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PERIODIC SOLUTIONS
FOR NONLINEAR DIFFERENTIAL SYSTEMS:

THE SECOND ORDER BIFURCATION FUNCTION

Adriana Buică — Jaume Giné — Jaume Llibre

Abstract. We are concerned here with the classical problem of Poincaré
of persistence of periodic solutions under small perturbations. The main

contribution of this work is to give the expression of the second order bifur-

cation function in more general hypotheses than the ones already existing
in the literature. We illustrate our main result constructing a second order

bifurcation function for the perturbed symmetric Euler top.

1. Introduction

We are concerned here with the classical problem of Poincaré of persistence
of periodic solutions under small perturbations. More precisely, we consider
a family of T -periodic, sufficiently smooth, n-dimensional systems of the form

(1.1) x′(t) = F (t, x, ε),

depending on a small (perturbation) parameter ε. We assume that there exists
some nonempty set Z whose points are initial values for T -periodic solutions of
the unperturbed system

(1.2) x′(t) = F (t, x, 0).
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In the following we consider that Z is the image of some sufficiently smooth
(C2), one-to-one function ξ:U → Rn, where U is an open subset of Rk, 1 ≤ k ≤ n,
such that Dξ(h) has full rank for any h ∈ U . Such a Z will be called a T -period
manifold for (1.2).

Additional hypothesis on Z is that it is normally nondegenerate (following
the terminology of [16]), that means that the linearized system of (1.2) around
each T -periodic solution that initiates in Z has the Floquet multiplier +1 with
the geometric multiplicity k. This will be explained in detail in Section 3.

We say that a T -periodic solution ϕ(t) of (1.2) persists in (1.1) if there exists
a T -periodic solution ϕε(t) of (1.1), for small ε and lim

ε→0
ϕε(0) = ϕ(0).

We say that f :U → Rk is a bifurcation function for the problem of persistence
in (1.1) of T -periodic solutions of (1.2) that initiates in Z if:

(a) for any ϕ(t) with ϕ(0) = ξ(h0) ∈ Z that persists we have that f(h0) = 0;
(b) whenever there exists h0 ∈ U such that f(h0) = 0 and the Jacobian de-

terminant det Df(h0) 6= 0, the solution ϕ(t) with ϕ(0) = ξ(h0) persists.

With this new definition, it is clear that (as it is also well-known) our objec-
tive will be to determine the expression of some bifurcation function. Usually
this is achieved after a careful study of the Poincaré return map at time T ,
z 7→ x(T, z, ε), whose fixed points are in one-to-one correspondence with the
T -periodic solutions of (1.1). Here x( · , z, ε) is the solution of (1.1) such that
x(0, z, ε) = z. When the expression of the bifurcation function involves only the
coefficients of the powers of ε up to degree m in the Taylor expansion of x(T, z, ε)
around ε = 0, we say that the bifurcation function has order m.

The main contribution of this work is to give the expression of the second or-
der bifurcation function in the general hypotheses listed above (see Theorem 3.2).
In this way we extend our previous results in [5], where more restrictive hy-
potheses on Z were considered. The first order bifurcation function f1(α) of
Theorem 3.2 goes back to Malkin [15] and Roseau [17], see also the book of
Françoise [12]. For a shorter proof of this first result see [3]. The first order
bifurcation function was also computed in a nonsmooth setting in [7]. The sec-
ond order bifurcation function f2(α) of Theorem 3.2 was given in [5] but under
assumptions more restrictive than the ones that we suppose here. For a short
history of this intensively studied problem we refer also to our paper [5]. Other
references that are closely related to this work are [2], [6]–[11], [13], [14], [16].

It is important also to notice that we present two proofs for our main re-
sult. The second proof reveals the simple but surprising theoretical fact that
there exists a linear change of variables that transforms a system satisfying the
hypotheses listed above in a system satisfying the hypotheses of the main result
of [5]. The new result presented here (Theorem 3.2) is useful in some applica-
tions where the main result provided in [5] is not applicable. Moreover, we enrich
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our previous result proving the first property in the definition of the bifurcation
function given above, i.e. we also show that for any T -periodic solution that
persists, there exists a zero of the bifurcation function.

We illustrate our main result constructing a second order bifurcation function
for the perturbed symmetric Euler top. The first order bifurcation function for
this system was found in [5].

At the end of the Introduction we list some notations used in this paper. We
denote the projection onto the first k coordinates by π: Rk × Rn−k → Rk and
the one onto the last (n − k) coordinates by π⊥: Rk × Rn−k → Rn−k. For the
n-dimensional function g of n variables z = (α, β) ∈ Rk×Rn−k, we denote by Dg

or Dzg (in the case that it depends also on other variables) the Jacobian matrix
of g, by D(πg) the k × n Jacobian matrix of the k-dimensional function πg, by
Dβ(πg) the k× (n− k) Jacobian matrix of β ∈ Rn−k 7→ πg(α, β) ∈ Rk. We also
denote by ∂

∂zi
(Dg) the matrix of the same dimension as Dg whose entries are

the first order partial derivatives with respect to the component zi of z, of the
entries of Dg.

For a matrix M with n lines, we denote by πM the matrix formed by the
first k lines of M , and by π⊥M the matrix formed by the last (n−k) lines of M .
For any matrix (or vector) M we denote by M∗ its transpose.

2. Lyapunov–Schmidt reduction theorem
for finite dimensional functions

In this section we consider the problem of persistence of zeros of finite dimen-
sional maps under small perturbations. We start by presenting a terminology
for this problem which is analogous with the one gave in the Introduction for
the problem of persistence of periodic solutions. We consider a family of n-
dimensional, sufficiently smooth maps (z, ε) 7→ g(z, ε) depending on the small
perturbation parameter ε. We assume that there exists some nonempty set Z
whose points are zeros of z 7→ g(z, 0). We consider that Z is the image of
some sufficiently smooth (C2), one-to-one function ξ : U → Rn, where U is an
open subset of Rk, 1 ≤ k ≤ n, such that Dξ(h) has full rank for any h ∈ U .
Such a Z will be called zero-manifold for the map z 7→ g(z, 0). We say that
the zero-manifold of g( · , 0) is normally nondegenerate if the Jacobian matrix
Dzg( · , ε)(ξ(h)) has rank n− k.

We say that a zero z0 of g( · , 0) persists as zero of g( · , ε) if there exists zε,
for small ε, such that g(zε, ε) = 0 and lim

ε→0
zε = z0.

We say that f :U → Rk is a bifurcation function for the problem of persistence
of zeros in the family g( · , ε) if:

(a) for any z0 = ξ(h0) ∈ Z that persists we have f(h0) = 0;
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(b) whenever there exists h0 ∈ U such that f(h0) = 0 and the Jacobian
determinant det Df(h0) 6= 0, the zero z0 = ξ(h0) of g( · , 0) persists.

When the expression of the bifurcation function involves only the coefficients
of the powers of ε up to degree m in the Taylor expansion of g(z, ε) around ε = 0,
we say that the bifurcation function has order m. For example, if we write

g(z, ε) = g0(z) + εg1(z) + ε2g2(z) + O(ε3),

the expression of a second order bifurcation function will be constructed using
g0, g1 and g2.

The main result of this section will be proved using the following Theorem
from our previous paper [5]. Since in [5] only the second property in the definition
of the bifurcation function is proved, we complete here with the main ideas of
the proof of the first property.

Theorem 2.1. Let g0, g1, g2:D → Rn and β:V → Rn−k be C2 functions,
where D is an open subset of Rn and V is an open and bounded subset of Rk.
Denote ζ(α) =

(
α

β(α)

)
for any α ∈ V . We assume that

(a) ζ(V ) ⊂ D is a zero-manifold for g0,
(b) the Jacobian matrix Gα = Dg0(ζ(α)) has in the right up corner the null

k×(n−k) matrix, while in the right down corner has the (n−k)×(n−k)
matrix ∆α, with det(∆α) 6= 0.

We consider the functions f1:V → Rk defined by

(2.1) f1(α) = πg1(ζ(α))

and f2:V → Rk defined by

(2.2) f2(α) = 2(πg2)(ζ(α)) + 2Dβ(πg1)(ζ(α))γ(α)

+
n−k∑
i=1

γi(α)
∂

∂zk+i
Dβ(πg0)(ζ(α))γ(α),

where γ(α) = −∆−1
α (π⊥g1)(ζ(α)) = (γ1(α), . . . , γn−k(α))∗ ∈ Rn−k. Then f1

is a first order bifurcation function and, when f1(α) ≡ 0, f2 is a second order
bifurcation function for the problem of persistence of zeros in the family g( · , ε).

Proof. We present first some useful facts from the proof given in [5].
For each α ∈ V and |ε| sufficiently small, there exists a unique β(α, ε) such

that
β(α, 0) = β(α) and π⊥g(α, β(α, ε), ε) = 0.

Moreover, we have

δ(α, ε) := πg(α, β(α, ε), ε) = εf1(α) +
ε2

2
f2(α) + O(ε3).



Periodic Solutions: a Second Order Analysis 407

In order to prove the first property from the definition of the bifurcation function,
we fix some z0 = ζ(α0) = (α0, β(α0)∗ a zero that persists in the family g(z, ε).
Hence there exists zε such that g(zε, ε) ≡ 0 and zε → z0 as ε → 0. If we denote
αε = πzε and βε = π⊥zε, we can also write that π⊥g(αε, βε, ε) ≡ 0. From the
uniqueness of β we deduce that βε = β(αε, ε). Then δ(αε, ε) = πg(αε, βε, ε) ≡ 0.
Hence

δ(αε, ε) = εf1(αε) +
ε2

2
f2(αε) + O(ε3) ≡ 0

and we remind that αε → α0 as ε → 0. Passing to the limit as ε → 0
in δ(αε, ε)/ε ≡ 0 we obtain that f1(α0) = 0. If f1(α) ≡ 0, passing to the
limit as ε → 0 in δ(αε, ε)/ε2 ≡ 0 we obtain that f2(α0) = 0. �

The main result of this section is the next one which essentially generalizes
Theorem 1 given in [5].

Theorem 2.2. Let g0, g1, g2:D → Rn and ξ:U → Rn be C2 functions, where
D is an open subset of Rn, U is an open subset of Rk. We assume that for each
h ∈ U we have

(a) ξ(U) ⊂ D is a normally nondegenerate zero-manifold for g0,
(b) the first k lines of Dg0(ξ(h)) are null vectors (hence there exists some

n×(n−k) matrix S such that the (n−k)×(n−k) matrix D(π⊥g0)(ξ(h))S
is invertible). Assume that S is constant with respect to h ∈ U .

We consider the function f1:U → Rk defined by

(2.3) f1(h) = πg1(ξ(h))

and f2:V → Rk defined by

(2.4) f2(h) = 2(πg2)(ξ(h)) + 2D(πg1)(ξ(h))Sγ(h)

+
n−k∑
i=1

γi(h)
[

∂

∂zk+i
D(πg0)

]
(ξ(h))Sγ(h),

where γ(h)=−[D(π⊥g0)(ξ(h))S]−1(π⊥g1)(ξ(h))=(γ1(h), . . . , γn−k(h))∗∈Rn−k.
Then f1 is a first order bifurcation function and, when f1(α) ≡ 0, f2 is a second
order bifurcation function for the problem of persistence of zeros in the family
g( · , ε).

Proof. Let h ∈ U be arbitrary. There exists some n×n invertible matrix S̃.
Using (b), indeed, there exists such matrix, and, moreover, whose last (n − k)
columns are the columns of the matrix S chosen in the hypothesis (b), since the
columns of S must be linearly independent. Then Dg0(ξ(h))S̃ has in its first k

lines null entries, and in the right down corner an (n − k) × (n − k) invertible
matrix, which means that

(2.5) Dg0(ξ(h))S̃ has the same structure as Gα in (b) of Theorem 2.1.
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Our goal is to apply Theorem 2.1 to g̃:D × (−ε0, ε0) → Rn defined by

g̃(z, ε) = g(S̃z, ε),

and β:V ∈ Rn−k defined such that for any α ∈ V

(2.6) ξ(h̃(α)) = S̃

(
α

β(α)

)
,

with some invertible function h̃:V → U whose existence will be proved later on.
Indeed, if we denote

g̃i(z) = gi(S̃z), i ∈ {0, 1, 2},
one can write

g̃(z, ε) = g̃0(z) + εg̃1(z) + ε2g̃2(z) + O(ε3).

Moreover, one can see that Dg̃0(z) = Dg0(S̃z)S̃ and, in particular, using (2.6)
and the notation of Theorem 2.1(a), for any α ∈ V ,

(2.7) g̃0(ζ(α)) = g0(ξ(h̃(α)), Dg̃0(ζ(α)) = Dg0(ξ(h̃(α))S̃.

Now from our hypothesis (a) of Theorem 2.2, relations (2.5) and (2.7) the hy-
potheses (a) and (b) of Theorem 2.1 are fulfilled.

It remains to prove that equation (2.6) is valid. Notice that it can be equiv-
alently written as

α = π(S̃)−1ξ(h̃(α)), β(α) = π⊥(S̃)−1ξ(h̃(α)).

We must to prove the existence of h̃ satisfying the first of the two previous
equations, the second one being the definition of β. By hypothesis, we have
that the function defined by h ∈ U 7→ π(S̃)−1ξ(h) is one-to-one and we claim
that its image is an open subset of Rk, which will be denoted by V . Take
h̃:V → U be its inverse. In the following we prove this claim, showing that the
derivative of function defined by h ∈ U 7→ π(S̃)−1ξ(h), in any h, is a nonsingular
matrix. Taking the derivative with respect to h in g0(ξ(h)) ≡ 0 we obtain
Dg0(ξ(h))Dξ(h) ≡ 0n×k and, further,

(2.8) Dg0(ξ(h))S̃(S̃)−1Dξ(h) ≡ 0n×k.

Since Dg0(ξ(h))S̃ has in its right down corner an (n − k) × (n − k) invertible
matrix, from (2.8) we obtain that there exists some (n−k)×k matrix A(h) such
that

(2.9) π⊥(S̃)−1Dξ(h) = A(h) π(S̃)−1Dξ(h).

From (a), Dξ(h) has rank k, hence also (S̃)−1Dξ(h) has rank k and, using (2.9),
we further deduce that the k × k matrix π(S̃)−1Dξ(h) is nonsingular. So the
claim is proved.
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We are now concerned with the expressions of the bifurcation functions. The
expression of the first order bifurcation function corresponding to g̃(z, ε) given
in Theorem 2.1 is

f̃1(α) = πg̃1(α, β(α)) = πg1(ξ(h̃(α))).

Since α 7→ h̃(α) is a homeomorphism, we can simply consider the first order
bifurcation function given by (2.3).

Using the same ideas and since for any z ∈ D,

Dβ(πg̃i)(z) = D(πgi)(S̃z)S, for i = 1, 2,

and ∆α = Dβ(π⊥g̃0)(z) = D(π⊥g0)(S̃z)S, one can find the expression of the
second order bifurcation function (2.4). �

3. Main result

We start this section with the following lemma on linear periodic differential
systems.

Lemma 3.1. For each ξ ∈ Rn we consider the T -periodic n-dimensional
linear differential system

(3.1) y′ = P (t, ξ)y

where P is continuous in t and of class C2 in ξ. Assume that system (3.1) has
the Floquet multiplier +1 with the geometric multiplicity equal to k. Then there
exists a fundamental matrix solution Y (t, ξ) of system (3.1) with C2-dependence
on ξ such that

Y (0, ξ)−1 − Y (T, ξ)−1

has rank (n − k) and its first k lines are null. Moreover, there exists some
n× (n− k) matrix S(ξ) such that the (n− k)× (n− k) matrix

π⊥
(
Y (0, ξ)−1 − Y (T, ξ)−1

)
S(ξ)

is invertible.

Proof. Let Y (t, ξ) be some arbitrary fundamental matrix solution of (3.1).
By definition, +1 is a Floquet multiplier of geometric multiplicity k when the
kernel of Y (T, ξ)Y (0, ξ)−1 − In has dimension k (here In is the n × n identity
matrix). From here, the kernel of Y (0, ξ)−1 − Y (T, ξ)−1 has also dimension k

and rank (n− k). The k linearly independent vectors from this kernel are initial
values for k linearly independent T -periodic solutions of 93.1). It follows that
the adjoint system

(3.2) y′ = −[P (t, ξ)]∗y,
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has k linearly independent T -periodic solutions. We denote them by ui(t, ξ)
for i = 1, . . . , k. Choose now a fundamental matrix solution U(t, ξ) of the
adjoint system (3.2) whose first k columns are the T -periodic solutions ui(t, ξ)
for i = 1, . . . , k. Then choose Y (t, ξ) the fundamental matrix solution of 93.1)
such that Y (t, ξ)−1 = U(t, ξ)∗. It follows that the first k lines of Y (t, ξ)−1 are
ui(t, ξ) for i = 1, . . . , k, hence the first k lines of Y (0, ξ)−1 − Y (T, ξ)−1 are null.
In order to assure the C2-dependence on ξ of Y (t, ξ) for any t, it is sufficient to
assure this for t = 0. This will follow showing that one can choose k linearly
independent (as vectors in Rn) ui(0, ξ) for i = 1, . . . , k, initial conditions for
T -periodic solutions of the adjoint system (3.2). This is indeed valid since these
vectors must be a base in the kernel of the displacement map of the adjoint
system (3.2), and the displacement map has C2-dependence with respect to the
parameter ξ.

One can choose the (n − k) columns of the matrix S(ξ) to be a base in the
range of Y (0, ξ)−1 − Y (T, ξ)−1. �

Lemma 3.1 will be applied to the variational equation of the unperturbed
system (1.2) associated to its solution x(t, z, 0),

(3.3) y′ = DxF0(t, x(t, z, 0))y,

where F0(t, x) = F (t, x, 0). In fact we will need more notations from the Taylor
expansion of F (t, x, ε) around ε = 0,

F (t, x, ε) = F0(t, x) + εF1(t, x) + ε2F2(t, x) + O(ε3).

The main result of this paper is the following:

Theorem 3.2. Let F0, F1, F2: R×Ω → Rn and ξ:U → Rn be C2 functions,
where Ω is an open subset of Rn and U is an open subset of Rk. We assume that
ξ(U) ⊂ D is a normally nondegenerate T -periodic manifold for system (1.2).
Let Y (t, ξ(h)) be the fundamental matrix solution of (3.3) with z = ξ(h) and
let S(ξ(h)) be as in Lemma 3.1 applied to the linear differential system (3.3).
Assume that S is constant with respect to h ∈ U . We consider the functions
f1:U → Rk defined by

(3.4) f1(h) = πg1(ξ(h)),

and f2:U → Rk defined by

(3.5) f2(h) = 2(πg2)(ξ(h)) + 2D(πg1)(ξ(h))Sγ(h)

+
n−k∑
i=1

γi(h)
[

∂

∂zk+i
D(πg0)

]
(ξ(h))Sγ(h),
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where γ(h) = −[D(π⊥g0)(ξ(h))S]−1(π⊥g1)(ξ(h)) ∈ Rn−k, and

g0(z) =Y (T, z)−1(x(T, z, 0)− z),

g1(z) =
∫ T

0

Y (t, z)−1F1(t, x(t, z, 0)) dt,

g2(z) =
1
2

∫ T

0

Y (t, z)−1F∗(t, x(t, z, 0)) dt,

with

F∗ =2F2 + 2(DxF1)
∂x

∂ε
+

n∑
i=1

∂xi

∂ε

∂

∂xi
(DxF0)

∂x

∂ε
,

∂x

∂ε
(t, z, 0) =Y (t, z)

∫ t

0

Y (s, z)−1F1(s, x(s, z, 0)) ds =
(

∂x1

∂ε
, . . . ,

∂xn

∂ε

)∗
.

Then f1 is a first order bifurcation function and, when f1(α) ≡ 0, f2 is a second
order bifurcation function for the problem of persistence in (1.1) of T -periodic
solutions of (1.2) that initiates in Z.

Remark 3.3. Let ui( · , h) for i = 1, . . . , k be linearly independent T -perio-
dic solutions of the adjoint linear variational system y′ = −[DxF0(t, x(t, z, 0))]∗y
and let Y (t, ξ(h)) be as in Theorem 3.2. Then, from the proof of Lemma 3.1 we
have that the first k lines of Y (t, ξ(h)) are ui( · , h) for i = 1, . . . , k. Hence

πg1(ξ(h)) =
∫ T

0

 u1(t, h)
...

uk(t, h)

 F1(t, x(t, ξ(h), 0)) dt.

Written in this form, f1(h) = πg1(ξ(h)) is named the Malkin bifurcation function.
Note that in order to find the expression of the second order bifurcation

function f2 it is necessary to know all the entries of Y (t, ξ(h)).

Remark 3.4. For calculating f2 we need to know the derivatives of g1 and g2.
It might be useful to know that Dzx(t, z, 0) is the principal fundamental matrix
of (3.3).

Corollary 3.5 (The isochronous case). We assume that there exists an
open set U ⊂ D such that for each z ∈ U , x( · , z, 0) is T -periodic, that is the
hypotheses of the above theorem are fulfilled for k = n. In this case g0 ≡ 0 and the
bifurcation functions have simpler expressions f1(z) = g1(z) and f2(z) = 2g2(z),
where g1 and g2 are calculated according to the formulas of Theorem 3.2.

Remark 3.6. We present two proofs for Theorem 3.2. In the first proof we
apply the Lyapunov–Schmidt reduction of Theorem 2.2 to the Poincaré return
map. In the second proof we show that there exists a linear change of variables
that transforms a system which is in the conditions of Theorem 3.2 into a system
that fulfills the hypotheses of the main result in [5] (Theorem 3.7 below).
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Proof (First proof of Theorem 3.2). For z ∈ Ω we denote by

x( · , z, ε): [0, t(z,ε)) → Rn

the solution of (1.1) with x(0, z, ε) = z. From Theorem 8.3 of [1] we deduce that,
whenever t(z0,0) > T for some z0 ∈ Ω there exists a neighbourhood of (z0, 0) in
Ω × (−εf , εf ) such that, for all (z, ε) in this neighbourhood, t(z,ε) > T . Under
this assumption there exists an open subset D of Ω and a sufficiently small ε0 > 0
such that, for all (z, ε) ∈ D × (−ε0, ε0), the solution x( · , z, ε) is defined on the
interval [0, T ]. Hence, the Poincaré return map x(T, z, ε) is well-defined for each
z ∈ D and ε ∈ (−ε0, ε0). We remind that the T -periodic solutions of (1.1) that
initiates in D are in one-to-one correspondence with the fixed points of x(T, · , ε).

As in the proof of Theorem 1 in [5], we consider

g(z, ε) = Y (T, z)−1(x(T, z, ε)− z)

and note that its zeros are in one-to-one correspondence with the T -periodic
solutions of (1.1). To this function we shall apply Theorem 2.2. Note that ξ:U →
Rn satisfies the assumptions of Theorem 2.2. We have to identify the functions
g0, g1 and g2 and to prove that g0 satisfies the hypotheses of Theorem 2.2. Of
course, g0(z) = g(z, 0) = Y (T, z)−1(x(T, z, 0) − z) and, since ξ(h) is the initial
value of some T -periodic solution of (1.2), we have that g0(ξ(h)) = 0 for any
h ∈ U . We claim that

(3.6) Dg0(ξ(h)) = Y (0, ξ(h))−1 − Y (T, ξ(h))−1.

Then, using the hypothesis that ξ(U) ⊂ D is a normally nondegenerate T -
periodic manifold for system (1.2) (mainly that system (3.3) for z = ξ(h) has the
Floquet multiplier +1 with the geometric multiplicity equal to k), by Lemma 3.1
follows that Dg0(ξ(h)) satisfies hypothesis (b) of Theorem 2.2.

In order to prove the claim we need to know (Dzx)(t, z, 0). Since it is the
matrix solution of (3.3) with (Dzx)(0, z, 0) = In, we have that (Dzx)(t, z, 0) =
Y (t, z)Y (0, z)−1. Moreover,

Dz(x(T, z, 0)− z) =Dzx(T, z, 0)− In = Y (T, z)Y (0, z)−1 − In

Dg0(z) =Y (0, z)−1 − Y (T, z)−1

+
(

∂

∂z1
Y (T, z)−1f(z, 0), . . . ,

∂

∂zn
Y (T, z)−1f(z, 0)

)
,

that, for z = ξ(h), reduces to (3.6).
In short, all the assumptions hypotheses of Theorem 2.2 are fulfilled. In order

to find the expressions of the bifurcation functions it remains only to find the



Periodic Solutions: a Second Order Analysis 413

expressions of g1 and g2. Note that this is already done in the proof of Theorem 1
of [5], but for completeness we present here the main ideas. We have

g1(z) =
∂g

∂ε
(z, 0) = Y (T, z)−1 ∂x

∂ε
(T, z, 0).

Taking the derivative with respect to ε in the relations

(3.7)

x′(t, z, ε) =F0(t, x(t, z, ε))

+ εF1(t, x(t, z, ε)) + ε2F2(t, x(t, z, ε)) + O(ε3),

x(0, z, ε) = z,

one can see that the function (∂x/∂ε)( · , z, 0) is the unique solution of the initial
value problem

y′ = DxF0(t, x(t, z, 0))y + F1(t, x(t, z, 0)), y(0) = 0.

Hence
∂x

∂ε
(t, z, 0) = Y (t, z)

∫ t

0

Y (s, z)−1F1(s, x(s, z, 0)) ds.

Then we have

g1(z) =
∂g

∂ε
(z, 0) =

∫ T

0

Y (s, z)−1F1(s, x(s, z, 0)) ds.

Taking the second order derivative with respect to ε in the relations (3.7), we
can see that the function (∂2x/∂ε2)( · , z, 0) is the unique solution of the initial
value problem

y′ = DxF0(t, x(t, z, 0))y + F∗(t, x(t, z, 0)), y(0) = 0,

where the expression of F∗ is given in the statement of the theorem. Hence

∂2x

∂ε2
(t, z, 0) = Y (t, z)

∫ t

0

Y (s, z)−1F∗(s, x(s, z, 0)) ds.

Therefore we have

g2(z) =
1
2

∂2g

∂ε2
(z, 0) =

1
2

∫ T

0

Y (s, z)−1F∗(s, x(s, z, 0)) ds. �

We state now the main result in [5] which will be used for a second proof of
Theorem 3.2.

Theorem 3.7. Let F0, F1, F2: R × Ω → Rn and β:V → Rn−k be C2 func-
tions, where Ω is an open subset of Rn and V is an open subset of Rk. Denote
ζ(α) =

(
α

β(α)

)
for any α ∈ V . We assume that

(a) ζ(V ) ⊂ D is a T -period manifold of (1.2);
(b) for each α ∈ V , there exists a fundamental matrix solution Yα(t) =

Y (t, ζ(α)) of (3.3) such that the matrix Yα(0)−1 − Yα(T )−1 has in the
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right up corner the null k × (n − k) matrix, while in the right down
corner has the (n− k)× (n− k) matrix ∆α, with det(∆α) 6= 0.

We consider the functions f1:V → Rk defined by

(3.8) f1(α) = π

( ∫ T

0

Y (t, ζ(α))−1F1(t, x(t, ζ(α), 0)) dt

)
,

and f2:V → Rk defined by

(3.9) f2(α) = 2πg2(α) + 2(Dβ(πg1)(ζ(α)))γ(α)

+
n−k∑
i=1

γi(α)
∂

∂βi
(Dβ(πg0)(ζ(α))) γ(α),

where γ(α) = −∆−1
α (π⊥g1)(ζ(α)) = (γ1(α), . . . , γn−k(α))∗ ∈ Rn−k, and

g0(z) =Y (T, z)−1(x(T, z, 0)− z),

g1(z) =
∫ T

0

Y (t, z)−1F1(t, x(t, z, 0)) dt,

g2(z) =
1
2

∫ T

0

Y (t, z)−1F∗(t, x(t, z, 0)) dt,

with

F∗ =2F2 + 2(DxF1)
∂x

∂ε
+

n∑
i=1

∂xi

∂ε

∂

∂xi
(DxF0)

∂x

∂ε
,

∂x

∂ε
(t, z, 0) =Y (t, z)

∫ t

0

Y (s, z)−1F1(s, x(s, z, 0)) ds =
(

∂x1

∂ε
, . . . ,

∂xn

∂ε

)∗
.

Then f1 is a first order bifurcation function and, when f1(α) ≡ 0, f2 is a second
order bifurcation function for the problem of persistence in (1.1) of T -periodic
solutions of (1.2) that initiates in ζ(V ).

Proof (Second proof of Theorem 3.2). There exists some n × n invertible
matrix S̃ whose last (n − k) columns are the columns of S because these must
be linearly independent. We will prove that, by the linear change of variable

x = S̃x̃

system (1.2) is transformed into a system that satisfies the hypotheses of Theo-
rem 3.7. As in the proof of Theorem 2.2 we define β:V → Rn−k such that

(3.10) ξ(h̃(α)) = S̃

(
α

β(α)

)
with some invertible map h̃:V → U .

After the change x = S̃x̃, system (1.1) becomes

(3.11) x̃′(t) = S̃−1F (t, S̃x̃, ε),
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and we have

(3.12) x̃(t, z, ε) = S̃−1x(t, S̃z, ε).

It is not difficult to see that hypothesis (i) of Theorem 1 of [5] is fulfilled.
The corresponding unperturbed system is

(3.13) x̃′(t) = S̃−1F0(t, S̃x̃).

The variational equation of (3.13) associated to the solution x̃(t, z, 0) is

(3.14) y′ = S̃−1DxF0(t, S̃x̃(t, z, 0))S̃y.

Whenever Y (t, z) is a fundamental matrix solution of (3.3) we have that

Ỹ (t, z) = S̃−1Y (t, S̃z)

is a fundamental matrix solution of (3.14) and, moreover

Ỹ (t, z)−1 = Y (t, S̃z)−1S̃.

Thus

(3.15) Ỹ (0, z)−1 − Ỹ (T, z)−1 = [Y (0, S̃z)−1 − Y (T, S̃z)−1]S̃.

Fix now Y (t, ξ(h)) as in the statement of this theorem. Then, from Lemma 3.1,
(3.10) and (3.15) written for z = (α, β(α)), we deduce that hypothesis (ii) of
Theorem 1 of [5] is also fulfilled. One can validate by direct and easy calculations
the expressions of the bifurcation functions. �

4. Application to the perturbed symmetric Euler top

We illustrate here our main result Theorem 3.2 constructing a second order
bifurcation function for the perturbed symmetric Euler top. More exactly, we
consider system (1.1) in the case that its dimension n = 3, T > 0 arbitrary but
fixed, and the unperturbed system is the symmetric Euler top

(4.1) ẋ1 = −x2x3, ẋ2 = x1x3, ẋ3 = 0,

i.e. F0(x) = (−x2x3, x1x3, 0)∗ for any x = (x1, x2, x3)∗ ∈ R3. In [5] it was found
that system (4.1) has the following T -period manifolds

Zv
m = {(0, 0, h) : h ∈ (2mπ/T, 2(m + 1)π/T )},

Zh
m = {(z1, z2, 2mπ/T ) : (z1, z2) ∈ R2 \ {(0, 0)}},

for any m ∈ Z. Moreover, in [4] it was shown that each of them is normally
nondegenerate and we found the expression of the first order bifurcation function
for each T -period manifold. Here we find the expression of the second order
bifurcation function only for the “vertical” T -period manifold Zv

m (m ∈ Z).
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We start now checking the hypotheses of Theorem 3.2. It is easy to see
that Zv

m is the image of ξm: (2mπ/T, 2(m + 1)π/T ) → R, ξm(h) = (0, 0, h)
and that the solutions of (4.1) that initiates in Zv

m are constant (hence trivially
periodic). For completeness we prove here that Zv

m is normally nondegenerate.
Note that k = 1. The first variational equations of 94.1) around the equilibrium
(0, 0, h) ∈ Zv

m are

(4.2) ẏ1 = −hy2, ẏ2 = hy1, ẏ3 = 0,

and, moreover, it has the principal fundamental matrix solution

(4.3) Φ(t, h) =

 cos(ht) − sin(ht) 0
sin(ht) cos(ht) 0

0 0 1

 .

It is easy to check that the kernel of Φ(T, h)− I3 has dimension k = 1, meaning
that the eigenvalue +1 of Φ(T, h) has geometric multiplicity k = 1. This shows
that the T -period manifold Zv

m is normally nondegenerate.
We proceed now to identify all the necessary ingredients to construct f2.
The fundamental matrix solution Y (t, h) of (4.1) can be found following the

procedure described in the proof of Lemma 3.1,

Y (t, h)−1 =

 0 0 1
cos(ht) sin(ht) 0
− sin(ht) cos(ht) 0


and the corresponding matrix (that does not depend on h)

S =

 1 0
0 1
0 0

 .

In order to find the expressions of g0, g1, g2 we need the solution of (4.1) with
x(0) = z = (z1, z2, z3) ∈ R3,

x(t, z, 0) =

 z1 cos(z3t)− z2 sin(z3t)
z1 sin(z3t) + z2 cos(z3t)

z3

 .

We remind that x(t, ξ(h), 0) = ξ(h) = (0, 0, h). One can easily obtain

g0(z) =

 0
z1 − z1 cos(z3T )− z2 sin(z3T )
z2 + z1 sin(z3T )− z2 cos(z3T )

 ,

and further πg0(z) ≡ 0,

(4.4) −[D(π⊥g0)(ξ(h))S]−1 = −1
2

 1
sin(hT )

1− cos(hT )

− sin(hT )
1− cos(hT )

1

 .
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The function g0 depends only on the unperturbed system, but g1 and g2 depend
also on the perturbation. Denote the components of the first order (respectively,
second) order perturbation by F1 = (p1, q1, s1)∗ (respectively, F2 = (p2, q2, s2)∗).
We are ready now to find that

πg1(z) =
∫ T

0

s1(t, x(t, z, 0)) dt,

(4.5) π⊥g1(ξ(h)) =
∫ T

0

(
cos(ht) sin(ht)
− sin(ht) cos(ht)

) (
p1(t, ξ(h))
q1(t, ξ(h))

)
dt,

(4.6) D(πg1)(ξ(h))S

=
∫ T

0

(
∂s1

∂x1
(t, ξ(h)),

∂s1

∂x2
(t, ξ(h))

) (
cos(ht) − sin(ht)
sin(ht) cos(ht)

)
dt.

By simply calculating the derivatives of F0 we obtain that

3∑
i=1

∂xi

∂ε

∂

∂xi
(DxF0)

∂x

∂ε
= −2

(
∂x3

∂ε
· ∂x2

∂ε
,
∂x3

∂ε
· ∂x1

∂ε
, 0

)∗
.

Due to the structure of Y (t, h)−1, to calculate the expression of πg2 we need
only the third component of F∗. This implies that the previous sum does not
have any contribution to πg2. In fact finally we have

(4.7) πg2(ξ(h)) =
∫ T

0

(
s2(t, ξ(h)) + Dxs1(t, ξ(h))

∂x

∂ε
(t, ξ(h), 0)

)
dt,

where
∂x

∂ε
(t, ξ(h), 0) =

∫ t

0

Φ(t− τ, h)F1(τ, ξ(h)) dτ,

with Φ given by (4.3). The first term in the expression (3.5) of f2 (in fact f2/2)
is (4.7), while the second term is the product between (4.6), (4.4) and (4.5). The
third term is null since πg0(z) ≡ 0. We remind that the expression (3.4) of f1 is

f1(h) =
∫ T

0

s1(t, ξ(h)) dt.

In conclusion, we found in this section the expression of the second order bi-
furcation function for the problem of persistence of the nonisolated equilibria
ξ(h) = (0, 0, h), h ∈ R \ {2mπ/T : m ∈ Z} of the symmetric Euler top (4.1) as
the T -periodic solution of the T -periodic (sufficiently smooth) system

ẋ1 = −x2x3 + εp1(t, x) + ε2p2(t, x),

ẋ2 = x1x3 + εq1(t, x) + ε2q2(t, x),

ẋ3 = εs1(t, x) + ε2s2(t, x).
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[6] A. Buică and J. Llibre, Averaging methods for finding periodic orbits via Brouwer

degree, Bull. Sci. Math. 128 (2004), 7–22.
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