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SIGN-CHANGING CRITICAL POINTS
FOR NONCOERCIVE FUNCTIONALS

Yaotian Shen — Zhouxin Li — Youjun Wang

Abstract. We study the existence of infinitely many sign-changing crit-
ical points and nonexistence of critical points to a class of noncoercive

functionals.

1. Introduction and main results

This paper is concerned with the existence of sign-changing critical points to
the problem which comes from the following functional

(1.1) I(u) =
∫

Ω

[
1
2
aij(x)g2(u)∂iu∂ju− F (x, u)

]
dx,

where Ω is a bounded smooth domain in Rn, n ≥ 2, a1|ξ|2 ≤ aij(x)ξiξj ≤ a2|ξ|2,
aij = aji, aij(x) ∈ Cα(Ω), and a2 ≥ a1 > 0. The repeated indices indicate the
summation from 1 to N

∂iu =
∂u

∂xi
, F (x, u) =

∫ u

0

f(x, t) dt.

If g(u) ≡ 1, then I(u) is smooth. The results about existence of infinitely
many critical points of I(u) can be found in [1], [4] and the existence of infinitely
many sign-changing critical points, in the case aij(x) = δij , was proved in [12].
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If g2(u) ≥ c > 0, then I(u) is nonsmooth and its principal part is coer-
cive. Results about the existence of critical points can be found in [2], [5]–[8],
[10], [11], etc.

If g2(u) > 0, then I(u) is nonsmooth and its principal part is noncoercive.
There are seldom results about the existence of critical points of such kind of
functionals. The first existence results are, up to our knowledge, due to [3],
where the authors studied the existence of minimum point and other nontrivial
critical points of the functional

J(u) =
∫

Ω

[
|∇u|2

2(1 + |u|)2α
− |u|

m

m

]
dx,

proving that if 0 < α < N/(2N − 2) and 2 < m < 2∗(1 − α), then nontrivial
critical points to J(u) exist. Moreover, if m ≥ 2∗ and Ω is a starshaped smooth
domain, then the Euler–Lagrange equation of J(u){

−div [(1 + |u|)−2α∇u]− α(1 + |u|)−(1+2α)|∇u|2 = um−1, x ∈ Ω,

u ≥ 0, x ∈ Ω

has no nontrivial solution in H1
0 (Ω) ∩ L∞(Ω) ∩H2(Ω).

As far as we know, there are no results on the existence of sign-changing
critical points to nonsmooth functionals with coercive or noncoercive principal
part.

The main purpose of the present paper is to study the existence of infin-
itely many sign-changing critical points and nonexistence of critical points of
nonsmooth functionals with noncoercive principal part.

We note that the derivative of I(u) is given by

(1.2) 〈I ′(u), ϕ〉

=
∫

Ω

[
aij(x)g2(u)∂iu∂jϕ+

1
2
(g2(u))′aij(x)∂iu∂juϕ− f(x, u)ϕ

]
dx

for every ϕ ∈ C∞0 (Ω).
In this paper, by introducing a change of variable, we transform the search of

critical points u(x) of (1.1) into the search of critical points v(x) of the following
functional:

(1.3) I1(v) =
∫

Ω

[
aij(x)∂iv∂jv − F (x,G−1(v))

]
dx,

where v = G(u), G(u) =
∫ u

0
g(t) dt, u = G−1(v), g(t) > 0 in [0,+∞). We have

G−1 is of class C1 and I1(v) is a smooth functional with coercive principal part.
We know that, for every ψ ∈ C∞0 (Ω),

(1.4) 〈I ′1(v), ψ〉 =
∫

Ω

[
aij(x)∂iv∂jψ −

f(x,G−1(v))
g(G−1(v))

ψ

]
dx.



Sign-Changing Critical Points for Noncoercive Functionals 375

We show that (1.2) is equivalent to (1.4), which means that u is a critical
point of I(u) if and only if v = G(u) is a critical point of I1(v). Indeed, if we
choose ϕ = ψ/g(u) in (1.2), then we immediately get (1.4). On the other hand,
since u = G−1(v), if we let ψ = g(u)ϕ in (1.4), we get (1.2). Therefore, in order
to find the critical points of (1.1), it suffices to study the critical points of (1.3).
Now, the Euler–Lagrange equation of the functional I1(v) can be simply write
as

(1.5) −∂j(aij(x)∂iv) =
f(x,G−1(v))
g(G−1(v))

, x ∈ Ω.

In this case, we can employ the sign-changing critical point theory for smooth
functionals in [12] to study the existence of sign-changing critical points of I1(v),
and then prove that those critical points are that of I(u). If we assume that g(u)
is even and f(x, u) is odd with respect to u, we have v is odd and v = G(|u|)signu,
thus u has same sign of v.

Remark 1.1. Since G(u) ∈ H1
0 (Ω), by Sobolev inequality, G(u) ∈ L2∗(Ω).

Assume that lim
|u|→∞

G(u)/|u|γ = c, then, u ∈ Lγ2∗(Ω). Let g(u) = (1 + |u|)−α, if

γ2∗ > 1 then γ = 1− α, so, α < (N + 2)/2N .

In the following, we make the following assumptions on f and g.

(f1) f(x, u) is α-Hölder continuous with respect to x, u, and there exists
1 < p < 2∗ such that

|f(x, u)| ≤ Cg(u)(1 + |G(u)|p−1).

(f2) |f(x, u)| ≤ o(|g(u)G(u)|), as u→ 0.
(f3) there exist µ > 2, u0 > 0 such that for |u| ≥ u0,

µF (x, u)g(u) ≤ f(x, u)G(u).

(f4) g(u) ∈ Cα is even and nonincrease, g(u) > 0 for u ∈ [0,+∞), and
f(x, u) is odd with respect to u.

Remark 1.2. If g(u) = 1, then G(u) = u, the above assumptions (f1)–(f3)
were used in [1], and in this special case

(f1) |f(x, u)| ≤ C(1 + |u|p−1).
(f2) f(x, u) = o(|u|) as u→ 0.
(f3) µF (x, u) ≤ uf(x, u), for µ > 2 and |u| ≥ u0.

Remark 1.3. By (f3), for |u| ≥ u0, we have

G(u)|G(u)|µ d

du
(|G(u)|−µF (x, u)) = −µg(u)F (x, u) +G(u)f(x, u) ≥ 0.

Then we can integrate inequality

d

du
(|G(u)|−µF (x, u)) ≥ 0
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and obtain

(1.6) F (x, u) ≥ C(x)|G(u)|µ.

Theorem 1.4. Assume that (f1)–(f4) hold, then there exist infinitely many
sign-changing critical points of the functional I(u).

Corollary 1.5. Assume that g(u) = (1 + |u|)−α and 0 < α < 1, 2 < m <

2∗(1 − α), then there exist infinitely many sign-changing critical points of the
functional J(u).

Theorem 1.6. Assume (f1), (f3) and (f4) hold, then there exist infinitely
many critical points of the functional I(u).

Corollary 1.7. Assume that g(u)=(1 + |u|)−α and 0<α<1, 2(1−α) < m <

2∗(1 − α), then there exist infinitely many critical points of the functional J(u)
with the corresponding critical values tending to +∞.

If aij(x) = δij and f is independent on x, then the Euler–Lagrange equation
of I(u) is

(1.7)

{
−div (g2(u)∇u) +

1
2
(g2(u))′|∇u|2 = f(u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

Theorem 1.8. Assume that Ω is a starshaped domain, and f(u) satisfying

|f(u)| ≤ g(u)
(
C + (G(u))p′

)
, for all p′ > 0,

then if

(1.8) 2∗ ≤ f(u)G(u)
F (u)g(u)

,

problem (1.7) has no nontrivial solutions in W 2,2n/(n+1)(Ω) ∩H1
0 (Ω) ∩ L∞(Ω).

Corollary 1.9. Assume that Ω is a starshaped domain and

F (u) = C|G(u)|β ,

then if 2∗ ≤ β, problem (1.7) has no nontrivial solutions in W 2,2n/(n+1)(Ω) ∩
H1

0 (Ω) ∩ L∞(Ω).

In the case g(u) = 1 and G(u) = u, the nonexistence result of Theorem 1.8
is well known to us. The result we obtained in Theorem 1.8 generalized this well
known nonexistence result. An simple example in point is g(u) = (1 + |u|)−α.
In this case, if

|F (u)| = C
|(1 + |u|)1−α − 1|β

|1− α|β
and 2∗ ≤ β, then conclusion of Theorem 1.8 holds. At this time, we see that
F (u) ∼ C|u|(1−α)β . This improve the results in [3].
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Remark 1.10. The assumption m < 2∗(1−α) in Corollary 1.5 is necessary
when Ω is a starshaped domain.

2. Tools of even functional and Pohozaev identity

In this section, we introduce some theorems which are needed in Section 3,
in order to study the existence of infinitely many sign-changing critical points
of I(u). We improve the Pohozaev identity in the end of this section.

Theorem 2.1. Let X be a separable Hilbert space. Xi be an i dimensional
subspace of X and Yi = X⊥

i . Suppose I(u) ∈ C1(X,R) is even in u and satisfies
Palais–Smale condition, and if for all positive integers i, there exist ρi and ri
such that

(a) bi = inf
u∈Yi, ‖u‖=ri

I(u)→ +∞, as i→ +∞.

(b) ai = max
u∈Xi, ‖u‖=ρi

I(u) ≤ 0.

Then I(u) has a sequence of critical values tending to +∞.

Proof. See [4]. �

Now we recall some facts from [12] which are needed in the proof of our main
theorems.

Let G ∈ C1(E,R), E is a Hilbert space, and the gradient G′ be of the form

G′(u) = u−KG(u),

where KG:E → E is a continuous operator. Let K := {u ∈ E : G′(u) = 0} and
Ẽ := E \ K, K[a, b] := {u ∈ K : G(u) ∈ [a, b]}. Let P be a positive cone of E.
For µ0 > 0, define

D0 := {u ∈ E : dist(u,P) < µ0}.
Then D0 is an open convex set containing the positive cone P in its interior. Set

D := D0 ∪ (−D0), S = E \ D.

We assume that:

(A) KG(±D0) ⊂ ±D0.

Let Y , M be two subspaces of E with dimY < ∞, dimY − codimM ≥ 1 and
(M \{0})∩(−P∪P) = ∅; that is, the nontrivial elements of M are sign-changing.
We assume that P is weakly closed; that is, if P 3 uk ⇀ u weakly in (E, ‖ · ‖),
then u ∈ P. Moreover, we assume that there is another norm ‖ · ‖∗ of E such
that ‖u‖∗ ≤ C∗‖u‖ for all u ∈ E; here C∗ > 0 is a constant. We assume also
that:

(A∗
1) Assume that for any a, b > 0, there is c2 = c2(a, b) such that

G(u) ≤ a and ‖u‖∗ ≤ b ⇒ ‖u‖ ≤ c2.
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(A∗
2) lim

u∈Y, ‖u‖→∞
G(u) = −∞, and sup

Y
G := β.

The following theorem was taken from [12, Theorem 5.6], readers can refer
to [12] for its proof.

Theorem 2.2. Assume (A), (A∗
1) and (A∗

2). If the even functional G satis-
fies the (w∗−PS)c condition (see [12, Definition 3.3]) at level c for each c ∈ [γ, β],
then

K[γ − ε, β + ε] ∩ (E \ (−P ∪ P)) 6= ∅ for all ε > 0 small.

In the following, we introduce the Pohozaev identity in [9]. A main difference
between our statement and the conclusions in [9] is that we consider the identity
not in the usual C2 space, but in the Sobolev space W 2,p1 ∩ H1

0 , where p1 =
2n/(n+ 1) < 2.

We consider the following problem:

(2.1)

{
−∆u = f(u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

Theorem 2.2. Assume that u is a solution to problem (2.1), u ∈ W 2,p1(Ω)
with p1 = 2n/(n+ 1) < 2 and that

(2.2) |f(u)| ≤ C(1 + |u|q),

where q ≤ (n+ 1)/(n− 3) if n > 3 and 0 < q <∞ if n = 3. Then there holds

(2.3) −n− 2
2

∫
Ω

|∇u|2 dx+ n

∫
Ω

F (u) dx =
1
2

∫
∂Ω

∣∣∣∣∂u∂ν
∣∣∣∣2〈x, ν〉 ds,

where ν denote the unit outer normal of ∂Ω, 〈x, ν〉 = 〈xi, νi〉.

Proof. Since u ∈ W 2,p1(Ω), we have |∇u| ∈ L2n/(n−1)(Ω). We can employ
Hölder inequality to obtain that∫

Ω

|∆u||∇u| dx ≤
( ∫

Ω

|∆u|2n/(n+1)

)(n+1)/(2n)(
|∇u|2n/(n−1)

)(n−1)/(2n)

.

Thus (x ·∇u)∆u is integrable. On the other hand, since u ∈W 2,2n/(n+1)(Ω), we
have u ∈ W 2−(n+1)/(2n),2n/(n+1)(∂Ω). Then we can use the fractional Sobolev
embedding theorem to obtain that u ∈W 1,2(∂Ω). Multiplying (2.1) by (x · ∇u)
and then integrating by part, we get

−
∫

Ω

∆u(x · ∇u) dx =
(

1− n

2

) ∫
Ω

|∇u|2 − 1
2

∫
∂Ω

|∇u|2〈x, ν〉 ds.

Furthermore, since u ∈ W 1,2n/(n−1)(Ω), we obtain that u ∈ L2n/(n−3)(Ω) for
n > 3, and u ∈ Lq(Ω), 0 < q <∞, for n = 3. Then by (2.2),∫

Ω

|f(u)||∇u| dx ≤ C
( ∫

Ω

|∇u||u|q dx+
∫

Ω

|∇u| dx
)
,
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and by Hölder inequality,∫
Ω

|∇u||u|q ≤
( ∫

Ω

|∇u|2n/(n−1)

)(n−1)/(2n)( ∫
Ω

|u|q2n/(n+1) dx

)(n+1)/(2n)

.

Since q ≤ (n+ 1)/(n− 3), the index in the above inequality q2n/(n+ 1) ≤
2n/(n− 3). It results that f(u)(x · ∇u) is integrable and that∫

Ω

f(u)(x · ∇u) dx =
∫

Ω

∂F

∂xi
xi dx = −n

∫
Ω

F (u) dx.

This completes the proof. �

3. Proof of the main theorems

In this section, ‖·‖r denote the norm of Lr(Ω), 1 ≤ r <∞ and Ci, i = 0, 1, . . .
will denote positive constants.

Let E be the Hilbert space equivalent to H1
0 (Ω) and define the inner product

of E by

〈u, v〉 =
∫

Ω

aij(x) ∂iu ∂jv dx.

The norm of E is given by ‖u‖ = 〈u, u〉1/2. That is, E is the closer of C∞0 (Ω)
under the norm ‖ · ‖.

Let 0 < λ1 < λ2 < . . . be the distinct eigenvalues of the operator

−∂j(aij(x)∂iv)

on Ω with zero boundary value. Then each λk has finite multiplicity. The
principal eigenvalue λ1 is simple with a positive eigenfunction ϕ1, and the eigen-
functions ϕk corresponding to λk (k ≥ 2) are sign-changing. Let Nk denote the
eigenspace of λk. Then dimNk <∞. We fix k and let Ek := N1⊕ . . .⊕Nk. Let

I1(v) =
1
2
‖v‖2 −

∫
Ω

F (x,G−1(v)) dx, v ∈ E.

Then I1 is of class C1(E,R) and

〈I ′1(v), w〉 = 〈v, w〉 −
∫

Ω

f(x,G−1(v))
g(G−1(v))

w dx, for all w ∈ E,

that is, I ′1 = id−KI1 , where KI1 is a continuous operator.

Lemma 3.1. Assume that (f1) and (f3) hold, then I1(v) satisfies the (PS)
condition.

Proof. Let c ∈ R and let vh ∈ H1
0 (Ω) be such that

(3.1) I1(vh)→ c,
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and

(3.2) 〈I ′1(vh), ϕ〉 =
∫

Ω

[
aij(x) ∂ivh ∂jϕ−

f(x,G−1(vh))
g(G−1(vh))

ϕ

]
dx = o(1)‖ϕ‖.

By (f3), we have

(3.3) F (x,G−1(vh)) ≤ f(x,G−1(vh))vh

µg(G−1(vh))
+ C0,

where C0 > 0 is a constant. Taking ϕ = vh in (3.2) and using (3.3), we obtain
from (3.1) that

c←
∫

Ω

[
1
2
aij(x) ∂ivh ∂jvh − F (x,G−1(vh))

]
dx

≥
∫

Ω

(
1
2
− 1
µ

)
aij(x) ∂ivh ∂jvh dx+ o(1)‖vh‖ − C0|Ω|,

where |Ω| denote the Lebesgue’s measure of Ω. This results that vh is bounded in
H1

0 (Ω). Then there exists a subsequence of vh, denote still by vh, and v ∈ H1
0 (Ω)

such that vh ⇀ v in H1
0 (Ω) with ‖vh − vk‖p → 0 as h, k → ∞. We prove that

vh → v strongly in H1
0 (Ω). In fact, taking ϕ = vh − vk in 〈I ′1(vh) − I ′1(vk), ϕ〉,

through direct computation, we obtain that

(3.4) ‖vh − vk‖2 ≤
∫

Ω

∣∣∣∣f(x,G−1(vh))
g(G−1(vh))

− f(x,G−1(vk))
g(G−1(vk))

∣∣∣∣|vh − vk| dx

+ o(1)‖vh − vk‖

≤
( ∫

Ω

∣∣∣∣f(x,G−1(vh))
g(G−1(vh))

− f(x,G−1(vk))
g(G−1(vk))

∣∣∣∣p/(p−1)

dx

)(p−1)/p

· ‖vh − vk‖p + o(1)‖vh − vk‖,

here we have used Hölder inequality. On the other hand, from (f1), we have∫
Ω

∣∣∣∣f(x,G−1(vh))
g(G−1(vh))

∣∣∣∣p/(p−1)

dx ≤ C
∫

Ω

(1 + |vh|p−1)p/(p−1) dx ≤ C1.

Thus we get the conclusion from (3.4). �

Before we prove Theorem 1.3, we need the following several lemmas which
are similar to those in [12].

Lemma 3.2. I1(v)→ −∞ as ‖v‖ → ∞, for all v ∈ Ek.

Proof. According to (f3) and (1.6), we know that for |v| ≥ G(u0),

F (x,G−1(v)) ≥ C2|v|µ, µ > 2.

Thus for all v, we have

F (x,G−1(v)) ≥ C2|v|µ − C3,
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Furthermore, since Ek is a finite dimensional space, and norms of a finite dimen-
sional space are all equivalent, we have

I1(v) =
1
2
‖v‖2 −

∫
Ω

F (x,G−1(v)) dx ≤ 1
2
‖v‖2 − C2‖v‖µµ + C3|Ω| → −∞,

as ‖v‖ → ∞, v ∈ Ek. �

Now we consider another norm ‖v‖∗ := ‖v‖s of E, s ∈ (2, 2∗). Then ‖v‖s ≤
C∗‖v‖ for all v ∈ E; here C∗ > 0 is a constant and ‖vn − v‖∗ → 0 whenever
vn ⇀ v weakly in (E, ‖ · ‖). Write E = Ek−1 ⊕ E⊥k−1. Let

Q∗(ρ) :=
{
v ∈ E⊥k−1 :

‖v‖ss
‖v‖2

+
‖v‖‖v‖s

‖v‖+D∗‖v‖s
= ρ

}
,

where ρ, D∗ are fixed constants. We have

Lemma 3.3. ‖v‖s ≤ c1, for all v ∈ Q∗(ρ), where c1 > 0 is a constant.

By the assumptions, we may find a CF > 0 such that

F (x,G−1(t)) ≤ 1
4
λ1|t|2 + CF |t|s, for all x ∈ Ω, t ∈ R;

here 2 < s < 2∗. For any a, b > 0, there is a c2 = c2(a, b) > 0 such that

I1(v) ≤ a and ‖v‖s ≤ b ⇒ ‖v‖ ≤ c2.

By Lemma 3.2, lim
v∈Y, ‖v‖→∞

I1(v) = −∞, where Y = Ek. Then (A∗
1) and (A∗

2)

are satisfied.
We define sup

Y
I1 := β. Denote Iβ

1 := {v ∈ E : I1(v) ≤ β}. Let

Q∗∗ := Q∗(ρ) ∩ Iβ
1 , inf

Q∗∗
I1 := γ.

Set P := {v ∈ E : v(x) ≥ 0 for almost every x ∈ Ω}. Then P(−P) is the
positive (negative) cone of E and weakly closed. Similar to Lemma 5.4 in [12],
there is a δ := δ(β) such that dist(Q∗∗,P) := δ(β) > 0. We define

D0(µ0) := {v ∈ E : dist(v,P) < µ0},

where µ0 is determined by the following lemma.

Lemma 3.4. Under the assumptions of (f1)–(f3), there exists a µ0 ∈ (0, δ)
such that KI1(±D0(µ0)) ⊂ ±D0(µ0).

Proof. The proof is quite similar to that of Lemma 2.29 in [12]. �

Let D := −D0(µ0) ∪ D0(µ0) and S := E \ D. We assume

Q∗∗ := Q∗(ρ) ∩ Iβ
1 ⊂ S.
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Lemma 3.5. Assume that (f1)–(f4) hold, then I1(v) has infinitely many sign-
changing critical points.

Proof. The proof is similar to that of Theorem 5.7 in [12]. �

Proof of Theorem 1.4. By Lemma 3.5, we know that there exist infinitely
many sign-changing critical points of I1(v) and that the sign-changing critical
point v satisfies∫

Ω

[
aij(x) ∂iv ∂jϕ−

f(x,G−1(v))
g(G−1(v))

ϕ

]
dx = 0, for all ϕ ∈ E.

Let v = G(u), then ∂iv = g(u)∂iu. Substituting it into the above equality, we
get ∫

Ω

[
aij(x)g(u) ∂iu ∂j ϕ−

f(x, u)
g(u)

ϕ

]
dx = 0, for all ϕ ∈ E.

Now let ϕ = g(u)ψ, ψ ∈ C∞0 (Ω), then∫
Ω

[
aij(x)g2(u) ∂iu ∂jψ +

1
2
(g2(u))′aij(x) ∂iu ∂juψ − f(x, u)ψ

]
dx = 0,

for all ψ ∈ C∞0 (Ω). Therefore, u is a critical point of I(u). Since v = G(u) =
G(|u|) signu, v has same sign of u, thus u is a sign-changing critical point
of I(u). �

Remark 3.6. If ∂Ω is smooth, then v ∈ C2,α(Ω).

Proof of Corollary 1.5. We need only to prove that J(u) satisfies con-
ditions (f1)-(f3). In fact, since m > 2 > 2(1− α), we can choose ε > 0 such that
µ = m(1 − ε)/(1− α) > 2, then there exists u0 > 0 sufficiently large and such
that for |u| ≥ u0,

µF (u)g(u) ≤ f(u)G(u),

where

F (u) =
|u|m

m
, f(u) = |u|m−1 signu, G(u) =

(1 + |u|)1−α − 1
1− α

signu.

This implies that (f3) holds. Since m > 2, it follows that (f2) holds also. �

We employ Theorem 2.1 to prove Theorem 1.6.

Proof of Theorem 1.6. Theorem 2.1 applied. Firstly, we prove (a). We
take Xi = Ei = N1 ⊕ . . .⊕Ni, Yi = X⊥

i and consider the following functional

I1(v) =
1
2
‖v‖2 −

∫
Ω

F (x,G−1(v)) dx.

By (f1) we know that |F (x,G−1(v))| ≤ C(1 + |v|)p. Then for v ∈ Yi, we have

(3.5) ‖v‖22 ≤
1

λi+1
‖v‖2.
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By Gagliondi–Nirenberg inequality ‖v‖p ≤ Cp‖v‖α‖v‖1−α
2 , where Cp > 0 is

a constant and α ∈ (0, 1) is defined by

1
p

= α

(
1
2
− 1
N

)
+

1
2
(1− α).

Then by (3.5), we get

‖v‖pp ≤ Cp
p‖v‖pα‖v‖p(1−α)

2 ≤ Cp
p‖v‖pαλ

−p(1−α)/2
i+1 ‖v‖p(1−α) = Cp

p‖v‖pλ
−p(1−α)/2
i+1 .

Therefore, we have

I1(v) ≥
1
2
‖v‖2 − Cp

p‖v‖pλ
−p(1−α)/2
i+1 − C4|Ω|

= ‖v‖2
(

1
2
− Cp

p‖v‖p−2λ
−p(1−α)/2
i+1

)
− C4|Ω|.

Since λi → ∞, we can take ‖v‖ = ri such that Cp
pr

p−2
i λ

−p(1−α)/2
i = 1/4. Thus

for i→ +∞, we have I1(v)→ +∞.
Next we prove (b). By (1.6) we have F (x,G−1(v)) ≥ C5|v|µ, for |v| ≥ G(u0).

Thus, for any v, we have F (x,G−1(v)) ≥ C5|v|µ − C6.
Since Xi is a finite dimensional space, and norms of finite dimensional space

are all equivalent, we deduce that

I1(v) =
1
2
‖v‖2 −

∫
Ω

F (x,G−1(v)) dx ≤ 1
2
‖v‖2 − C5‖v‖µµ − C6|Ω|.

This gives max
v∈Xi, ‖v‖=ρi

I1(v) ≤ 0, for ρi sufficiently large. Since g is even, we have

G is add and so does G−1(v), this results that F (x,G−1(v)) is even. Thus from
Theorem 2.1, we get the conclusion of the theorem. �

Proof of Corollary 1.7. Similar to the proof for Corollary 1.5, we obtain
that (f3) holds. Then we can get the conclusion from Theorem 1.6. �

Proof of Theorem 1.8. Assume on the contrary that u ∈ H2(Ω)∩H1
0 (Ω)∩

L∞(Ω) is a solution of (1.7), then v = G(u) is a solution of

(3.6) −∆v =
f(G−1(v))
g(G−1(v))

.

We multiply (3.6) by v and integrate over Ω. We have∫
Ω

|∇v|2 dx−
∫

Ω

f(u)G(u)
g(u)

dx = 0.

Then (2.3) and (1.8) imply that u ≡ 0 on Ω. �
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