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EXISTENCE OF A SOLUTION TO A NON-MONOTONE
DYNAMIC MODEL IN POROPLASTICITY
WITH MIXED BOUNDARY CONDITIONS

Sebastian Owczarek

Abstract. In this note, we investigate a non-monotone and non-coercive

dynamic model of poroplasticity with mixed boundary conditions. The

existence of the solution to this non-monotone model, where the inelastic
constitutive equation is satisfied in the sense of Young measures, is proved

using the coercive and monotone approximations.

1. Introduction

This article presents mathematical existence results for a dynamic model
describing an inelastic deformation process in porous materials when we apply
external forces. Porous materials are granular and they are saturated by liquids
(a good example of a porous material is clay). The dynamic system of equations
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of the theory of poroplasticity can be written in the form

(1.1)

ρutt(x, t)− divxT (x, t) +∇xp(x, t) = F (x, t),

c∆xp(x, t)− divxut(x, t) = f(x, t),

T (x, t) = D(ε(x, t)− εp(x, t)),

ε(x, t) =
1
2

(∇xu(x, t) +∇T
x u(x, t)),

εp
t (x, t) = F(Y (T (x, t)))

∂P

∂T
(T (x, t)),

where x ∈ Ω and Ω is a bounded and open set in R3 with smooth boundary
∂Ω. Moreover, t > 0 represents time. Notice that the system of equations (1.1)
consists of linear partial differential equations and ordinary differential equations
for internal variables. The linear partial differential equations in (1.1) are called
the Biot model – for more information we refer to [16], [19]. The last equation
in (1.1) is called the constitutive equation. This constitutive equation, which
is often used in practice, was introduced by W. Ehlers in the work [12]. The
set of internal variables proposed by W. Ehlers consists of nine components of
the plastic strain εp only (for the physical understanding of the constitutive
equations we also refer to [12]). ε is the infinitesimal strain tensor.

In the system (1.1) the unknowns are the displacement u: Ω×[0, T ] → R3, the
pressure of the fluid p: Ω×[0, T ] → R, the Cauchy stress tensor T : Ω×[0, T ] → S3

and the plastic strain tensor εp: Ω× [0, T ] → S3 (S3 denotes the set of symmetric
3 × 3-matrices). F : Ω × [0, T ] → R3 and f : Ω × [0, T ] → R are given functions.
D:S3 → S3 is a linear, symmetric, positive definite operator (elasticity tensor),
which is assumed to be constant in time and space. ρ > 0 is the mass density
which we assume to be constant and c > 0 is also a constant.

The functions Y :S3 → R and P :S3 → R are given functions. We as-
sume that they are convex homogeneous polynomials of the same growth, F ∈
C1(R; R+) and F is a monotone function with polynomial growth, which means
that there exist α > 1 and constants m, M > 0 such that

m |s|α ≤ F(s) ≤M |s|α for large |s|.

We also assume, that Y (0) = 0 and F(0) = 0.
The system (1.1) is considered with mixed boundary conditions

(1.2)

u(x, t) = gd(x, t) for x ∈ Γd and t ≥ 0,

(T (x, t)− p(x, t)I)n(x) = gn(x, t) for x ∈ Γn and t ≥ 0,

p(x, t) = gp(x, t) for x ∈ Γp and t ≥ 0,

c
∂p

∂n
(x, t) = gv(x, t) for x ∈ Γv and t ≥ 0,
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where n(x) is the exterior unit normal vector to the boundary ∂Ω at the point x,
Γd, Γn, Γp, Γv are open subsets of ∂Ω satisfying ∂Ω = Γd ∪ Γn = Γp ∪ Γv,
Γd ∩ Γn = Γp ∩ Γv = ∅ and H2(Γd) > 0, H2(Γp) > 0, where H2 denotes the
2-dimensional Hausdorff measure.

Finally, the system (1.1) is considered with initial conditions

(1.3) u(x, 0) = u0(x), ut(x, 0) = u1(x), εp(x, 0) = εp,0(x).

We say that the initial data (u0, u1, εp,0) satisfy the compatibility condition if

(1.4) u0(x) = gd(x, 0) and u1(x) = ∂tgd(x, 0) for x ∈ Γd

and, for x ∈ Γn,

(1.5)
(
D

(
1
2

(∇xu
0(x) +∇T

x u
0(x)

)
− εp,0(x))− Ip(x, 0)

)
· n = gn(x, 0),

where p(x, 0) is the solution of the equation

(1.6) c∆xp(x, 0)− divxut(x, 0) = f(x, 0)

with boundary conditions

(1.7)
p(x, 0) = gp(x, 0) for x ∈ Γp,

c
∂p

∂n
(x, 0) = gv(x, 0) for x ∈ Γv.

Remark 1.2. Notice that if the given data f(0), gp(0), gv(0) and u1 have
the regularity: f(0) ∈ L2(Ω; R), gp(0), gv(0) ∈ H1/2(Ω; R) and u1 ∈ H1(Ω; R3),
then the problem (1.6) with boundary conditions (1.7) has unique solution p(0) ∈
H1(Ω; R) and the compatibility condition (1.5) makes sense.

Observe that the assumption on the functions Y and P implies that the
constitutive equation in (1.1) is a nonlinear ordinary differential equation and
the vector field

N(T ) = F(Y (T ))
∂P

∂T
(T )

is not monotone. It is easy to check that the function N(T ) satisfies the dissi-
pative inequality: −ρ∇εpψ(ε, εp) ·N(T ) ≥ 0 (for the definition we refer to [2]),
where ρψ is the free energy function associated with the system (1.1) and it is
given by the formula

(1.8) ρψ(ε, εp) =
1
2
D(ε− εp)(ε− εp) =

1
2
TD−1T.

The total free energy is of the form:

E(ut, ε, ε
p)(t) =

1
2

∫
Ω

ρ|ut(x, t)|2 dx+
∫

Ω

ρψ(ε(x, t), εp(x, t)) dx.
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The considered model is non-coercive and non-monotone, because the quadratic
form ψ in (1.8) is only semi-positive definite and the constitutive functionN :S3→
S3 is not monotone (for the definitions, we refer to [2]).

The theory of inelastic deformation of metals is quite well examined if the
considered model is monotone, which means that the nonlinearities in this model
are monotone functions. This theory was developed by R. Temam, H.-D. Alber,
K. Che lmiński and P. Gwiazda in the works [20], [3], [9], [10]. The theory of in-
elastic deformation for porous materials is not very well examined, because the
constitutive function, proposed by W. Ehlers, is not monotone. In the literature
there are not many mathematical results for this non-monotone model of poro-
plasticity (the monotone model describing the diffusion in porous materials was
considered in [17]). The first work, where the non-monotone model of poroplas-
ticity was studied, is [18]. The non-monotone quasi-static model in poroplasticity
with only Dirichlet boundary conditions was considered. The main results is to
pass to the limit in the monotone approximation which was proposed by author
in [18]. This monotone approximation will be also used to the dynamic system
(1.1). Passage to the limit with the monotone approximation is the main results
of the present paper. In [18] the author defined a new notion of a solution for the
quasi-static model in poroplasticity. This notion is weaker than the weak-type
solution introduced in [3]. In the present paper we also have to define a weaker-
type solution than in [3]. This definition will be similar to the definition from [18]
because the system (1.1) is also non-monotone and for the same reason as in [18]
we can not obtain the standard weak-type solution. In this article we obtain
a better regularity for time derivatives of the monotone approximate solution
of the system (1.1) than in [18] and in the proof of this regularity we will not
use the structure of the approximate constitutive function (as was done in [18]).
The structure of the dynamic system allows us to consider the system (1.1) with
mixed boundary conditions.

2. Main theorem

Assume that our data F , f , gd, gn, gp gv, u0, u1, εp,0 have the following
regularity

F ∈ H1([0, T ];L2(Ω; R3)), f ∈ H1([0, T ];L2(Ω; R)),(2.1)

gd ∈W 3,∞([0, T ];H1/2(Γd; R3)), gn ∈W 2,∞([0, T ];H−1/2(Γn; R3)),(2.2)

gp ∈W 2,∞([0, T ];H3/2(Γp; R)), gv ∈W 2,∞([0, T ];H1/2(Γv; R)),(2.3)

u0 ∈ H1(Ω; R3), u1 ∈ H1(Ω; R3), εp,0 ∈ L2(Ω;S3),(2.4)

div(ε(u0)− εp,0) ∈ L2(Ω; R3).(2.5)
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Before we formulate the definition of the solution to the problem (1.1) let us
introduce spaces V = {v ∈ H1(Ω; R3) : v = 0 on Γd} and W = {w ∈ H1(Ω; R) :
w = 0 on Γp}.

Definition 2.1. Suppose that the given data satisfy (2.1)–(2.5). We say
that for β > 1 a vector u ∈ L∞(0, T ;W 1,1+1/β(Ω; R3)) such that ut ∈ L∞(0, T ;
L2(Ω; R3)) and utt ∈ L2(0, T ; (H1(Ω; R3))∗), the function p∈L2(0, T ;H1(Ω; R)),
the inelastic deformation tensor εp ∈L∞(0, T ; L1+1/β(Ω;S3)) such that εp

t ∈
L1+1/β(0, T ;L1+1/β(Ω;S3)) and the Cauchy stress tensor T∈L∞(0, T ;L2(Ω;S3))
are solutions of the problem (1.1)–(1.3) if

(a) the functions u and p are in the form

u(x, t) = v(x, t) + w(x, t), p(x, t) = p̃(x, t) + w̃(x, t),

where w ∈ W 3,∞(0, T ;H1(Ω; R3)) and w̃ ∈ W 2,∞(0, T ;H2(Ω; R)) are
such functions that w|Γd

= gd and w̃|Γp
= gp. Functions v and p̃ satisfy

the following system of the equations:

〈ρvtt, v〉+
∫

Ω

D(ε(v)− εp)ε(v) dx−
∫

Ω

pdiv v dx

−
∫

Ω

Fv dx−
∫

Ω

(D(ε(w))ε(v) + ρwtt)ε(v) dx+
∫

Γn

gnv dS(x),

∫
Ω×[0,T ]

c∇p̃∇φdx dt−
∫

Ω×[0,T ]

divuφt dx dt+
∫

Ω

divu0φ(0) dx

= −
∫

Ω×[0,T ]

fφ dx dt−
∫

Ω×[0,T ]

∇w̃∇φdx dt+
∫

Γv×[0,T ]

gvφdS(x),

where the first equation is satisfied for all v ∈ V and for almost all
t ∈ (0, T ), the second equation is satisfied for all φ ∈ C∞0 ([0, T );W ).

(b) The fifth equation in (1.1) is satisfied in the sense of Young measures i.e.

εp
t (x, t) =

∫
S3
F(Y (S))

∂P

∂T
(S) dν(x,t)(S),

where ν(x,t) is a Young measure satisfying

T (x, t) =
∫
S3
S dν(x,t)(S) a.e. in Ω× (0, T ).

(c) εp(x, 0) = εp,0(x), u(0) = u0(x), ut(0) = u1(x).

Remark 2.2. In nonlinear problems with non-monotone nonlinearities many
authors define weak solutions in measure sense only. For example we refer to
[11], [13]–[15].

The next theorem is the main result of the present article.
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Theorem 2.3 (Main Theorem). Suppose that the given data have the reg-
ularity required in (2.1)–(2.5) and assume that there exists a function p∗ ∈
W 2,∞(0, T ;H2(Ω; R)) such that p∗|Γp = gp|Γp

. Let the functions gd and gn sat-
isfy the weak-safe load condition (Definition 5.1) and the initial data satisfy the
compatibility condition. Then, for all T > 0 the system (1.1) with the boundary
condition (1.2) and the initial condition (1.3) possesses a solution in the sense
of Definition 2.1.

The proof of Theorem 2.3 is divided into two sections. In Section 4 we ap-
proximate the system (1.1) by coercive and almost monotone systems and we
present the theory of the existence and uniqueness of solutions for each approx-
imation step. Next (in Section 5), we pass to the limit with approximation and
obtain the solutions in the sense of Definition 2.1.

In the literature, there exist many works on the existence of solutions to the
dynamic Biot model. These solutions are not regular enough to prove existence
and uniqueness of solutions for the approximation of the system (1.1). Before
we formulate an approximation to the system (1.1), we present shortly the proof
of existence and uniqueness of the solution to the dynamic Biot model with
mixed boundary conditions. Better regularity for the time derivative of the
displacement is the main result of the next section.

3. Dynamic Biot model

This section is devoted to studying of existence and uniqueness of the solution
to the dynamic Biot model

(3.1)

ρutt(x, t)− divxT (x, t) +∇xp(x, t) = F (x, t),

c∆xp(x, t)− divxut(x, t) = f(x, t),

T (x, t) = D(ε(u(x, t))),

ε(u(x, t)) =
1
2

(∇xu(x, t) +∇T
x u(x, t)),

with mixed boundary conditions

(3.2)

u(x, t) = 0 for x ∈ Γd and t ≥ 0,

(T (x, t)− p(x, t)I)n(x, t) = gn(x, t) for x ∈ Γn and t ≥ 0,

p(x, t) = 0 for x ∈ Γp and t ≥ 0,

c
∂p

∂n
(x, t) = gv(x, t) for x ∈ Γv and t ≥ 0

and with initial conditions

(3.3) u(x, 0) = u0(x), ut(x, 0) = u1(x).

Remark 3.1. Notice that the above model is linear and so it can be consid-
ered with homogeneous Dirichlet boundary conditions.
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Let us recall that V = {v ∈ H1(Ω; R3) : v = 0 on Γd} and W = {w ∈
H1(Ω; R) : w = 0 on Γp}.

Definition 3.2. We say that a vector u ∈ L∞(0, T ;V ) and a function p ∈
H1(0, T ;W ) such that ut ∈ L∞(0, T ;V ) and utt ∈ L∞(0, T ;L2(Ω; R3)) are weak
solutions of the problem (3.1)–(3.3) if for almost all t ∈ [0, T ]∫

Ω

ρuttv dx+
∫

Ω

D(ε(u))ε(v) dx−
∫

Ω

pdiv v dx =
∫

Ω

Fv dx+
∫

Γn

gnv dS(x)

for all v ∈ V ,∫
Ω

c∇p∇w dx+
∫

Ω

divutw dx = −
∫

Ω

fw dx+
∫

Γv

gvw dS(x)

for all w ∈W , and moreover, u(x, 0) = u0(x) and ut(x, 0) = u1(x).

The following theorem is the main theorem of this section.

Theorem 3.3. Suppose that the external forces F , f and boundary data gn,
gv satisfy:

F ∈ H1([0, T ];L2(Ω; R3)), f ∈ H1([0, T ];L2(Ω; R)),(3.4)

gn ∈W 2,∞([0, T ];H−1/2(Γn; R3)), gv ∈ H1([0, T ];H1/2(Γv; R)),(3.5)

for all T > 0. Moreover, assume that

(3.6) u0 ∈ H1(Ω; R3), u1 ∈ H1(Ω; R3), div(ε(u0)) ∈ L2(Ω; R3)

and that the initial data satisfy the compatibility conditions with boundary data.
Then for all T > 0 the system (3.1) with initial-boundary conditions (3.2) and
(3.3) possesses a unique weak solution.

Proof. The proof of this theorem is divided into five steps.

Step 1. Preparation for the Galerkin method
The subset V ⊂ H1(Ω; R3) is the separable set. Then, there exists a sequence

{vk}∞k=1 which is a basis of V . Using the Gram–Schmidt process we obtain
that {vk}∞k=1 is an orthonormal basis of L2(Ω; R3) and vk = vk(x), where vk

is smooth inside Ω for all k = 1, 2, . . . (the Gram–Schmidt process does not
impair the regularity). From similar argument there exists a sequence {wk}∞k=1

which is any basis of W such that wk = wk(x) and wk is smooth inside Ω for all
k = 1, 2, . . . Let Vm = span{v1, . . . , vm} and Wm = span{w1, . . . , wm}. We will
find functions um: [0, T ] → Vm and pm: [0, T ] →Wm in the form

um(t) =
m∑

k=1

gk
m(t)vk,(3.7)

pm(t) =
m∑

k=1

g̃k
m(t)wk(3.8)
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such that

(3.9) ρ

∫
Ω

u′′m(t)vk dx+
∫

Ω

D(ε(um(t)))ε(vk) dx−
∫

Ω

pm(t) div vk dx

=
∫

Ω

Fvk dx+
∫

Γn

gnvk dS(x),

(3.10)
∫

Ω

c∇pm(t)∇wk dx+
∫

Ω

divu′m(t)wk dx = −
∫

Ω

fwk dx+
∫

Γv

gvwk dS(x)

for all k = 1, . . . ,m and 0 ≤ t ≤ T , where u′m denotes the partial derivative of
um with respect to t.

We choose um(0), u′m(0) ∈ Vm such that

um(0) → u0 in H1(Ω; R3),

u′m(0) → u1 in H1(Ω; R3),

div(ε(um(0))) → div(ε(u0)) in L2(Ω; R3)

as m→∞.

Step 2. Existence for each Galerkin approximation step

Theorem 3.4. Let us suppose that our data have the regularity required in
(3.4)–(3.6). Then for all natural m = 1, 2, . . . there exist unique functions um(t)
and pm(t) of the form (3.7) and (3.8) respectively, which satisfy (3.9) and (3.10).

Proof of the Theorem 3.4 immediately follows from the theory of ordinary
differential equations and assumptions on the basis of V . The details are left to
the reader.

Step 3. Energy estimates.
This step is the main part in the proof of Theorem 3.3.

Theorem 3.5. Assume that our data have regularity required in (3.4)–(3.6).
Then for all T > 0 and t ≤ T there are positive constants C(T ), C̃(T ), not
depending on m, such that

(3.11) ‖u′m(t)‖2L2(Ω;R3) + ‖um(t)‖2H1(Ω;R3) + c

∫ t

0

‖pm(τ)‖2H1(Ω;R) dτ ≤ C(T ),

‖u′′m(t)‖2L2(Ω;R3) + ‖u′m(t)‖2H1(Ω;R3) +
∫ t

0

‖p′m(τ)‖2H1(Ω;R) dτ ≤ C̃(T ).(3.12)

Proof of Theorem 3.5. Note that it is enough to prove the inequality
(3.12). Fix T > 0.
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Calculating the time derivative of equations (3.9), (3.10), multiplying (3.9)
by ∂2

t (gk
m), (3.10) by ∂t(g̃k

m), summing both over k = 1, . . . ,m, adding these
results and integrating with respect to time we obtain

(3.13)
ρ

2
‖u′′m(t)‖2L2(Ω;R3) +

1
2

∫
Ω

D(ε(u′m(t)))ε(u′m(t)) dx

+ c

∫ t

0

‖∇p′m(τ)‖2L2(Ω;R3) dτ

=
ρ

2
‖u′′m(0)‖2L2(Ω;R3) +

1
2

∫
Ω

D(ε(u′m(0))ε(u′m(0)) dx

+
∫ t

0

∫
Ω

F ′u′′m(τ) dx dτ +
∫ t

0

∫
Γn

g′nu
′′
m(τ) dS(x) dτ

−
∫ t

0

∫
Ω

f ′p′m(τ) dx dτ +
∫ t

0

∫
Γv

g′vp
′
m(τ) dS(x) dτ.

Let us estimate the first term on the right-hand side of (3.13). Observe that,
from (3.10) we have that the following equation

(3.14)
∫

Ω

c∇pm(0)∇wk dx+
∫

Ω

divu′m(0)wk dx

= −
∫

Ω

f(0)wk dx+
∫

Γv

gv(0)wk dS(x)

is satisfied for any natural number k = 1, . . . ,m. Multiplying equation (3.14)
by g̃k

m(0) and summing over k = 1, . . . ,m we obtain

c

∫
Ω

|∇pm(0)|2 dx+
∫

Ω

divu′m(0)pm(0) dx

= −
∫

Ω

f(0)pm(0) dx+
∫

Γv

gv(0)pm(0) dS(x).

From the assumptions on the given initial data, Cauchy inequality and the
trace theorem (which means that there exist a linear continuous mappings from
H1(Ω; R) into H1/2(∂Ω; R), see [1]) we obtain that ‖∇pm(0)‖L2(Ω;R3) is bounded
independently of m. Moreover, taking the equation (3.9) with t = 0, multiplying
by g′′m(0) and summing over k = 1, . . . ,m we have

(3.15) ‖ρu′′m(0)‖2L2(Ω;R3) +
∫

Ω

D(ε(um(0)))ε(u′′m(0)) dx−
∫

Ω

pm(0) divu′′m(0) dx

=
∫

Ω

F (0)u′′m(0) dx+
∫

Γn

gn(0)u′′m(0) dS(x).
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Integrating by parts in the second and third term on the left-hand side of (3.15)
we obtain

(3.16) ‖ρu′′m(0)‖2L2(Ω;R3) =
∫

Ω

divD(ε(um(0)))u′′m(0) dx

−
∫

Ω

∇pm(0)u′′m(0) dx+
∫

Ω

F (0)u′′m(0) dx.

Using weighted Cauchy inequality in (3.16) and the regularity assumptions on
the initial data we get that the first term on the right hand side of (3.13) is
bounded independently of m.

The second term on the right-hand side of (3.13) is bounded, because u′m(0)→
u1 in H1(Ω; R3). Integrating by parts in the fourth integral on the right-hand
side of (3.13) and using elementary estimates we get

(3.17)
∫ t

0

∫
Γn

g′n(τ)u′′m(τ) dS dτ ≤
∫ t

0

‖g′′n(τ)‖H−1/2(Γn;R3)‖u′m(τ)‖H1(Ω;R3) dτ

+ ‖g′n(t)‖H−1/2(Γn;R3)‖u′m(t)‖H1(Ω;R3)

+ ‖g′n(0)‖H−1/2(Γn;R3)‖u′m(0)‖H1(Ω;R3).

The inequality (3.17) allows us to write

(3.18)
ρ

2
‖u′′m(t)‖2L2(Ω;R3) +

1
2

∫
Ω

D(ε(u′m(t)))ε(u′m(t)) dx

+ c

∫ t

0

‖∇p′m(τ)‖2L2(Ω;R3) dτ ≤ C̃(T, ν) + ν sup
t∈(0,T )

‖u′m(t)‖2H1(Ω;R3)

+ ν sup
t∈(0,T )

‖u′′m(t)‖2L2(Ω;R3) + ν

∫ t

0

‖p′m(τ)‖2H1(Ω;R) dτ,

where ν > 0 is any positive number and C̃(T, ν) does not depend on m. We
know that the function

N(u) = ‖ε(u)‖L2(Ω;S3) +
∫

Γd

|u| dS(x)

is a norm on H1(Ω; R3) equivalent to the standard norm (see [20]). Using this
fact, assumption about D and um|Γd

= pm|Γp
= 0 we can write that the left-hand

side of (3.18) is equivalent to the norm

‖u′′m(t)‖2L2(Ω;R3) + ‖u′m(t)‖2H1(Ω;R3) + c

∫ t

0

‖p′m(τ)‖2H1(Ω;R) dτ.

Choosing ν > 0 sufficiently small we arrive at the inequality (3.12).

Step 4. Passing to the limit with m→∞.
The energy estimates proved in the last step yield that the sequences um

and pm are bounded in W 1,∞(0, T ;V ) and H1(0, T ;W ), respectively and the
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sequence u′′m is bounded in L∞(0, T ;L2(Ω; R3)). Hence, for a subsequence (again
denoted using the subscript m) we have

um
∗
⇀ u in W 1,∞(0, T ;V ),

u′′m
∗
⇀ u′′ in L∞(0, T ;L2(Ω; R3)),

pm ⇀ p in H1(0, T ;W ),

for all T > 0. Passing to the limit with m→∞ in (3.9) and (3.10) we obtain a
solution of the system (3.1) in the sense of Definition 3.2. This part of the proof
is a standard one in the Galerkin method and the details are left to the reader.

Step 5. Uniqueness.

Theorem 3.6. Let us assume that the given data satisfy all requirements of
Theorem 3.5. Then the weak solution of the system (3.1) is unique.

Proof. Assume that (u1, p1) and (u2, p2) are two weak solutions of (3.1) for
the same given data. Let u = u1 − u2 and p = p1 − p2. From the regularity of
the weak solution of the problem (3.1), we can take as a test function v = ut and
w = p. Doing similar calculations to the ones from the beginning of the proof of
Theorem 3.5 we easily get the inequality

‖u′(t)‖2L2(Ω;R3) + ‖u(t)‖2H1(Ω;R3) + c

∫ t

0

‖p(τ)‖2H1(Ω;R) dτ ≤ 0.

This inequality finishes the proof of Theorems 3.6 and 3.3. �

4. Existence result for each approximation step

In this section we approximate the problem (1.1) by a coercive and mono-
tone problem. The monotone approximation to the non-monotone quasi-static
model in poroplasticity was proposed in the article [18]. We use this monotone
approximation to the non-monotone dynamic system in poroplasticity. To the
system (1.1) we also use the coercive approximation, which can be found in [6].
Let η > 0 and β > 1, then the approximation is defined by

(4.1)

ρuη
tt(x, t)− divxT

η(x, t) +∇xp
η(x, t) =F (x, t),

c∆xp
η(x, t)− divxu

η
t (x, t) = f(x, t),

T η(x, t) =D(εη(x, t)− εp,η(x, t) + ηεη(x, t)),

εη(x, t) =
1
2

(∇xu
η(x, t) +∇T

x u
η(x, t)),

εp,η
t (x, t) = η|T̂ η(x, t)|β T̂ η(x, t)

|T̂ η(x, t)|

+ F(Y (T̂ η(x, t)))
∂P

∂T
(T̂ η(x, t)).
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Here, T̂ η = D(εη − εp,η) = T η − ηDεη. The approximate free energy function is
given by the formula

(4.2) ρψη(εη, εp,η) =
1
2
D(εη − εp,η)(εη − εp,η) +

1
2
ηDεηεη.

The free energy function ψ in (4.2) is now a quadratic positive-definite form.
The system (4.1) is coercive for all η > 0. The total energy of the system (4.1)
is in the form

Eη(uη
t , ε

η, εp,η)(t) =
1
2

∫
Ω

ρ|uη
t (x, t)|2 dx+

∫
Ω

ρψη(εη(x, t), εp,η(x, t)) dx.

The problem (4.1) is considered with mixed boundary conditions:

(4.3)

uη(x, t) = gd(x, t) for x ∈ Γd and t ≥ 0,

(T η(x, t)− pη(x, t)I)n(x, t) = gn(x, t) for x ∈ Γn and t ≥ 0,

pη(x, t) = gp(x, t) for x ∈ Γp and t ≥ 0,

c
∂pη

∂n
(x, t) = gv(x, t) for x ∈ Γv and t ≥ 0

and with initial conditions:

(4.4) uη(x, 0) = u0(x), uη
t (x, 0) = u1(x), εp,η(x, 0) = εp,0(x).

From Lemma 2.2 in [18] we know that the approximate nonlinear constitutive
function in (4.1) has almost monotone structure which means: for β > max(1, r′),
where r′ = (α− 1) deg(Y )(deg(Y )− 1)2) it holds

Gη(T ) = η|T |β T

|T |
+ F(Y (T ))

∂P

∂T
(T ) ∈ LM

for all η > 0 and T ∈ S3, where the class LM is the class of Lipschitz pertur-
bations of maximal monotone vector fields (for definition see [8] or [18]). In the
next part of this section we are going to prove the existence and uniqueness of
the solution of the system (4.1) with initial-boundary conditions (4.2)–(4.3) for
each η > 0. The nonlinear function in (4.1) belongs to the LM class. Thus Gη

can be written in the form Gη = gη +Lη, where gη:S3 → S3 is a monotone field
and Lη:S3 → S3 is a global Lipschitz operator. To prove the existence for the
system (4.1) we use Yosida approximation for gη. We rewrite system (4.1) with
Gη,λ = gη,λ +Lη instead of Gη, where gη,λ = λ−1(I−Jλ) and Jλ = (I+λgη)−1.
Next, we pass to the limit λ→ 0+. For λ > 0 we consider the following system
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of equations

(4.5)

ρuη,λ
tt (x, t)− divxT

η,λ(x, t) +∇xp
η,λ(x, t) =F (x, t),

c∆xp
η,λ(x, t)− divxu

η,λ
t (x, t) = f(x, t),

T η,λ(x, t) =D(εη,λ(x, t)− εp,η,λ(x, t)

+ ηεη,λ(x, t)),

εη,λ(x, t) =
1
2

(∇xu
η,λ(x, t) +∇T

x u
η,λ(x, t)),

εp,η,λ
t (x, t) =Gη,λ(T̂ η,λ(x, t)),

with the same given forces, boundary conditions and initial conditions as for the
system (4.1).

In the next part of this section, we will drop the superscript η > 0 and write
uλ, εp,λ, pλ instead of uη,λ, εp,η,λ, pη,λ.

Theorem 4.1. Assume that the given data possesses the regularity required
in (2.1)–(2.5) and that the compatibility condition holds. Then, for all λ > 0
the approximate problem (4.5) has a global in time, unique solution (uλ, pλ, εp,λ)
with the regularity

uλ ∈W 1,∞(0, T ;H1(Ω; R3)), uλ
tt ∈ L∞(0, T ;L2(Ω; R3)),

pλ ∈ H1(0, T ;H1(Ω; R)), εp,λ ∈W 1,∞(0, T ;L2(Ω;S3)).

Proof. The system (4.5) contains only global Lipschitz nonlinearities and
the proof immediately follows from the Banach Fixed Point Theorem and we
give a sketch of the proof. For a fixed T > 0 we construct an operator

P :C([0, T ];L2(Ω;S3)) → C([0, T ];L2(Ω;S3))

as follows: for ε ∈ C([0, T ];L2(Ω;S3)) let us consider the equation

(4.6) εp(t) = εp,0 +
∫ t

0

Gη,λ(D(ε(τ)− εp(τ))) dτ.

By the regularity of Gη,λ it follows that this equation possesses global in time,
unique solution εp ∈ C1([0, T ];L2(Ω;S3)). For the solution εp we consider the
following system of equations

(4.7)
ρutt − divx(D(ε− εp)) +∇xp =F,

c∆xp− divxut = f,

with boundary conditions and initial conditions as for the system (4.5). The
system above is the classical dynamic Biot model, which was considered in the
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last section. This problem has a unique solution u ∈ C([0, T ];H1(Ω; R3)) and
p ∈ C([0, T ];H1(Ω; R)). Finally, we set

P (ε) =
1
2

(∇u+∇Tu).

Let us denote by εp
1(t) and εp

2(t) solutions of (4.6) with the input functions
ε1, ε2 ∈ C([0, T ];L2(Ω;S3)), respectively. By direct inspection of (4.7) we have

‖P (ε1)(t)− P (ε2)(t)‖L2(Ω;S3) ≤ C‖εp
1(t)− εp

2(t)‖L2(Ω;S3),

where the positive constant C does not depend on these input functions and
is independent of t. Using the equation (4.6) it is not difficult to obtain the
following inequality

‖εp
1(t)− εp

2(t)‖L2(Ω;S3) ≤ C̃‖ε1(t)− ε2(t)‖L2(Ω;S3),

where C̃ does not depend on t (it depends only on the Lipschitz constant and
on time T ). Having this two inequalities we easily see that the operator P is
a contraction (for similar results we refer to [17]). From the definition of operator
P and Theorem 3.3 we conclude that the solution (uλ, pλ, εp,λ) has the regularity
required in the statement of theorem. �

Remark 4.2. Notice that from Theorems 3.3 and 4.1 we get that uλ
t ∈

L∞(0, T ;H1(Ω; R3)). Having this information we will obtain that

uη
t ∈ L∞(0, T ;H1(Ω; R3)) for all η > 0.

This regularity is better than the one obtained in [18]. In article [18] for the
quasi-static case we only obtain that uη

t ∈ L2(0, T ;H1(Ω; R3)) and to prove
it we had to apply the method, which uses the structure of the approximate
constitutive function (for details, see [16] and [17]). In the next part of this
section we prove some estimates for the sequence (uλ, pλ, εp,λ). To do this we
only use the energy method and the fact that the function Gη ∈ LM.

From the assumption on the given boundary data gp, there exists a function
p∗ ∈ W 2,∞(0, T ;H2(Ω; R)) such that p∗|Γp = gp|Γp

and the system (4.5) can be
written in the form:

ρuλ
tt(x, t)− divxT

λ(x, t) +∇x(pλ(x, t)− p∗(x, t)) = F (x, t)−∇xp
∗(x, t),

c∆x(pλ(x, t)− p∗(x, t))− divxu
λ
t (x, t) = f(x, t)− c∆xp

∗(x, t),(4.8)

εp,λ
t (x, t) = Gλ(T̂λ(x, t)).



Non-Monotone Dynamic Model in Poroplasticity 311

Theorem 4.3 (Energy estimate for time derivatives). Suppose that our data
have the regularity required in (2.1)–(2.5). Assume that gη(D(ε(u0) − εp,0)) ∈
L2(Ω;S3) for all η > 0. Then, for all T > 0 there exists a positive constant
C(T ) independent of λ such that the inequality

Eη(vλ
t , ε

λ
t , ε

p,λ
t )(t) + c

∫ t

0

∫
Ω

|∇(pλ
t − p∗t )|2 dx dτ ≤ C(T )

holds for all t ∈ [0, T ).

Proof. For h > 0 let us denote by (vλ
h , ε

λ
h, ε

p,λ
h ) the shifted functions (vλ(t+

h), ελ(t+ h), εp,λ
h (t+ h)) where vλ = uλ

t . Calculating the time derivative of the
energy evaluated on the differences (vλ

h − vλ, ελ
h − ελ, εp,λ

h − εp,λ), we arrive at
the inequality

d

dt
Eη(vλ

h − vλ, ελ
h − ελ, εp,λ

h − εp,λ) = ρ

∫
Ω

(vλ
h − vλ)(vλ

h,t − vλ
t ) dx(4.9)

+
∫

Ω

(Tλ
h − Tλ)(ελ

h,t − ελ
t ) dx−

∫
Ω

(T̂λ
h − T̂λ)(εp,λ

h,t − εp,λ
t ) dx

= ρ

∫
Ω

(vλ
h − vλ)(vλ

h,t − vλ
t ) dx+

∫
Ω

(Tλ
h − Tλ)(∇vλ

h −∇vλ) dx

−
( ∫

Ω

(T̂λ
h − T̂λ)(εp,λ

h,t − εp,λ
t ) dx+ L

∫
Ω

|T̂λ
h − T̂λ|2 dx

)
+ L

∫
Ω

|T̂λ
h − T̂λ|2 dx

(by integrating by parts in the second term andGη ∈ LM)

≤
∫

Ω

(Fh − F −∇(p∗h − p∗))(vλ
h − vλ) dx

+
∫

∂Ω

(Tλ
h − Tλ)n(vλ

h − vλ) dS(x)

−
∫

Ω

∇(pλ
h − pλ − (p∗h − p∗))(vλ

h − vλ) dx+ L

∫
Ω

|T̂λ
h − T̂λ|2 dx,

where Tλ
h = Tλ(t + h), pλ

h = pλ(t + h), p∗h = p∗(t + h) and Fh = F (t + h).
Integrating twice by parts in the third integral on the right hand-side of (4.9)
we obtain

(4.10)
d

dt
Eη(vλ

h − vλ, ελ
h − ελ, εp,λ

h − εp,λ) + c

∫
Ω

|∇(pλ
h − pλ − (p∗h − p∗))|2 dx

≤
∫

Ω

(Fh − F −∇(p∗h − p∗))(vλ
h − vλ) dx

+
∫

∂Ω

(Tλ
h − Ipλ

h − (Tλ − Ipλ))n(vλ
h − vλ) dS(x)

+
∫

∂Ω

(p∗h − p∗)In(vλ
h − vλ) dS(x)
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−
∫

Ω

(fh − f − c(∆(p∗h − p∗)))(pλ
h − pλ − (p∗h − p∗)) dx

+ c

∫
∂Ω

(pλ
h − pλ − (p∗h − p∗))

∂(pλ
h − pλ)
∂n

dS(x)

− c

∫
∂Ω

(pλ
h − pλ − (p∗h − p∗))

∂(p∗h − p∗)
∂n

dS(x) + L

∫
Ω

|T̂λ
h − T̂λ|2 dx.

Dividing by h2, using boundary data and integrating the whole inequality (4.10)
with respect to time we have

(4.11)
1
h2
Eη(vλ

h − vλ, ελ
h − ελ, εp,λ

h − εp,λ)(t)

+ c
1
h2

∫ t

0

∫
Ω

∣∣∣∇(pλ
h − pλ − (p∗h − p∗))|2 dx

≤ 1
h2
Eη(vλ

h − vλ, ελ
h − ελ, εp,λ

h − εp,λ)(0)

+
1
h2

∫ t

0

∫
Ω

(Fh − F −∇(p∗h − p∗))(vλ
h − vλ) dx dτ

+
1
h2

∫ t

0

∫
Γd

(Tλ
h − Tλ − I(pλ

h − pλ))n(∂tgd,h − ∂tgd) dS(x) dτ

+
1
h2

∫ t

0

∫
Γn

(gn,h − gn)(vλ
h − vλ)dS(x) dτ

+
1
h2

∫ t

0

∫
∂Ω

(p∗h − p∗)In(vλ
h − vλ) dS(x) dτ

− 1
h2

∫ t

0

∫
Ω

(fh − f − c(∆(p∗h − p∗)))(pλ
h − pλ − (p∗h − p∗)) dx dτ

+
1
h2

∫ t

0

∫
Γv

(pλ
h − pλ − (p∗h − p∗))(gv,h − gv) dS(x) dτ

− c
1
h2

∫ t

0

∫
∂Ω

(pλ
h − pλ − (p∗h − p∗))

∂(p∗h − p∗)
∂n

dS(x) dτ

+ L
1
h2

∫ t

0

∫
Ω

|T̂λ
h − T̂λ|2 dx dτ,

where gd,h = gd(t+ h), gn,h = gn(t+ h), fh = f(t+ h) and gv,h = gv(t+ h).

Now we shift the difference operator from the functions vλ, Tλ onto the given
data with details for the fourth integral on the right hand-side of (4.11) only.

(4.12)
1
h2

∫ t

0

∫
Γn

(gn,h − gn)(vλ
h − vλ) dS(x) dτ

=
1
h2

∫ t

0

∫
Γn

(gn,h − gn)vλ
h dS(x) dτ − 1

h2

∫ t

0

∫
Γn

(gn,h − gn)vλ dS(x) dτ
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(τ + h = s in the first integral)

=
1
h2

∫ t+h

h

∫
Γn

(gn(s)− gn(s− h))vλ dS(x) ds

− 1
h2

∫ t

0

∫
Γn

(gn,h − gn)vλ dS(x) dτ

= − 1
h2

∫ t

h

∫
Γn

(gn(s+ h)− 2gn(s) + gn(s− h))vλ dS(x) dτ

− 1
h2

∫ h

0

∫
Γn

(gn,h − gn)vλ dS(x) dτ

+
1
h2

∫ t+h

t

∫
Γn

(gn(s)− gn(s− h))vλ dS(x) ds.

The last two integrals from (4.12) we can estimate by the following expression∫ T

0

∥∥∥∥ 1
h

(gn,h − gn)
∥∥∥∥

H−1/2(∂Ω;R3)

‖vλ(τ)‖H1/2(∂Ω;R3) ·
1
h
χF (τ) dτ

where χF denotes the characteristic function of some F such that diam(F ) = h.
Doing similar calculations as in (4.12) with the third and fifth terms on the right
hand-side of (4.11), using regularity on the given data and vλ we can pass to the
limit with h→ 0+ in (4.11) and we get the inequality

(4.13) Eη(vλ
t , ε

λ
t , ε

p,λ
t )(t) + c

∫ t

0

∫
Ω

|∇(pλ
t − p∗t )|2 dx ≤ Eη(vλ

t , ε
λ
t , ε

p,λ
t )(0)

+
∫ t

0

∫
Ω

(‖Ft‖L2(Ω;R3) + ‖∇p∗t ‖L2(Ω;R3))‖vλ
t ‖L2(Ω;R3) dτ

+ C(T )
(

sup
t∈(0,T )

‖∂tttgd(t)‖H1/2(∂Ω;R3)

+ sup
t∈(0,T )

‖∂ttgd(t)‖H1/2(∂Ω;R3)

)
sup

t∈(0,T )

‖(Tλ − Ipλ)n‖H−1/2(∂Ω;R3)

+ C(T )
(

sup
t∈(0,T )

‖∂ttgn(t)‖H−1/2(∂Ω;R3)+ sup
t∈(0,T )

‖∂tgn(t)‖H−1/2(∂Ω;R3)

+ sup
t∈(0,T )

‖∂ttp
∗(t)‖H−1/2(∂Ω;R) + sup

t∈(0,T )

‖∂tp
∗(t)‖H−1/2(∂Ω;R)

)
· sup

t∈(0,T )

‖vλ(t)‖H1/2(∂Ω;R3)

+
∫ t

0

(‖ft‖L2(Ω;R) + c‖p∗t ‖H2(Ω;R))‖pλ
t − p∗t ‖L2(Ω;R) dτ

+
∫ t

0

‖pλ
t − p∗t ‖H1/2(∂Ω;R)‖∂tgv‖H−1/2(∂Ω;R) dτ
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+ c

∫ t

0

‖pλ
t − p∗t ‖H1/2(∂Ω;R)‖∇p∗t ‖H−1/2(∂Ω;R) dτ

+ L

∫ t

0

‖T̂λ
t ‖2L2(Ω;S3) dτ.

The boundary norms appearing on the right-hand side of inequality (4.13) are
estimated using the continuity of the trace operator

(4.14)

‖(Tλ − Ipλ)n‖H−1/2(∂Ω;R3)

≤C(‖Tλ − Ipλ‖L2(Ω;S3) + ‖div(Tλ − Ipλ)‖L2(Ω;R3))

≤C(‖Tλ − Ipλ‖L2(Ω;S3) + ‖F‖L2(Ω;R3) + ρ‖vλ
t ‖L2(Ω;R3))

≤C(‖Tλ(0)− Ipλ(0)‖L2(Ω;S3) + T sup
t∈(0,T )

‖Tλ
t ‖L2(Ω;S3)

+
∫ t

0

‖pλ
t ‖H1(Ω;R) dτ + ‖F‖L2(Ω;R3) + ρ‖vλ

t ‖L2(Ω;R3)),

‖vλ‖
H

1
2 (∂Ω;R3)

≤C‖vλ‖H1(Ω;R3).

From (4.12) and standard estimates we obtain

(4.15) Eη(vλ
t , ε

λ
t ,ε

p,λ
t )(t) + c

∫ t

0

∫
Ω

|∇(pλ
t − p∗t )|2 dx ≤ Eη(vλ

t , ε
λ
t , ε

p,λ
t )(0)

+ C(T, ν) + ν sup
t∈(0,T )

‖vλ
t ‖2L2(Ω;R3) + ν sup

t∈(0,T )

‖vλ‖2H1(Ω;R3)

+ ‖Tλ(0)− Ipλ(0)‖2L2(Ω;S3) + ν sup
t∈(0,T )

‖T̂λ
t ‖L2(Ω;S3)

+ ν

∫ t

0

‖pλ
t − p∗t ‖2H1(Ω;R) dτ + L

∫ t

0

‖T̂λ
t ‖2L2(Ω;S3) dτ,

where ν > 0 is any positive number and C(T, ν) does not depend on λ.
Note that from the regularity of the initial conditions we obtain that the

elliptic equation
c∆xp

λ(x, 0)− divxu
1(x) = f(x, 0)

with boundary conditions

pλ(x, 0) = gp(x, 0) for x ∈ Γp,

c
∂pλ

∂n
(x, 0) = gv(x, 0) for x ∈ Γv,

has a solution pλ(0) ∈ H1(Ω; R) and this solution satisfies the following inequality

‖pλ(0)‖H1(Ω;R) ≤ C(Ω)(‖f(0)‖L2(Ω;R) + ‖divxu
1‖L2(Ω;R)

+ ‖gp(0)‖H1/2(Γp;R) + ‖gv(0)‖H−1/2(Γv ;R)).

From the assumption gη(D(ε(u0)−εp,0)) ∈ L2(Ω;S3) we conclude that the initial
value of the energy evaluated for time derivatives is bounded. Choosing ν > 0
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sufficiently small we get

(4.16) Eη(vλ
t , ε

λ
t , ε

p,λ
t )(t)+c

∫ t

0

∫
Ω

|∇(pλ
t −p∗t )|2 dx ≤ C(T )+L

∫ t

0

‖T̂λ
t ‖2L2(Ω) dτ.

The Gronwall inequality completes the proof. �

Theorem 4.3 yields that the sequence of stresses {T̂λ} is bounded in W 1,∞(0,
T ;L2(Ω;S3)). This information is not enough to pass to the limit in the sys-
tem (4.5) with λ → 0+, because the Lipschitz constant of nonlinearities grows
to infinity. We improve the convergence of the sequence {T̂λ}.

Theorem 4.4 (Strong convergence of stresses). Let us assume that the given
data satisfy all requirements of Theorem 4.3. Then,

Eη(uλ − uµ, ελ − εµ, εp,λ − εp,µ)(t) + c

t∫
0

∫
Ω

|∇(pλ − pµ)|2 dx dτ → 0

for λ, µ→ 0+ uniformly on bounded time intervals.

Proof. Calculating the time derivative of the energy evaluated on the dif-
ference of two approximate solutions and using the fact that the given data for
two approximation steps are equal, we conclude that

d

dt
(Eη(uλ − uµ, ελ − εµ, εp,λ − εp,µ)(t)) + c

∫
Ω

|∇(pλ − pµ)|2 dx

= −
∫

Ω

(Gλ(T̂λ)−Gµ(T̂µ))(T̂λ − T̂µ) dx.

Next, using the standard method for maximal monotone operators (see [4]) we
easily get the inequality (the details can be found in [3] or [17])

Eη(uλ − uµ, ε(uλ)− ε(uµ), εp,λ − εp,µ)(t) + c

∫ t

0

∫
Ω

|∇(pλ − pµ)|2 dx dτ

≤ 1
2

(λ+ µ)C(T ),

where the positive constant C(T ) is from Theorem 4.3 and it does not depend
on λ and µ. The last inequality finishes the proof. �

Finally, we formulate the main theorem of this section.

Theorem 4.5 (Existence for each monotone approximation step). Suppose
that the given data satisfy the regularity required in (2.1)–(2.5). Moreover, as-
sume that the initial data satisfy the compatibility conditions and

gη(D(ε(u0)− εp,0)) ∈ L2(Ω;S3) for all η > 0.
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Then, for all η > 0, the system (4.1) with initial-boundary conditions (4.3)–(4.4)
possesses a global in time, unique solution (uη, pη, εp,η) with the regularity: for
all T > 0

uη ∈W 1,∞(0, T ;H1(Ω; R3)), uη
tt ∈ L∞(0, T ;L2(Ω; R3)),

pη ∈ H1(0, T ;H1(Ω; R)), εp,η ∈W 1,∞(0, T ;L2(Ω;S3)).

Proof. The energy estimate (Theorem 4.3) gives us the following informa-
tion: The sequence {uλ, εp,λ} is bounded in W 1,∞(0, T ;H1(Ω; R3)×L2(Ω;S3)),
the sequence uλ

tt is bounded in L∞(0, T ;L2(Ω; R3)) and the sequence {pλ} is
bounded in H1(0, T ;H1(Ω; R)). Hence in the first four equations of the system
(4.5) we can easily pass to the limit when λ tends to 0+. Passing to the limit in
the Lipschitz nonlinearities is the main difficult in the proof of this theorem.

From Theorem 4.4 we conclude that the sequence {T̂ η,λ} is a Cauchy se-
quence in the space L∞(0, T ;L2(Ω;S3)) and from the definition of the Yosida
approximation we get

gη,λ(T̂ η,λ) = gη(Jλ(T̂ η,λ)).

We know that the sequence (Jλ(T̂ η,λ), gη,λ(T̂ η,λ)) is contained in the graph of gη

and converges strongly-weakly to (T̂ η, gη) (Jλ is a globally Lipshitz operator).
From the strong-weak closedness of the graph of the maximal monotone operator
gη we have

w− lim
λ→0+

gη,λ(T̂ η,λ) = gη(T̂ η).

The properties of Gη (Gη can be written as the sum of maximal monotone
operator and a Lipschitz operator) implies that

w− lim
λ→0+

Gη,λ(T̂ η,λ) = Gη(T̂ η)

(for the properties of the Yosida approximation the reader may consult [4]).
This finishes the proof of the existence solution for the system (4.1), be-

cause the energy estimate yields that the sequence {Gλ(T̂λ)} is bounded in
L∞(0, T ;L2(Ω;S3)).

The uniqueness follows immediately from coerciveness of the energy function
evaluated on the difference of two solutions of the system (4.1). �

5. Proof of the Theorem 2.3

This section is the main part of the proof of Theorem 2.3. We are going to
prove some bounds on the approximate solutions of the system (1.1) and their
derivatives. First, we formulate the definition of the weak safe load condition,
which is known in the theory of inelastic deformation processes and it is only
a condition on the boundary data (see for example [7]).
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Definition 5.1. We say that the given data gd and gn satisfy the weak safe
load condition if there exist functions ũ0 and ũ1 such that the unique solution
(ũ, T̃ ) of the linear system

(5.1)

ρũtt(x, t)− divxT̃ (x, t) = 0,

T̃ (x, t) = D(ε(ũ(x, t))),

ũ(x, t)|Γd
= gd(x, t)|Γd

, T̃ (x, t)n(x)|Γn = gn(x, t)|Γn ,

with the initial conditions

(ũ(0), ũt(0)) = (ũ0, ũ1)

compatible with the boundary data, has the following regularity: for all T > 0

ũ ∈W 1,∞((0, T );H1(Ω; R3)),

T̃ ∈ Lβ+1((0, T );Lβ+1(Ω;S3)),

ũtt ∈ L∞(0, T ;L2(Ω;S3)).

Now we are ready to prove some estimates for the approximation sequence.

Theorem 5.2 (Energy estimate). Suppose that our data have regularity re-
quired in (2.1)–(2.5). Let β > r′ > r = α deg(Y )(deg(Y ) − 1) > 1. Then there
exists a positive constant C(T ) (not depending on η) such that the following
inequality holds:

Eη(uη
t − ũt, ε

η − ε̃, εp,η)(t) + η

∫ t

0

∫
Ω

|T̂ η|β+1 dx dτ

+
∫ t

0

∫
Ω

F(Y (T̂ η))
∂P

∂T
(T̂ η)T̂ η dx dτ + c

∫ t

0

∫
Ω

|∇(pη − p∗)|2 dx dτ ≤ C(T ),

where p∗ ∈W 2,∞(0, T ;H2(Ω; R)) and p∗|Γp
= gp|Γp

.

Proof. Calculate the time derivative of the energy to obtain

(5.2)
d

dt
(Eη(uη

t − ũt, ε
η − ε̃, εp,η)(t)) = ρ

∫
Ω

(uη
t − ũt)(u

η
tt − ũtt) dx

+
∫

Ω

D(εη − ε̃− εp,η)(εη
t − ε̃t − εp,η

t ) dx+ η

∫
Ω

D(εη − ε̃)(εη
t − ε̃t) dx

= ρ

∫
Ω

(uη
t − ũt)(u

η
tt − ũtt) dx

+
∫

Ω

(T η − (1 + η)T̃ )(∇uη
t −∇ũt) dx−

∫
Ω

(T̂ η − T̃ )εp,η
t dx

= ρ

∫
Ω

(uη
t − ũt)(u

η
tt − ũtt) dx−

∫
Ω

div(T η − (1 + η)T̃ )(uη
t − ũt) dx

+
∫

∂Ω

(T η − (1 + η)T̃ )n(uη
t − ũt) dS(x)−

∫
Ω

(T̂ η − T̃ )εp,η
t dx.
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Using the first two equations from (4.1) and the weak safe load condition we get

d

dt
(Eη(uη

t − ũt, ε
η − ε̃, εp,η)(t)) =

∫
Ω

(F −∇p∗)(uη
t − ũt) dx(5.3)

+ η

∫
Ω

div T̃ (uη
t − ũt) dx−

∫
Ω

(∇pη −∇p∗)(uη
t − ũt) dx

+
∫

∂Ω

(T η − (1 + η)T̃ )n(uη
t − ũt) dS(x)−

∫
Ω

(T̂ η − T̃ )εp,η
t dx

=
∫

Ω

(F −∇p∗)(uη
t − ũt) dx

+ η

∫
Ω

div T̃ (uη
t − ũt) dx− η

∫
Γn

T̃ n(uη
t − ũt) dS(x)

+
∫

Ω

div (uη
t − ũt)(pη − p∗) dx−

∫
Ω

(T̂ η − T̃ )εp,η
t dx

=
∫

Ω

(F −∇p∗)(uη
t − ũt) dx

+ η

∫
Ω

div T̃ (uη
t − ũt) dx− η

∫
Γn

gn(uη
t − ũt) dS

−
∫

Ω

div ũt(pη − p∗) dx− c

∫
Ω

|∇pη −∇p∗|2 dx

−
∫

Ω

(f − c∆p∗)(pη − p∗) dx+
∫

Γv

gv(pη − p∗) dS(x)

− c

∫
Γv

(pη − p∗)
∂p∗

∂n
dS(x)−

∫
Ω

(T̂ η − T̃ )εp,η
t dx.

Integrating the whole equality with respect to time we obtain

(5.4) Eη(uη
t − ũt, ε

η − ε̃, εp,η)(t) + η

∫ t

0

∫
Ω

|T̂ η|β+1 dx dτ

+
∫ t

0

∫
Ω

F(Y (T̂ η))
∂P

∂T
(T̂ η)T̂ η dx dτ + c

∫ t

0

∫
Ω

|∇pη −∇p∗|2 dx dτ

= Eη(uη
t − ũt, ε

η − ε̃, εp,η)(0)

+
∫ t

0

∫
Ω

(F −∇p∗)(uη
t − ũt) dx dτ + η

∫ t

0

∫
Ω

div T̃ (uη
t − ũt) dx dτ

− η

∫ t

0

∫
Γn

gn(uη
t − ũt) dS(x) dτ −

∫ t

0

∫
Ω

div ũt(pη − p∗) dx dτ

−
∫ t

0

∫
Ω

(pη − p∗)(f − c∆p∗) dx dτ +
∫ t

0

∫
Γv

gv(pη − p∗) dS(x) dτ

− c

∫ t

0

∫
Γv

(pη − p∗)
∂p∗

∂n
dS(x) dτ +

∫ t

0

∫
Ω

T̃ εp,η
t dx dτ.

From the assumption on the initial data, the first term on the right-hand side
of (5.4) is bounded independently of η.
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Now we estimate the following integral:

(5.5) − η

∫ t

0

∫
Γn

gn(uη
t − ũt) dS(x) dτ = η

∫ t

0

∫
Γn

∂tgn(uη − ũ) dS(x) dτ

− η

∫
Γn

gn(uη − ũ) dS + η

∫
Γn

gn(0)(uη(0)− ũ(0)) dS(x).

Using the regularity of gn(0), uη(0) and ũ we note that the last integral in
(5.5) is bounded. Moreover, (uη − ũ)|Γd

= 0 so, from the Korn’s inequality
‖uη − ũ‖H1(Ω;R3) ≤ C(Ω)‖ε(uη − ũ)‖L2(Ω;S3). Using the continuity of the trace
operator we arrive at the inequality

(5.6) − η

∫ t

0

∫
Γn

gn(uη
t − ũt) dS dτ ≤

1
2

∫ t

0

‖∂tgn‖2L2(Γn;R3) dτ

+ c

∫ t

0

η‖εη − ε̃‖2L2(Ω;S3) dτ + C(ν)‖gn‖L2(Γn;R3) + νη‖εη − ε̃‖L2(Ω;S3) + C,

where ν > 0 is any positive number. Next, by Young’s inequality we obtain

(5.7)
∫ t

0

∫
Ω

T̃ εp,η
t dx dτ ≤ C(Ω, β, ν)

∫ t

0

‖T̃‖β+1
Lβ+1(Ω;S3)

dτ

+ ν

∫ t

0

‖εp,η
t ‖1+1/β

L1+1/β(Ω;S3)
dτ.

From the last equation in (4.1) we have (Observe that 1 + 1/β < 1 + 1/r)∫ t

0

‖εp,η
t ‖1+1/β

L1+1/β(Ω;S3)
dτ =

∫ t

0

∫
Ω

|εp,η
t |1+1/β dx dτ(5.8)

≤ 21/β

( ∫ t

0

∫
Ω

|η|T̂ η(x, t)|β |1+1/β dx dτ

+
∫ t

0

∫
Ω

∣∣∣∣F(Y (T̂ η(x, t)))
∂P

∂T
(T̂ η(x, t))

∣∣∣∣1+1/β

dx dτ

)

(η1+1/β < η for η < 1)

≤C(β)η
∫ t

0

‖T̂ η‖β+1
Lβ+1(Ω;S3)

dτ

+ C(Ω, β, r)
∫ t

0

∥∥∥∥F(Y (T̂ η))
∂P

∂T
(T̂ η)

∥∥∥∥1+1/r

L1+1/r(Ω;S3)

dτ.

Other terms on the right-hand side of (5.4) are bounded by standard methods:
continuity of the trace operator and Cauchy inequality (see for instance [17]). If
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we use the inequalities (5.5)–(5.8) then we obtain that the inequality

(5.9) Eη(uη
t − ũt, ε

η − ε̃, εp,η)(t) + η

∫ t

0

∫
Ω

|T̂ η|β+1 dx dτ

+
∫ t

0

∫
Ω

F(Y (T̂ η))
∂P

∂T
(T̂ η)T̂ η dx dτ + c

∫ t

0

∫
Ω

|∇(pη − p∗)|2 dx dτ

≤C(Ω, β, T, ν) + ν sup
t∈(0,T )

‖uη
t − ũt‖2L2(Ω;R3)

+ sup
t∈(0,T )

νη‖εη − ε̃‖L2(Ω;S3) + νC(Ω)c
∫ t

0

∫
Ω

|∇(pη − p∗)|2 dx dτ

+ νC(β)η
∫ t

0

‖T̂ η‖β+1
Lβ+1(Ω;S3)

dτ

+ C(Ω, β, r)ν
∫ t

0

‖F(Y (T̂ η))
∂P

∂T
(T̂ η)‖1+1/r

L1+1/r(Ω;S3)
dτ

holds for any ν > 0 and the constant C(Ω, β, T, ν) > 0 does not depend on η > 0.
The inequality (5.9) is similar to the inequality from the proof of Theorem 4.1
in [18]. Doing a proof analogous to that one we have finished. �

Note that to pass to the limit in the system (4.1) with η → 0+ (in the sense
of the Definition 2.1) we have to bound the expression

∫ T

0
‖uη

tt‖2V ? dτ . Fix v ∈ V
which satisfies ‖v‖V ≤ 1. Using Theorem 4.5 we obtain the following equation

ρ

∫
Ω

uη
ttv dx+

∫
Ω

D(ε(uη)− εp,η + ηε(uη))ε(v) dx−
∫

Ω

pη div v dx

=
∫

Ω

Fv dx+
∫

Γn

gnv dS(x).

Therefore

ρ〈uη
tt, v〉 = ρ

∫
Ω

uη
ttv dx =

∫
Ω

Fv dx+
∫

Γn

gnv dS

−
∫

Ω

D(ε(uη)− εp,η + ηε(uη))ε(v) dx+
∫

Ω

pη div v dx.

Using ‖v‖V ≤ 1 and Theorem 5.2 we have

ρ

∫ T

0

‖uη
tt‖2V ? dτ ≤ C(T ).

Proof of Theorem 2.3. The energy estimate proved in the last theo-
rem yields that the sequence {T̂ η,

√
ηεη}η>0 is bounded in L∞(0, T ;L2(Ω;S3)×

L2(Ω;S3)), {pη}η>0 is bounded in L2(0, T ;H1(Ω; R)) and {εp,η}η>0 is bounded
in W 1,1+1/β(0, T ;L1+1/β(Ω;S3)). Using this information we also obtain that
{εη}η>0 is bounded in L1+1/β(0, T ;L1+1/β(Ω;S3)), {divuη = tr(ε(uη))}η>0 is
bounded in L1+1/β(0, T ;L1+1/β(Ω; R)), uη

tt is bounded in L2(0, T ; (H1(Ω; R3))∗).
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Notice that this information is enough to pass to the limit in the first four equa-
tions of the system (4.1) (for analogous calculations we refer to [9]). It is easy
to see that {εp,η

t }η>0 is weakly precompact in L1(0, T ;L1(Ω;S3)) and the ex-
pression η|T̂ η|βT̂ η/|T̂ η| tends to zero in L1(0, T ;L1(Ω;S3)) as η → 0+. The
sequence {

F(Y (T̂ η))
∂P

∂T
(T̂ η)

}
η>0

is weakly precompact in L1(0, T ;L1(Ω;S3)). Then, there exists a family of
Young measures ν(x,t) (see [5]) generated by the sequence {T̂ η}η>0 such that
w − lim

η→0+
εp,η

t = χ̂ is in the form

χ̂(x, t) =
∫
S3
F(Y (S))

∂P

∂T
(S) dν(x,t)(S). �
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