FIXED POINTS OF HEMI-CONVEX MULTIFUNCTIONS

SEYED M. A. ALEOMRANINEJAD — SHAHRAM REZAPOUR
NASEER SHAHZAD

Abstract. The notion of hemi-convex multifunctions is introduced. It is shown that each convex multifunction is hemi-convex, but the converse is not true. Some fixed point results for hemi-convex multifunctions are also proved.

1. Introduction

Throughout this paper we suppose that X and Y are Banach spaces and M is a nonempty convex subset of X. We denote the family of all nonempty subsets of X by 2^X and the family of all nonempty closed and bounded subsets of X by $CB(X)$. Also, we denote the Hausdorff metric on $CB(X)$ by H, i.e.

$$H(A, B) = \max \left\{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A) \right\}$$

for all $A, B \in CB(X)$, where $d(x, A) = \inf_{a \in A} \|x - a\|$.

Let $T: X \to 2^Y$ be a multifunction. The graph of T is defined by

$$Gr(T) = \{(x, y) : x \in X, y \in T(x)\}.$$

The multifunction T is called closed (resp. convex) whenever GrT is closed (resp. convex). Also, T is called upper semi-continuous (resp. lower semi-continuous) whenever $\{x \in X : T(x) \subset A\}$ (resp. $\{x \in X : T(x) \cap A \neq \emptyset\}$) is open for
all open subsets A of Y. Some authors work on convex multifunctions (see for example; [4]–[6] and [10]), whereas some authors work on nonconvex multifunctions (see for example [2]). In 1980, Yanagi defined the notion of semi-convex multifunctions ([9]). Later on, Bae and Park reviewed some fixed point theorems for multivalued mappings in Banach spaces by using the notion of semi-convex type multifunctions ([3]). The aim of this paper is to give the notion of hemi-convexity of multifunctions which is weaker than convexity of multifunctions. We show that this notion is independent of the notion of semi-convex multifunctions. We also prove some fixed point results for hemi-convex multifunctions.

2. Main results

Definition 2.1. Let M be a convex subset of a Banach space X and $r > 0$. We say that the multifunction $T : M \to 2^M$ is r-hemi-convex whenever

$$d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) \leq r$$

for all $\lambda \in [0,1]$ and $x, y \in M$ with $d(x, T(x)) < r$ and $d(y, T(y)) < r$. We say that T is hemi-convex whenever T is r-hemi-convex for all $r > 0$.

It is clear that each convex multifunction on a Banach space is a hemi-convex multifunction. Now, by providing the following example we show that the converse is not true.

Example 2.2. Define the multifunction $T : \mathbb{R} \to 2^\mathbb{R}$ by $T(x) = [2x, 3x]$ if $x \geq 0$ and $T(x) = [3x, 2x]$ if $x < 0$. Then T is not convex whereas T is hemi-convex. In fact, $(1, 2), (-1, -3) \in \text{Gr}(T)$, but for $\lambda = 1/2$ we have

$$\lambda(1, 2) + (1 - \lambda)(-1, -3) \notin \text{Gr}(T).$$

Since $d(x, T(x)) = |x|$ for all $x \in \mathbb{R}$, T is a hemi-convex multifunction.

Let M be a convex subset of a Banach space X. We say that the multifunction $T : M \to \text{CB}(X)$ is semi-convex whenever for each $x, y \in M$, $z = \lambda x + (1 - \lambda)y$, where $\lambda \in [0,1]$, and any $x_1 \in T(x), y_1 \in T(y)$, there exists $z_1 \in T(z)$ such that $\|z_1\| \leq \max\{\|x_1\|, \|y_1\|\}$ (see [9]). Now, by providing next examples, we show that the notions semi-convexity and hemi-convexity are independent, although both extend the notion of convexity of multifunctions.

Example 2.3. Define the multifunction $T : \mathbb{R} \to 2^\mathbb{R}$ by $T(x) = \{-x + 1\}$ if $x \geq 0$ and $T(x) = [x + 1, x + 2]$ if $x < 0$. Then T is hemi-convex whereas T is not semi-convex.

In fact, let $x = -1, y = 1, z = x/2 + y/2 = 0, x_1 = 0, y_1 = 0 \in T(y) = \{0\}$ and $z_1 = 1 \in T(z) = \{1\}$. Then, the relation $\|z_1\| \leq \max\{\|x_1\|, \|y_1\|\}$ does not hold. Hence, T is not semi-convex.
On the other hand, \(d(x, T(x)) = |2x - 1| \) if \(x \geq 0 \) and \(d(x, T(x)) = 1 \) if \(x < 0 \). Without loss of generality, suppose that \(x < y \) and \(r > 0 \).

If \(x, y \geq 0 \), \(d(x, T(x)) < r \) and \(d(y, T(y)) < r \), then \(d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) \leq r \).

If \(x, y < 0 \), then \(d(x, T(x)) = 1 \), \(d(y, T(y)) = 1 \) and \(d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) = 1 \).

If \(x < 0 \), \(y \geq 0 \) and \(\lambda x + (1 - \lambda)y < 0 \), then \(d(x, T(x)) = 1 \) and \(d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) = 1 \).

If \(d(y, T(y)) < r \) and \(r \geq 1 \), then \(d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) \leq \min\{1, r\} \).

If \(x < 0 \), \(y \geq 0 \) and \(\lambda x + (1 - \lambda)y \geq 0 \), then \(d(x, T(x)) = 1 \), \(d(y, T(y)) = |2y - 1| \) and \(-1 \leq 2(\lambda x + (1 - \lambda)y) - 1 \leq 2y - 1 \). Thus, the relation
\[
d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) = |2(\lambda x + (1 - \lambda)y) - 1| \leq \max\{1, |2y - 1|\}
\]
implies that \(T \) is semi-convex.

Example 2.4. Define the multifunction \(T : \mathbb{R} \to 2^\mathbb{R} \) by \(T(x) = [x, x + 1] \) if \(x > 0 \) and \(T(x) = \{\sqrt{x}\} \) if \(x \leq 0 \). Then \(T \) is semi-convex whereas \(T \) is not semi-convex.

In fact, let \(x = 1 \), \(y = -1 \) and \(z = x/4 + 3y/4 = -1/2 \). Then, \(d(x, T(x)) = d(y, T(y)) = 0 \) while \(d(z, T(z)) = d(-1/2, -\sqrt{1/2}) > 0 \). Hence, \(T \) is not semi-convex.

Now, without loss of generality suppose that \(x < y \).

If \(x, y > 0 \) or \(x, y < 0 \) and \(z = (\lambda x + (1 - \lambda)y) \), it is easy to see that for each \(x_1 \in T(x) \) and \(y_1 \in T(y) \), there exists \(z_1 \in T(z) \) such that \(\|z_1\| \leq \max\{\|x_1\|, \|y_1\|\} \).

If \(x \leq 0 \), \(y > 0 \) and \(z = \lambda x + (1 - \lambda)y \leq 0 \), then for each \(x_1 = \sqrt{x} \in T(x) \)
and \(y_1 \in T(y) \) we have \(\sqrt{x} = x_1 \leq z_1 = \{\sqrt{\lambda x + (1 - \lambda)y}\} \leq 0 < y_1 \). Hence, \(\|z_1\| \leq \max\{\|x_1\|, \|y_1\|\} \).

If \(x \leq 0 \), \(y > 0 \) and \(z = \lambda x + (1 - \lambda)y > 0 \), then for each \(x_1 = \sqrt{x} \in T(x) \)
and \(y_1 \in T(y) \), there exists \(z_1 \in T(z) \) such that \(\sqrt{x} = x_1 \leq 0 < z_1 \leq y_1 \). Hence, \(\|z_1\| \leq \max\{\|x_1\|, \|y_1\|\} \). Therefore, \(T \) is semi-convex.

Theorem 2.5. Let \(T, T_n : M \to CB(M) \) be given. If \(T_n \) is a hemi-convex multifunction for all \(n \geq 1 \) and \(H(T_n(x), T(x)) \to 0 \) for all \(x \in M \), then \(T \) is a hemi-convex multifunction.

Proof. Fix \(\varepsilon > 0 \), \(r > 0 \), \(0 \leq \lambda \leq 1 \) and \(x, y \in M \) with \(d(x, T(x)) < r \), \(d(y, T(y)) < r \). Choose a natural number \(N \) such that
\[
H(T_n(x), T(x)) < \varepsilon, \quad H(T_n(y), T(y)) < \varepsilon, \quad H(T_n(\lambda x + (1 - \lambda)y), T(\lambda x + (1 - \lambda)y)) < \varepsilon
\]
for all \(n \geq N \). Then, for each \(n \geq N \) we have
\[
\begin{align*}
d(x, T_n(x)) &\leq d(x, T(x)) + H(T_n(x), T(x)) < r + \varepsilon \\
d(y, T_n(y)) &\leq d(y, T(y)) + H(T_n(y), T(y)) < r + \varepsilon.
\end{align*}
\]
Thus, \(d(\lambda x + (1 - \lambda)y, T_n(\lambda x + (1 - \lambda)y)) \leq r + \varepsilon \). Hence, for each \(n \geq N \) we have
\[
\begin{align*}
d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) &\leq d(\lambda x + (1 - \lambda)y, T_n(\lambda x + (1 - \lambda)y)) \\
&\quad + H(T_n(\lambda x + (1 - \lambda)y), T(\lambda x + (1 - \lambda)y)) < r + 2\varepsilon.
\end{align*}
\]
Since \(\varepsilon \) was arbitrary, we obtain \(d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) \leq r \). Therefore, \(T \) is a hemi-convex multifunction.

Theorem 2.6. Let \(T: M \to \text{CB}(M) \) be an upper semi-continuous hemi-convex multifunction. Then the set of fixed points of \(T \) is convex and closed.

Proof. Set \(F = \{ x : x \in T(x) \} \). For each \(x, y \in F \) we have \(d(x, T(x)) = 0 \) and \(d(y, T(y)) = 0 \). Thus, \(d(T(\lambda x + (1 - \lambda)y), \lambda x + (1 - \lambda)y) = 0 \) and so \(\lambda x + (1 - \lambda)y \in F \) for all \(\lambda \in [0, 1] \), because \(T \) is a closed-valued multifunction. Since \(T \) is upper semi-continuous and closed-valued, \(\text{Gr}(T) \) is closed.

Let \(\{x_n\}_{n \geq 1} \) be a sequence in \(F \) with \(x_n \to x \). Since \(x_n \in T(x_n) \), \((x_n, x_n) \in \text{Gr}(T) \). Hence, \((x, x) \in \text{Gr}(T) \) and so \(x \in F \).

Definition 2.7. Let \(M \) be a convex subset of a Banach space \(X \) and \(r > 0 \). We say that the function \(f: X \to \mathbb{R} \) is \(r \)-hemi-convex on \(M \) whenever
\[
f(\lambda x + (1 - \lambda)y) < r
\]
for all \(\lambda \in [0, 1] \) and \(x, y \in M \) with \(f(x) < r \) and \(f(y) < r \). We say that \(f \) is hemi-convex on \(M \) whenever \(f \) is \(r \)-hemi-convex on \(M \) for all \(r > 0 \).

Lemma 2.8. Let \(M \) be a convex subset of a Banach space \(X \), \(\delta > 0 \), \(m \geq 2 \) and \(f: X \to \mathbb{R} \) a hemi-convex function on \(M \). If \(x_1, \ldots, x_m \in M \) with \(f(x_i) < \delta \) for \(i = 1, \ldots, m \) and \(\lambda_1, \ldots, \lambda_m \in [0, \infty) \) with \(\sum_{i=1}^{m} \lambda_i = 1 \), then
\[
f\left(\sum_{i=1}^{m} \lambda_i x_i\right) < \delta.
\]

Proof. We prove this by induction. For \(m = 2 \) we have nothing to prove. Suppose that this lemma holds for each \(1 \leq k \leq m - 1 \). We have to prove it for \(m \). Note that, one can assume \(\lambda_1 \neq 0 \) and so
\[
f\left(\sum_{i=1}^{m} \lambda_i x_i\right) = f\left(\lambda_1 x_1 + \sum_{i=2}^{m} \lambda_i x_i\right) = f\left(\lambda_1 x_1 + (1 - \lambda_1) \sum_{i=2}^{m} \frac{\lambda_i}{1 - \lambda_1} x_i\right).
\]
Put \(y = \sum_{i=2}^{m} (\lambda_i/(1 - \lambda_1)) x_i \). Since \(\sum_{i=2}^{m} \lambda_i/(1 - \lambda_1) = 1 \), by assumption of the induction, we have \(f(y) < \delta \).
Now, by the case of $m = 2$, we obtain
\[
 f\left(\sum_{i=1}^{m} \lambda_i x_i \right) = f\left(\lambda_1 x_1 + (1 - \lambda_1) \sum_{i=2}^{m} \frac{\lambda_i}{1 - \lambda_1} x_i \right) = f(\lambda_1 x_1 + (1 - \lambda_1)y) < \delta.
\]
This completes the proof. \qed

Theorem 2.9. Let M be a weakly compact subset of X, $T: M \to \text{CB}(X)$ a multifunction and $\inf_{x \in M} d(x, T(x)) = 0$. If the function $f: M \to [0, \infty)$, defined by $f(x) = d(x, T(x))$, is lower semi-continuous and hemi-convex on M, then T has a fixed point in M.

Proof. Choose a sequence $\{x_n\}_{n \geq 1}$ in M such that $d(x_n, T(x_n)) \to 0$. Since M is weakly compact, there exists a subsequence $\{z_n\}_{n \geq 1}$ of $\{x_n\}_{n \geq 1}$ such that $z_n \xrightarrow{w} x_0$ for some $x_0 \in M$. Since f is a lower semi-continuous function, for each $\varepsilon > 0$ choose $\delta > 0$ such that $f(x_0) < f(y) + \varepsilon/2$ for all $y \in M$ with $\|y - x_0\| < \delta$ (\cite{7}). Since $f(z_n) \to 0$, there exists a natural number N such that $f(z_n) < \varepsilon/2$ for all $n \geq N$.

We denote again the sequence $\{z_n\}_{n \geq N}$ by $\{z_n\}_{n \geq 1}$. Since $z_n \xrightarrow{w} x_0$, there exist a sequence $\{y_i\}_{i \geq 1}$ in M and a sequence $\{\alpha_{in}\}_{i, n \geq 1}$ in $[0, \infty)$ such that for each i we have $y_i = \sum_{n=1}^{\infty} \alpha_{in} z_n$, where $\sum_{n=1}^{\infty} \alpha_{in} = 1$ and only finitely many $\{\alpha_{in}\}$ are not zero, and $y_i \to x_0$ originally (\cite{8; Theorem 3.13}). But, by Lemma 2.8, we have $f(y_i) < \varepsilon/2$ for all $i \geq 1$. Thus, for sufficiently large i, we obtain
\[
f(x_0) < f(y_i) + \frac{\varepsilon}{2} < \varepsilon.
\]
Hence, $f(x_0) = 0$ and so $x_0 \in T(x_0)$. \qed

If $T: M \to \text{CB}(M)$ is an upper semi-continuous multifunction, then the function $f(x) = d(x, T(x))$ is lower semi-continuous (\cite{1, Proposition 4.2.6}). Also, note that the function $f(x) = d(x, T(x))$ is hemi-convex whenever T is so. We say that the function $f(x) = d(x, T(x))$ has the property (B) whenever $f(x_n) \to \infty$ for all sequences $\{x_n\}$ with $\|x_n\| \to \infty$. The following example shows that weak compactness of M is a necessary condition in Theorem 2.9.

Example 2.10. Consider the multifunction $T: (0, \infty) \to 2^{(0, \infty)}$ given by
\[
T(x) = \left\{ x + \frac{1}{x} \right\}.
\]
It is clear that T is a hemi-convex multifunction, $\inf_{x \in (0, \infty)} d(x, T(x)) = 0$ and the function $f(x) = d(x, T(x))$ is lower semi-continuous and hemi-convex. But it is clear that T has no fixed point.

The following example shows that there are many multifunctions which satisfy the condition $\inf_{x \in M} d(x, T(x)) = 0$.

EXAMPLE 2.11. Let M be a convex and bounded subset of a Banach space X, $u \in M$ a fixed element and $T: M \to \text{CB}(M)$ a nonexpansive multifunction. For each $n \geq 2$ define $T_n: M \to \text{CB}(M)$ by $T_n(x) = u/n + (1-1/n)T(x)$. Since $H(T_n(x), T_n(y)) \leq (1-1/n)\|x-y\|$ for all $x, y \in M$ and $n \geq 2$, T_n is a contraction multifunction and so for each $n \geq 2$ there exists $x_n \in M$ such that $x_n \in T_n(x_n)$. Note that $d(x_n, T(x_n)) \to 0$ and so $\inf_{x \in M} d(x, T(x)) = 0$.

DEFINITION 2.12. Let M be a convex subset of a Banach space X and $T_n: M \to \text{CB}(M)$ a sequence of multifunctions. We say that $\{T_n\}$ strongly converges to T whenever for each $\varepsilon > 0$ there exists a natural number n_0 such that $H(T_n(x), T(x)) < \varepsilon$ for all $n \geq n_0$ and $x \in M$. In this case, we write $T_n \to T$.

THEOREM 2.13. Let M be a weakly compact subset of X, $T: M \to \text{CB}(M)$ a multifunction and $T_n: M \to \text{CB}(M)$ an upper semi-continuous hemi-convex multifunction for all $n \geq 1$. If each T_n has at least one fixed point in M and $T_n \to T$, then T has a fixed point.

Proof. Since each T_n has at least one fixed point in M, $\inf_{x \in M} d(x, T_n(x)) = 0$ for all $n \geq 1$. Let $\varepsilon > 0$ be given. Choose a natural number n_0 such that $H(T_n(x), T(x)) < \varepsilon$ for all $n \geq n_0$. Since $d(x, T(x)) \leq d(x, T_n(x)) + H(T_n(x), T(x)) \leq d(x, T_n(x)) + \varepsilon$, for all $n \geq n_0$, $\inf_{x \in M} d(x, T(x)) \leq \varepsilon$. Hence, $\inf_{x \in M} d(x, T(x)) = 0$. By Theorem 2.5, T is hemi-convex and so is the function $f(x) = d(x, T(x))$. Since T is upper semi-continuous, the function $f(x) = d(x, T(x))$ is lower semi-continuous. Now by using Theorem 2.9, T has a fixed point.

The next example shows that strong convergence of the sequence $\{T_n\}_{n \geq 1}$ is a necessary condition in Theorem 2.13.

EXAMPLE 2.14. Let $X = \mathbb{R}$ and $M = [0, 2]$. Define $T: M \to \text{CB}(M)$ by $T(x) = \{x + 1\}$ if $x < 1$, $T(x) = \{x - 1\}$ if $x > 1$ and $T(x) = \{0, 2\}$ if $x = 1$. Moreover, for each $n \geq 2$, let $T_n: M \to \text{CB}(M)$ be defined by $T_n(x) = T(x)$ if $x \neq 1/n$ and $T_n(x) = [0, 2]$ if $x = 1/n$. It is easily seen that T_n is upper semi-continuous, $d(x, T_n(x)) = 1$ if $x \neq 1/n$, $d(x, T_n(x)) = 0$ if $x = 1/n$ and T_n has a fixed point for each $n \geq 2$. This implies that T_n is hemi-convex. Evidently $H(T_n(x), T(x)) \to 0$ for all $x \in M$, but T has no fixed point.

THEOREM 2.15. Let X be an uniformly convex Banach space, $T: X \to \text{CB}(X)$ an upper semi-continuous hemi-convex multifunction, $\inf_{x \in M} d(x, T(x)) = 0$. If the function $f(x) = d(x, T(x))$ has the property (B), then T has a fixed point.
Proof. Choose a sequence \(\{x_n\} \) in \(X \) such that \(f(x_{n+1}) \leq f(x_n) \) and \(f(x_n) \to 0 \). Now, for each \(n \geq 1 \) define \(F_n = \{ x \in X : f(x) \leq f(x_n) \} \). Since the function \(f(x) = d(x,T(x)) \) has the property (B), each \(F_n \) is a nonempty bounded subset of \(X \). Since \(T \) is upper semi-continuous, the function \(f(x) = d(x,T(x)) \) is lower semi-continuous and so each \(F_n \) is a closed subset of \(X \). Also, each \(F_n \) is convex because \(T \) is a hemi-convex multifunction. Now by using [1, Theorem 2.3.14], there exists \(x_0 \in X \) such that \(x_0 \in \bigcap_{n=1}^{\infty} F_n \). Thus, \(f(x_0) \leq f(x_n) \) for all \(n \geq 1 \). Hence, \(f(x_0) = 0 \) and so \(x_0 \in T(x_0) \). □

Acknowledgments. The authors express their gratitude to two anonymous referees for their helpful suggestions on a previous version of this paper and especially providing Example 2.14.

References

Manuscript received May 7, 2010

SEYED M. A. ALEOMRANINEJAD and SHAHRAM REZAPOUR
Department of Mathematics
Azarbaijan University of Tarbiat Moallem
Azarshahr, Tabriz, IRAN
E-mail address: sh.rezapour@azaruniv.edu

NASEER SHARZAD
Department of Mathematics
King AbdulAziz University
P.O. Box 80203
Jeddah 21859, SAUDI ARABIA
E-mail address: nshahzad@kau.edu.sa

TMNA : Volume 37 – 2011 – No 2