v∗n‖Y ∗ ≤ Ĉ, n ∈ N.

It follows from (3.5) and (3.10) that

(3.11) |〈v∗n, un − u〉| ≤ ‖v∗n‖Y ∗‖un − u‖Y ≤ Ĉ‖un − u‖Y → 0, n →∞.

Thus we arrive at the conclusion that

(3.12) 〈Ψ′(un), un − u〉 → 0, as n →∞.

Since Ψ′ enjoys the (S+) property, we have that un → u strongly in X, n →∞.
Therefore Φ satisfies the Palais–Smale condition. �

End of the Proof of Theorem 1.2. We verify the assumptions of The-
orem 2.5. By Lemmas 3.1 and 3.2, Φ satisfies the Palais–Smale condition and is
bounded from below. By (f1) and (f4), Φ is even and Φ(0) = 0. Now we verify
that Φ satisfies (2.1).

For any k ∈ N, we choose k independent smooth functions φi ∈ C∞
0,r(RN )

for i = 1, . . . , k and define Xk = span{φ1, . . . φk}. Then Xk ⊂ W 1,p
r (RN ;V ) ⊂

L1(RN ;Q) and dim Xk = k. By (f3) we have

Φ(u) ≤ 1
p
‖u‖p

W 1,p
r (RN ;V )

− C‖u‖L1(RN ;Q).

Since all norms on Xk are equivalent and p > 1, we get that for ρk > 0 small
enough,

sup
u∈Xk∩Sρk

Φ(u) < 0.

With all conditions of Theorem 2.5 being verified, we get the conclusion that Φ
has a sequence of critical values ck < 0 satisfying ck → 0 as k → ∞. The proof
of Theorem 1.2 is complete. �

We finish the paper with some remarks and with some discussions related to
other topics.
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Remark 3.3. We first give a remark on the relations between the critical
points of Φ and the solutions of (P). If u0 ∈ W 1,p

r (RN , V ) is a critical point of Φ,
then u0 solves (P) in the sense (see [2]) that

(P̃)


−div(|∇u0|p−2∇u0) + V (|x|)|u0|p−2u0

in [Q(|x|)f(u0(x)), Q(|x|)f(u0(x)], x ∈ RN ,

u0(x) → 0, |x| → ∞,

where
f(u0) := lim inf

u→u0
f(u), f(u0) := lim sup

u→u0

f(u).

In general, such a function u0 may not be a solution of (P). A question arising
here that under what situations in which a solution of (P̃) becomes a solution
of (P). There was a positive answer in [3], [4] for the semlinear elliptic boundary
value problems on bounded smooth domain of RN with discontinuous nonlinear-
ity. We refer the reader to [3], [4] for details. In the future we will investigate
this question for the weighted quasilinear problems on the whole space RN .

Remark 3.4. We look at a special case of Theorem 1.2 as an example. Since
the function f(u) = sgn u satisfies the assumptions (f1)–(f4), by Theorem 2.5,
the functional

Φ(u) =
1
p

∫
RN

|∇u|p + V (|x|)|u|p dx−
∫

RN

Q(|x|)|u| dx, u ∈ W 1,p
r (RN ;V )

has a sequence of critical points {uk} in W 1,p
r (RN ;V ) with Φ(uk) := ck < 0,

Φ(uk) → 0 as k →∞, and the quasilinear problem

(P′)

{
−div(|∇u|p−2∇u) + V (|x|)|u|p−2u ∈ [−Q(|x|), Q(|x|)], x ∈ RN ,

u(x) → 0, |x| → ∞,

possesses infinitely many pairs of solutions in W 1,p
r (RN ;V ) with energies go to

zero.

Remark 3.5. Theorem 2.5 can be applied to the semilinear elliptic boundary
value problem

(P)

{
−∆u = sgnu, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where Ω is a bounded smooth domain of RN . Since the function sgnu satisfies
the condition (C) (see p. 126 in [4]), sgn 0 = 0, and the optimal for (−∆, sgn) is
still the function sgn (see [3], [4]), by Theorem 2.2 in [4], the solutions of the prob-
lem (P) correspond to the critical points of the functional Φ associated to (P).
By Theorem 2.5 and the elliptic regularity, the functional Φ possesses infinitely
many pairs of critical points in H1

0 (Ω) with their negative critical values go to
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zero and then their H1
0 -norm go to zero. This multiplicity result for (P) is new.

This result should be compared to the result at the end of [2].

Acknowledgements. The authors are grateful to the anonymous referees
for their helpful comments and suggestions.

References

[1] R. Adams, Sobolev spaces, Academic Press, Amsterdam, 1975.

[2] K.C. Chang, Variational methods for non-differentiable functionals and their applica-
tions to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102–129.

[3] , On the multiple solutions of the elliptic differential equations with discontiunous
nonlinear terms, Sci. Sinica 21 (1978), 139–158.

[4] , The obstacle problem and partial differential equations with discontinuous non-
linearities, Commun. Pure Appl. Math. 33 (1980), 117–146.

[5] F.H. Clarck, A new approach to Lagrange multipliers, Math. Oper. Res. 1 (1976),
165–174.

[6] J.N. Corvellec, Nontrivial Solutions of quasilinear equations via nonsmooth Morse
theory, J. Differential Equations 136 (1997), 268–293.

[7] J.N. Corvellec, V.V. Motreanu and C. Saccon, Doubly resonant semilinear elliptic
problems via nonsmooth critical point theory, J. Differential Equations 248 (2010), 2064–
2091.

[8] P. De Nápoli and M.C. Mariani, Mountain pass solutions to equations of p-Laplacian
type, Nonlinear Anal. 54 (2003), 1205–1219.

[9] J.Q. Liu and Y.X. Guo, Critical point theory for nonsmooth functionals, Nonlinear
Anal. 66 (2007), 2731–2741.

[10] P.H. Rabinowitz, Minimax methods in critical point theory with applications to dif-
ferential equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc.,
Providence, RI, 1986.

[11] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys.
55 (1977), 149–162.

[12] J.B. Su, Quasilinear elliptic Equations on RN with singular and bounded nonlinearity,
Z. Angew. Math. Phys. 63, 51–62; erratum: (2012), 63–64.

[13] J.B. Su and R.S. Tian, Weighted Sobolev type embeddings and coercive quasilinear
elliptic equations on RN , Proc. Amer. Math. Soc. 140 (2012), 891–903.

[14] J.B. Su, Z.Q. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded
and decaying radial potentials, Commun. Contemp. Math. 9 (2007), 571–583.

[15] , Weighted Sobolev embedding with unbounded and decaying radial potentials,
J. Differential Equations 238 (2007), 201–219.

[16] Z.Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the
origin, Nonlinear Differential Equations Appl. 8 (2001), 15–33.

[17] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
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