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DIFFERENTIAL INCLUSIONS
WITH NONLOCAL CONDITIONS:

EXISTENCE RESULTS AND TOPOLOGICAL PROPERTIES
OF SOLUTION SETS

John R. Graef — Johnny Henderson — Abdelghani Ouahab

Abstract. In this paper, we study the topological structure of solution
sets for the first-order differential inclusions with nonlocal conditions:(

y′(t) ∈ F (t, y(t)) a.e. t ∈ [0, b],

y(0) + g(y) = y0,

where F : [0, b] × Rn → P(Rn) is a multivalued map. Also, some geomet-

ric properties of solution sets, Rδ , Rδ-contractibility and acyclicity, corre-

sponding to Aronszajn–Browder–Gupta type results, are obtained. Finally,
we present the existence of viable solutions of differential inclusions with
nonlocal conditions and we investigate the topological properties of the set
constituted by these solutions.

1. Introduction

In this paper we shall prove some existence results and properties of solution
sets for ordinary differential inclusions, with nonlocal conditions. Often, nonlocal
conditions are motivated by physical problems. For the importance of nonlocal
conditions in different fields we refer to [18]. As indicated in [18], [19], [24] and the
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references therein, the nonlocal condition y(0)+g(y) = y0 can be more descriptive
in physics with better effect than the classical initial condition y(0) = y0. For
example, in [24], the author used

(1.1) g(y) =
p∑

k=1

ciy(ti),

where ci, i = 1, . . . , p, are given constants and 0 < t1 < . . . < tp, to describe the
diffusion phenomenon of a small amount of gas in a transparent tube. In this
case, equation (1.1) allows the additional measurements at ti, i = 1, . . . , p.

Nonlocal Cauchy problems for ordinary differential equations have been in-
vestigated by several authors, (see for instance [14], [19], [20], [45]–[49]). Nonlocal
Cauchy problems, in the case where F is a multivalued map, were studied by
Benchohra and Ntouyas [9]–[12] and Boucherif [14]. For impulsive differential
equations and inclusions, we can see the papers [5], [7], [8]. We will consider in
this paper the first-order differential inclusion with nonlocal conditions,

(1.2)

{
y′(t) ∈ F (t, y(t)) a.e. t ∈ J,
y(0) + g(y) = y0,

where J := [0, b]. F : J × Rn → P(Rn) is a multifunction, g:C(J,Rn) → Rn is
a given function and y0 ∈ Rn.

In 1923, Kneser proved that the Peano existence theorem can be formulated
in such a way that the set of all solutions is not only nonempty but is also compact
and connected (see [50], [51]). Later, in 1942, N. Aronszajn [2] improved Kneser’s
theorem by showing that the set of all solutions is even an Rδ-set. It should also
be clear that the characterization of the set of fixed points for some operators
implies the corresponding result for the solution sets.

J. N. Lasry and R. Robert [44] studied the topological properties of the
sets of solutions for a large class of differential inclusions including differential-
difference inclusions. The present paper is a continuation of their work but for
a general class of differential inclusions with nonlocal conditions. Aronszajn’s
results for differential inclusions with difference conditions were improved by
several authors; for example, see [13], [22], [27], [29], [31], [32], [34].

Our goal of this paper is to examine some properties of solutions sets for
differential inclusions with nonlocal conditions.

The paper is organized as follows. We first collect some background material
and basic results from multi-valued analysis in Section 2. In Section 3, an exis-
tence result in case the nonlinear multi-valued mapping F takes compact convex
values is proved under a Nagumo-type growth condition. Section 4 is devoted
to the geometric properties of solution sets of the problem (1.2). The existence
of viable solutions, topological properties and geometric properties of the set
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constituted by these solutions can be found in Section 5. We end the paper with
some concluding remarks and a rich bibliography.

2. Preliminaries

In this section, we recall from the literature some notations, definitions, and
auxiliary results which will be used throughout this paper. Let J = [0, b] be an
interval in R and C(J,Rn) be the Banach space of all continuous functions from
J into Rn with the norm

‖y‖∞ = sup{‖y(t)‖ : 0 ≤ t ≤ b}.

A function y: J → Rn is called measurable provided for every open subset U ⊂
Rn, the set y−1(U) = {t ∈ J : y(t) ∈ U} is Lebesgue measurable. In what follows,
L1(J,Rn) denotes the Banach space of functions y: J → Rn, which are Lebesgue
integrable with norm

‖y‖L1 =
∫ b

0

‖y(t)‖ dt.

Denote by P(Rn) = {Y ⊂ Rn : Y 6= ∅}, Pcl(Rn) = {Y ∈ P(Rn) : Y closed},
Pb(Rn) = {Y ∈ P(Rn) : Y bounded}, Pcv(Rn) = {Y ∈ P(Rn) : Y convex},
Pcp(Rn) = {Y ∈ P(Rn) : Y compact}.

2.1. Multi-valued analysis. Let (X, d) and (Y, ρ) be two metric spaces
and G:X → Pcl(Y ) be a multi-valued map. A single-valued map g:X → Y is
said to be a selection of G, and we write g ⊂ G, whenever g(x) ∈ G(x) for every
x ∈ X.

G is called upper semi-continuous (u.s.c. for short) on X if, for each x0 ∈ X,
the set G(x0) is a nonempty, closed subset of X, and if for each open set N
of Y containing G(x0), there exists an open neighbourhood M of x0 such that
G(M) ⊆ Y . That is, if the set G−1(V ) = {x ∈ X : G(x) ∩ V 6= ∅} is closed for
any closed set V in Y . Equivalently, G is u.s.c. if the set G+1(V ) = {x ∈ X :
G(x) ⊂ V } is open for any open set V in Y .

The following two results are easily deduced from the limit properties.

Lemma 2.1 (see e.g. [4, Theorem 1.4.13]). If G:X → Pcp is u.s.c., then for
any x0 ∈ X,

lim sup
x→x0

G(x) = G(x0).

Lemma 2.2 (see e.g. [4, Lemma 1.1.9]). Let (Kn)n∈N ⊂ K ⊂ X be a sequence
of subsets where K is compact in the separable Banach space X. Then

co
(

lim sup
n→∞

Kn

)
=

⋂
N>0

co
( ⋃

n≥N

Kn

)
,
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where coA refers to the closure of the convex hull of A.

G is said to be completely continuous if it is u.s.c. and, for every bounded
subset A ⊆ X, G(A) is relatively compact, i.e. there exists a relatively compact
set K = K(A) ⊂ X such that G(A) =

⋃
{G(x) : x ∈ A} ⊂ K. G is compact if

G(X) is relatively compact. G is called locally compact if, for each x ∈ X, there
exists U ∈ V(x) such that G(U) is relatively compact.

Definition 2.3. A multi-valued map F : J = [0, b] → Pcl(Y ) is said to
be measurable provided, for every open U ⊂ Y , the set F−1(U) is Lebesgue
measurable.

We also have the following lemma.

Lemma 2.4 ([21], [33]). The mapping F is measurable if and only if for each
x ∈ Y , the function ζ: J → [0,∞) defined by

ζ(t) = dist(x, F (t)) = inf{‖x− y‖ : y ∈ F (t)}, t ∈ J,

is Lebesgue measurable.

The following two lemmas are needed in this paper. The first one is the
celebrated Kuratowski–Ryll–Nardzewski selection theorem.

Lemma 2.5 ([33, Theorem 19.7]). Let Y be a separable metric space and
F : [a, b] → P(Y ) a measurable multi-valued map with nonempty closed values.
Then F has a measurable selection.

We denote the graph of G by the set Gr(G) = {(x, y) ∈ X × Y, y ∈ G(x)}.

Definition 2.6. G is closed if Gr(G) is a closed subset of X ×Y , i.e. for all
sequences (xn)n∈N ⊂ X and (yn)n∈N ⊂ Y , if xn → x∗, yn → y∗ as n →∞ with
yn ∈ F (xn), then y∗ ∈ G(x∗).

The first of the next two results is classical.

Lemma 2.7 ([23, Proposition 1.2]). If G:X → Pcl(Y ) is u.s.c., then Gr(G)
is a closed subset of X×Y . Conversely, if G is locally compact and has nonempty
compact values and a closed graph, then it is u.s.c.

Lemma 2.8. If G:X → Pcp(Y ) is locally compact and has a closed graph,
then G is u.s.c.

Proof. Assume that G is not u.s.c. at some point x. Then there exists an
open neighbourhood U of G(x) in Y , a sequence {xn} which converges to x,
and for every l ∈ N there exists nl ∈ N such that G(xnl

) 6⊂ U . Then for each
l = 1, 2, . . . , there are ynl such that ynl

∈ G(xnl
) and ynl

6∈ U ; this implies that
ynl

∈ Y \ U . Moreover, {ynl
: l ∈ N} ⊂ G({xn : n ≥ 1}). Since G is compact,
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there exists a subsequence of {ynl
: l ∈ N} which converges to y. G closed implies

that y ∈ G(x) ⊂ U , but this is a contradiction to the assumption that ynl
6∈ U

for each nl. �

Lemma 2.9 ([43]). Given a Banach space X, let F : [a, b]×X → Pcp,cv(X) be
an L1-Carathéodory multi-valued map such that for each y ∈ C([a, b], X), SF,y 6=
∅ and let Γ be a linear continuous mapping from L1([a, b], X) into C([a, b], X).
Then the operator

Γ ◦ SF :C([a, b], X) → Pcp,cv(C([a, b], X)),

y 7→ (Γ ◦ SF )(y) := Γ(SF,y)

has a closed graph in C([a, b], X)× C([a, b], X).

Given a separable Banach space (E, | · |), for a multi-valued map F : J ×E →
P(E), denote

‖F (t, x)‖P := sup{|v| : v ∈ F (t, x)}.

Definition 2.10. A multi-valued map F is called a Carathéodory func-
tion if

(a) the function t 7→ F (t, x) is measurable for each x ∈ E;
(b) for almost every t ∈ J , the map x 7→ F (t, x) is upper semi-continuous.

Furthermore, F is L1−Carathéodory if it is locally integrably bounded, i.e. for
each positive r, there exists hr ∈ L1(J,R+) such that

‖F (t, x)‖P ≤ hr(t), for a.e. t ∈ J and all |x| ≤ r.

For each x ∈ C(J,E), the set

SF,x = {f ∈ L1(J,E) : f(t) ∈ F (t, x(t)) for a.e. t ∈ [0, b]}

is known as the set of selection functions.

Remark 2.11. (a) For each x ∈ C(J,E), the set SF,x is closed whenever F
has closed values. It is convex if and only if F (t, x(t)) is convex for almost every
t ∈ J .

(b) From [54, Theorem 5.10] (see also [43] when E is finite-dimensional),
we know that SF,x is nonempty if and only if the mapping t 7→ inf{‖v‖ : v ∈
F (t, x(t))} belongs to L1(J). It is bounded if and only if the mapping t 7→
‖F (t, x(t))‖P = sup{‖v‖ : v ∈ F (t, x(t))} belongs to L1(J); this particularly
holds true when F is L1-Carathéodory. For the sake of completeness, we refer also
to Theorem 1.3.5 in [41] which states that SF,x contains a measurable selection
whenever x is measurable and F is a Carathéodory function.

For further readings and details on multi-valued analysis, we refer the reader
to the books by J. Andres and L. Górniewicz [1], P. Aubin and A. Cellina [3],
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P. Aubin and H. Frankowska [4], K. Deimling [23], L. Górniewicz [33], Sh. Hu
and N. S. Papageorgiou [38], [39] and M. Kamenskĭı [41].

3. Existence results

3.1. Convex case. Let F : J × Rn → Pcp,cv(Rn) be a Carathéodory mul-
timap which satisfies some of the following assumptions:

(A1) There exist a function p ∈ L1(J,R+) and a continuous nondecreasing
function ψ: [0,∞) → [0,∞) such that

‖F (t, z)‖ ≤ p(t)ψ(‖z‖) for a.e. t ∈ J and each z ∈ Rn,

with ∫ b

0

p(s) ds <
∫ ∞

1

du

ψ(u)
.

(A2) g:C(J,Rn) → Rn is a continuous function and either one of the following
conditions holds:
(a) There exist α ∈ [0, 1) and γ, β ≥ 0 such that ‖g(y)‖ ≤ γ‖y‖α

∞ + β.
(b) There exist σ ∈ [0, 1) and ξ > 0 such that ‖g(y)‖ ≤ σ‖y‖∞ + ξ.

Theorem 3.1. Assume that F satisfies (A1) and either (A2)(a) or (A2)(b).
Then the problem (1.2) has at least one solution. Moreover, the the solution set
S(y0) is compact, and the multivalued map S: Rn → Pcp(C(J,Rn)) is u.s.c.

We recall two fundamental results. The first one follows from Leray and
Schauder (see [33], [35]).

Lemma 3.2. Let (X, ‖ · ‖) be a normed space and F :X → Pcl,cv(X) a com-
pact, u.s.c. multi-valued map. Then either one of the following conditions holds:

(a) F has at least one fixed point,
(b) the set M := {x ∈ X, x ∈ λF (x), λ ∈ (0, 1)} is unbounded.

The second one is due to Mazur, 1933:

Lemma 3.3 (Mazur’s Lemma [55, Theorem 21.4]). Let E be a normed space
and {xk}k∈N ⊂ E be a sequence weakly converging to a limit x ∈ E. Then there
exists a sequence of convex combinations ym =

∑m
k=1 αmkxk with αmk > 0, for

k = 1, 2, . . . ,m, and
∑m

k=1 αmk = 1, with convergence strongly to x.

Proof of Theorem 3.1. The proof is split into three parts.
Part 1. Under Assumptions (A1), (A2)(a) the solutions set is nonempty

and compact.
Step 1. S(y0) 6= ∅. Consider the operator N :C(J,Rn) → P(C(J,Rn))

defined for y ∈ C(J,Rn) by

N(y) =
{
h ∈ C(J,Rn) : h(t) = y0 − g(y) +

∫ t

0

v(s) ds, t ∈ [0, b]
}
,
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where v ∈ SF,y = {u ∈ L1(J,Rn) : u ∈ F (t, y(t)), almost every t ∈ J}. Clearly,
fixed points of the operator N are solutions of problem (1.2). Since, for each
y ∈ C(J,Rn), the nonlinearity F takes convex values, the selection set SF,y is
convex and so N has convex values. As in [10], [14], [26], we can prove that N
maps bounded sets into bounded sets and there exists M1 > 0 such that for every
solution y of problem (1.2), we have ‖y‖∞ ≤M1. Thus, we only prove thatN(Bq)
is relatively compact in C(J,Rn), where Bq = {y ∈ C(J,Rn) : ‖y‖∞ ≤ q}. First,
N(Bq) is an equicontinuous set of C(J,Rn). To see this, let 0 < τ1 < τ2 ≤ b,
y ∈ Bq, and h ∈ N(y). Then there exists v ∈ SF,y such that

h(t) = y0 − g(y) +
∫ t

0

v(s) ds, t ∈ [0, b].

Then,

‖h(τ2)− h(τ1)‖ ≤
∫ τ2

τ1

‖v(s)‖ ds.

Hence,

‖h(τ2)− h(τ1)‖ ≤ ψ(q)
∫ τ2

τ1

p(s) ds.

The terms in the right-hand side tend to zero as τ1− τ2 → 0. By the Arzelá–
Ascoli theorem, we conclude that N :C(J,Rn) → Pcp,cv(C(J,Rn)) is a com-
pletely continuous operator. Finally, the nonlinear alternative for multi-valued
mappings (Lemma 3.2) implies that S(y0) 6= ∅.

Step 2. Compactness of the solution set.
Let S(y0) = {y ∈ C([0, b],Rn) : y is a solution of (1.2)}. From Step 1, SF 6=

∅ and there exists M such that for every y ∈ SF , ‖y‖∞ ≤ M . Since N is
completely continuous, then N(S(y0)) is relatively compact in C(J,Rn). Let
y ∈ S(y0); then y ∈ N(y) and S(y0) ⊂ N(S(y0)). It remains to prove that S(y0)
is a closed set in C(J,Rn). Let yn ∈ S(y0) such that yn converges to y. For
every n ∈ N, there exists vn(t) ∈ F (t, yn(t)), for almost every t ∈ J , such that

yn(t) = y0 − g(yn) +
∫ t

0

vn(s) ds.

(A1) implies that vn(t) ∈ p(t)ψ(M)B(0, 1), hence (vn)n∈N is integrably bounded.
Then there exists a subsequence, still denoted by (vn)n∈N, which converges
weakly to some limit v( · ) ∈ L1(J,Rn). Moreover, the mapping Γ:L1(J,Rn) →
C(J,Rn) defined by

Γ(g)(t) =
∫ t

0

g(s) ds

is a continuous linear operator. Then it remains continuous if these spaces are
endowed with their weak topologies [16]. Therefore, for almost every t ∈ J , the
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sequence yn(t) converges to y(t), and by the continuity of g, it follows that

y(t) = y0 − g(y) +
∫ b

0

v(s) ds.

It remains to prove that v ∈ F (t, y(t)), for almost every t ∈ J . Lemma 3.3
yields the existence of αn

i ≥ 0, i = n, . . . , k(n), such that
∑k(n)

i=1 αn
i = 1, and the

sequence of convex combinations gn( · ) =
∑k(n)

i=1 αn
i vi( · ) converges strongly to v

in L1. Since F takes convex values, using Lemma 2.2, we obtain that

v(t) ∈
⋂
n≥1

{gn(t)} a.e. t ∈ J(3.1)

⊂
⋂
n≥1

co{vk(t), k ≥ n}

⊂
⋂
n≥1

co
{ ⋃

k≥n

F (t, yk(t))
}

= co
(

lim sup
k→∞

F (t, yk(t))
)
.

Since F is u.s.c. with compact values, then by Lemma 2.1, we have

lim sup
n→∞

F (t, yn(t)) = F (t, y(t), for a.e. t ∈ J.

This, with (3.1), implies that v(t) ∈ coF (t, y(t)). Since F ( · , · ) has closed,
convex values, we deduce that v(t) ∈ F (t, y(t)), for almost every t ∈ J , as
claimed. Hence, y ∈ S(y0), which implies S(y0) is closed and hence compact
in C(J,Rn).

Part 2. The u.s.c. of S( · ).
From Step 2, we have S( · ) ∈ Pcp(C(J,Rn)). Set ΓS := {(x, y) | y ∈ S(x)}

and let (xn, yn) ∈ ΓS , i.e. yn ∈ S(xn), and (xn, yn) → (x, y) as n → ∞, where
yn ∈ S(xn). Then there exists vn ∈ L1(J,Rn) such that

yn(t) = xn − g(yn) +
∫ t

0

vn(s) ds, t ∈ [0, b].

Since (xn, yn) converge to (x, y) then there exists M > 0 such that

‖xn‖ ≤M, for all n ∈ N.

By using (A1)–(A2), we can easily prove that there exist M > 0 such that

‖yn‖∞ ≤M, for all n ∈ N.

By the definition of yn we have y′n(t) = vn(t), for almost every t ∈ [0, b]. Then

‖vn(t)‖ ≤ p(t)ψ(M), t ∈ [0, b].

Thus, vn(t) ∈ p(t)ψ(M)B(0, 1) := χ(t), for almost every t ∈ [0, b]. It is clear that
χ: [0, b] → Pcp,cv(Rn) is a multivalued map that is integrably bounded. Since
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{vn( · ) : n ≥ 1} ∈ χ( · ), we may pass to a subsequence if necessary to get that
vn converges weakly to v in L1

w([0, b],Rn). From Mazur’s lemma, there exists

v ∈ conv{vn(t) : n ≥ 1},

so there exists a subsequence {vn(t) : n ≥ 1} in conv{vn(t) : n ≥ 1}, such that
vn converges strongly to v ∈ L1([0, b],Rn). Since F (t, · ) is u.s.c. with convex
values, then we can easily prove that (see Step 2)

v(t) ∈ F (t, y(t)), a.e. t ∈ [0, b].

Let

z(t) = x− g(y) +
∫ t

0

v(s) ds, t ∈ [0, b].

Since the function g is continuous, we obtain the estimates

||yn − z‖∞ ≤ ‖xn − x‖+ ‖g(yn)− g(y)‖∞ +
∫ b

0

‖vn(s)− v(s)‖ ds.

The right-hand side terms tend to 0 as n→∞. Hence,

y(t) = x− g(y) +
∫ t

0

v(s) ds, t ∈ [0, b].

So y ∈ S(x). Now, we show that S( · ) maps bounded sets into relatively compact
sets of C(J,Rn). Let B be a bounded set in Rn and {yn} ⊂ Sϕ(B). Then there
exists {xn} ⊂ B such that

yn(t) = xn − g(yn) +
∫ t

0

vn(s) ds, t ∈ [0, b],

where vn ∈ SF,yn
, n ∈ N. Since {xn} is a bounded sequence, then there exists

a subsequence of {xn} converging to x, and from (A1)–(A2), there exists M∗ > 0
such that

‖yn‖∞ ≤M∗, n ∈ N.
From Part 1, {yn : n ∈ N} is equicontinuous in C(J,Rn). As a consequence of
the Arzéla–Ascoli Theorem, we conclude that there exists a subsequence of {yn}
converging to y in C(J,Rn). By the above arguments, we can prove that

y(t) = x− g(y) +
∫ t

0

v(s) ds, t ∈ [0, b],

where v ∈ SF,y. Then y ∈ S(x). This implies that S( · ) is u.s.c. �

3.2. The nonconvex case. In this section, we present a second existence
result for problem (1.2) when the multi-valued nonlinearity is not necessarily con-
vex. In the proof, we will make use of the nonlinear alternative of Leray–Schauder
type [35] combined with a selection theorem due to Bressan and Colombo [15] for
lower semicontinuous multi-valued maps with decomposable values. The main
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ingredients are presented hereafter. We first start with some definitions (see
e.g. [4]). Consider a topological space E and a family A of subsets of E.

Definition 3.4. A is called a σ-algebra if it satisfies the following proper-
ties:

(a) ∅ ∈ A.
(b) If O ∈ A then E \ O ∈ A.
(c) If On ∈ A, n = 1, 2, . . . then

⋃
n≥1On ∈ A.

Definition 3.5. A is called L⊗B measurable if A belongs to the σ-algebra
generated by all sets of the form I × D, where I is Lebesgue measurable in J

and D is Borel measurable in E.

Definition 3.6. A subset A ⊂ L1(J,E) is decomposable if, for all u, v ∈ A
and for every Lebesgue measurable set I ⊂ J , we have

uχI + vχJ\I ∈ A,

where χA stands for the characteristic function of the set A.

Let F : J × E → P(E) be a multi-valued map with nonempty closed values.
Assign to F the multi-valued operator F :C(J,E) → P(L1(J,E)) defined by
F(y) = SF,y. The operator F is called the Nemyts’kĭı operator associated to F .

Definition 3.7. Let F : J × E → P(E) be a multi-valued map with non-
empty compact values. We say that F is of lower semi-continuous type (l.s.c.
type) if its associated Nemyts’kĭı operator F is lower semi-continuous and has
nonempty closed and decomposable values.

Next, we state a classical selection theorem due to Bressan and Colombo.

Lemma 3.8 (see [15], [38]). Let X be a separable metric space and let E be
a Banach space. Then every l.s.c. multi-valued operator N :X → Pcl(L1(J,E))
with closed decomposable values has a continuous selection, i.e. there exists a con-
tinuous single-valued function f :X → L1(J,E) such that f(x) ∈ N(x) for every
x ∈ X.

Let us introduce the following hypothesis:

(B1) F : [0, b] × Rn → P(Rn) is a nonempty, compact valued, multi-valued
map such that
(a) the mapping (t, y) 7→ F (t, y) is L ⊗ B measurable;
(b) the mapping y 7→ F (t, y) is lower semi-continuous for almost every

t ∈ [0, b].

The following lemma is crucial in the proof of our existence theorem.
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Lemma 3.9 (see e.g. [28]). Let F : J×Rn → Pcp(Rn) be an integrably bounded
multi-valued map satisfying (B1). Then F is of lower semi-continuous type.

The single-valued version of the Nonlinear Alternative of Leary and Schauder
may be stated as follows:

Lemma 3.10. Let X be a Banach space and C ⊂ X a nonempty bounded,
closed, convex subset. Assume U is an open subset of C with 0 ∈ U and let
G:U → C be a continuous compact map. Then

(a) either there is a point u ∈ ∂U and λ ∈ (0, 1), with u = λG(u),
(b) or G has a fixed point in U .

We now present our existence result.

Theorem 3.11. Suppose that the hypotheses (A1), (A2)(a) or (A2)(b), and
(B1) are satisfied. Then problem (1.2) has at least one solution.

Proof. (A1) and (B1) imply, by Lemma 3.9, that F is of lower semi-
continuous type. From Lemma 3.8, there is a continuous selection f :C(J,Rn) →
L1([0, b],Rn) such that f(y) ∈ F(y), for all y ∈ C(J,Rn). Consider the problem

(3.2)

{
y′(t) = f(y)(t), t ∈ [0, b],

y(0) + g(y) = y0,

and the operator G:C(J,Rn) → C(J,Rn) defined by

G(y)(t) = y0 − g(y) +
∫ t

0

f(y)(s) ds, t ∈ [0, b].

As in Theorem 3.1, we can prove that the single-valued operator G is compact
and there exists M∗ > 0 such that for all possible solutions y, we have ‖y‖∞ <

M∗. Now, we only check that G is continuous. Let {yn} be a sequence such that
yn → y in C([0, b],Rn) as n→∞. Then

‖G(yn(t))−G(y(t))‖ ≤ ‖g(yn)− g(y)‖∞ +
∫ t

0

‖f(yn(s))− f(y(s))‖ ds.

Since the functions f and g are continuous, we have

‖G(yn)−G(y)‖∞ ≤ ‖g(yn)− g(y)‖+ ‖f(yn)− f(y)‖L1

which, by continuity of f and g, tends to 0, as n→∞. Let

U = {y ∈ C(J,Rn) : ‖y‖∞ < M∗}.

From the choice of U , there is no y ∈ ∂U such that y = λGy for in λ ∈
(0, 1). As a consequence of the nonlinear alternative of the Leray–Schauder type
(Lemma 3.10), we deduce that G has a fixed point y ∈ U , which is a solution of
problem (3.2), and hence a solution to the problem (1.2). �
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3.3. A further result. In this part, we present a second existence result
to problem (1.2) with a nonconvex valued right-hand side. First, consider the
Hausdorff pseudo-metric distance

Hd:P(E)× P(E) → R+ ∪ {∞}

defined by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = infa∈A d(a, b) and d(a,B) = infb∈B d(a, b). Then (Pb,cl(E),Hd)
is a metric space and (Pcl(X),Hd) is a generalized metric space (see [42]). In
particular, Hd satisfies the triangle inequality.

Definition 3.12. A multi-valued operator N :E → Pcl(E) is called:

(a) γ-Lipschitz if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ E,

(b) a contraction if it is γ-Lipschitz with γ < 1.

Notice that, if N is γ-Lipschitz, then for every γ′ > γ,

N(x) ⊂ N(y) + γ′d(x, y)B(0, 1), for all x, y ∈ E.

Our proofs are based on the following classical fixed point theorem for con-
traction multi-valued operators proved by Covitz and Nadler in 1970 (see also
K. Deimling, [23, Theorem 11.1]).

Lemma 3.13. Let (X, d) be a complete metric space. If G:X → Pcl(X) is
a contraction, then FixG 6= ∅.

Let us introduce the following hypotheses:

(H1) F : J × Rn → Pcp(Rn); t 7→ F (t, x) is measurable for each x ∈ Rn.
(H2) There exists a function l ∈ L1(J,R+) such that

Hd(F (t, x), F (t, y)) ≤ l(t)‖x− y‖, for a.e. t ∈ J and all x, y ∈ Rn,

with Hd(0, F (t, 0)) ≤ l(t) for almost every t ∈ J .
(H3) There exist c ∈ [0, 1) such that

‖g(y)− g(x)‖ ≤ c‖y − x‖∞, for every x, y ∈ C(J,Rn).

Theorem 3.14. Let Assumptions (H1)–(H3) be satisfied. Then problem
(1.2) has at least one solution.

Proof. In order to transform the problem (1.2) into a fixed point prob-
lem, let the multi-valued operator N :C(J,Rn) → P(C(J,Rn)) be as defined in
Theorem 3.1. We shall show that N satisfies the assumptions of Lemma 3.13.
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(a) N(y) ∈ Pcl(C(J,Rn)) for each y ∈ C(J,Rn).
Indeed, let yn ∈ N(y) converge to y in C(J,Rn). Then there exists vn ∈ SF,y

such that

yn(t) = y0 − g(y) +
∫ t

0

vn(s) ds, t ∈ [0, b].

Using the fact that F has compact values and from (H2), we may pass to a subse-
quence if necessary to get that vn converges to v in L1(J,Rn) and hence v ∈ SF,y.

(b) There exists γ < 1, such that

Hd(N(y), N(y)) ≤ γ‖y − y‖∞, for all y, y ∈ C(J,Rn).

Let y, y ∈ C(J,Rn) and h ∈ N(y). Then there exists v(t) ∈ F (t, y(t)) (v is
a measurable selection) such that, for each t ∈ J ,

h(t) = y0 − g(y) +
∫ t

0

v(s) ds.

(H2) tells us that Hd(F (t, y(t)), F (t, y(t))) ≤ l(t)‖y(t) − y(t)‖ for almost every
t ∈ J . Hence, there is w ∈ F (t, y(t)) such that

‖g(t)− w‖ ≤ l(t)‖y(t)− y(t)‖, t ∈ J.

Consider the mapping U : J → P (Rn) given by

U(t) = {w ∈ Rn : ‖g(t)− w‖ ≤ l(t)‖y(t)− y(t)‖}, t ∈ J,

that is, U(t) = B(g(t), l(t)‖y(t) − y(t)‖). Since g, l, y, y are measurable, Theo-
rem III.4.1 in [21] tells us that the closed ball U is measurable. In addition, (H1)
and (H2) imply that, for each y ∈ C(J,Rn), F (t, y(t)) is measurable. Finally,
the set V (t) = U(t) ∩ F (t, y(t)) is nonempty since it contains w. Therefore,
the intersection multi-valued operator V is measurable with nonempty, closed
values (see [4], [21], [33]). By Lemma 2.5, there exists a function v(t), which is
a measurable selection for V . Thus, v(t) ∈ F (t, y(t)) and

‖v(t)− v(t)‖ ≤ l(t)‖y(t)− y(t)‖, for a.e. t ∈ J.

Let us define, for almost every t ∈ J .

h(t) = y0 − g(y) +
∫ t

0

v(s) ds.

Then

‖h(t)− h(t)‖ ≤ c‖y − y‖∞ +
∫ t

0

l(s)‖y(s)− y(s)‖ ds

≤ c‖y − y‖∞ +
∫ t

0

l(s)eτL(s)e−τL(s)‖y(s)− y(s)‖ ds

≤ c‖y − y‖∞ +
1
τ
eτL(t)‖y − y‖B∗ ,
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and so

‖h− h‖B∗ ≤
(
c+

1
τ

)
‖y − y‖B∗ .

By an analogous relation, obtained by interchanging the roles of y and y, we
finally arrive at

Hd(N(y), N(y)) ≤
(
c+

1
τ

)
‖y − y‖B∗ ,

where

‖y‖B∗ = sup{e−τL(t)‖y(t)‖ : t ∈ [0, b]} and L(t) =
∫ t

0

l(s) ds.

Since c < 1, there exists τ > 0 such that c+1/τ < 1. So, N is a contraction and
thus, by Lemma 3.13, N has a fixed point y, which is a solution to (1.2). �

Arguing as in Theorem 3.1, we can also establish the following result, the
proof of which is omitted.

Theorem 3.15. Suppose that all conditions of Theorem 3.14 are satisfied
and F : J×Rn → Pcp,cv(Rn). Then the solution set of problem (1.2) is nonempty
and compact.

4. Geometric structure of solution sets

4.1. Background in geometric topology. We start with some elementary
notions and notations from geometric topology. For details, we recommend [13],
[30], [31], [33], [35], [37], [44]. In what follows (X, d) and (Y, d′) denote two
metric spaces.

Definition 4.1. A set A ∈ P(X) is called a contractible space provided
there exists a continuous homotopy h:A× [0, 1] → A and x0 ∈ A such that

(a) h(x, 0) = x, for every x ∈ A,
(b) h(x, 1) = x0, for every x ∈ A,

i.e. if the identity map A→ A is homotopic to a constant map (A is homotopi-
cally equivalent to a point).

Note that if A ∈ Pcv,cl(X), then A is contractible. Also, the class of con-
tractible sets is much larger than the class of closed convex sets.

Definition 4.2. A compact nonempty space X is called an Rδ-set provided
there exists a decreasing sequence of compact nonempty contractible spaces {Xn}
such that X =

⋂∞
n=1Xn.

Definition 4.3. A space X is called an absolute retract (in short X ∈ AR)
provided that, for every space Y , every closed subset B ⊆ Y and any continuous
map f :B → X, there exists a continuous extension f̃ :Y → X of f over Y , i.e.
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f̃(x) = f(x) for every x ∈ B. In other words, for every space Y and for any
embedding f :X → Y , the set f(X) is a retract of Y .

From [1, Proposition 2.15], if X ∈ AR, then it is a contractible space.

Definition 4.4. A space A is closed acyclic if

(a) H0(A) = Q,
(b) Hn(A) = 0, for every n > 0,

where H∗ = {Hn}n≥0 is the Čech-homology functor with compact carriers and
coefficients in the field of rationals Q. In other words, a space A is acyclic if the
map j: {p} → X, j(p) = x0 ∈ A, induces an isomorphism j∗:H∗({p}) → H∗(A).

Definition 4.5. An u.s.c. map F :X → P(Y ) is called acyclic if for each
x ∈ X, the image set F (x) is compact and acyclic.

From the continuity of Čech-homology functors, we have the following lemma.

Lemma 4.6 ([30]). Let X be a compact metric space. Then X is an acyclic
space if its structure corresponds to one of the following types:

(a) X is convex,
(b) X is contractible,
(c) X is AR,
(d) X is an Rδ set.

The next definitions were introduced in [31].

Definition 4.7. A metric space X is called acyclically contractible if there
exists an acyclic homotopy Π:X × [0, 1] → P(X) such that:

(a) x0 ∈ Π(x, 1), for every x ∈ X and for some x0 ∈ X.
(b) x ∈ Π(x, 0), for every x ∈ X.

Notice that any contractible space and any acyclic, compact metric space
are acyclically contractible (see [1, Theorem 19]). Also from [33], any acyclically
contractible space is acyclic.

Definition 4.8. A metric space X is called Rδ-contractible if there exists
a multivalued homotopy Π:X × [0, 1] → P(X) which is u.s.c. and satisfies:

(a) x ∈ Π(x, 1), for every x ∈ X,
(b) Π(x, 0) = B for every x ∈ X and for some B ⊂ Xn,
(c) Π(x, α) is an Rδ-set, for every α ∈ [0, 1] and x ∈ X.

Next, we present a result about the topological structure of the set of solu-
tions of some nonlinear functional equations due to N. Aronszajn and developed
by F. Browder and C. P. Gupta in [17] (see also [1, Theorem 1.2]).
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Theorem 4.9. Let X be a space, (E, ‖ · ‖) a Banach space and f :X → E

a proper map, i.e. f is continuous and for every compact K ⊂ E, the set f−1(K)
is compact. Assume further that, for each ε > 0, a proper map fε:X → E is
given, and the following two conditions are satisfied:

(a) ‖fε(x)− f(x)‖ < ε, for every x ∈ X,
(b) for every ε > 0 and u ∈ E in a neighbourhood of the origin such that

‖u‖ ≤ ε, the equation fε(x) = u has exactly one solution xε.

Then the set S = f−1(0) is Rδ-set.

The following Lasota–Yorke Approximation theorem (see [33]) will be needed
in this section.

Lemma 4.10. Let E be a normed space, X a metric space and f :X → E

be a continuous map. Then, for each ε > 0, there is a locally Lipschitz map
fε:X → E such that

‖f(x)− fε(x)‖ < ε, for every x ∈ X.

4.2. Application. Consider the first-order impulsive single-valued problem,

(4.1)

{
y′(t) = f(t, y(t)) for a.e. t ∈ J = [t0, b],

y(t0) + g(y) = y0,

where f : J×Rn → Rn and g:C(J,Rn) → Rn are a given functions, and y0 ∈ Rn.
Denote by S(f, y0) the set of all solutions of problem (4.1). We are in a po-

sition to state and prove an Aronsajn-type result for this problem. First, we list
two assumptions:

(C1) f : J × Rn → Rn is an Carathéodory function.
(C2) There exist a function p ∈ L1(J,R+) and a continuous nondecreasing

function ψ: [t0,∞) → [0,∞) such that

‖f(t, x)‖ ≤ p(t)ψ(‖x‖) for a.e. t ∈ J and each x ∈ Rn,

with ∫ b

t0

p(s) ds <
∫ ∞

‖y0‖

du

ψ(u)
.

Then, our first result in this section is the following.

Theorem 4.11. Assume that (C1), (C2) and (H3) hold. Then the set S(f, y0)
is Rδ and hence an acyclic space.

Proof. Let F :C(J,Rn) → C(J,Rn) be defined by

F (y)(t) = y0 − g(y) +
∫ t

t0

f(s, y(s)) ds, t ∈ [t0, b].
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Thus, FixF = S(f, y0). From Theorem 3.11, we know that S(f, y0) 6= ∅, and
there exists M > 0 such that

‖y‖∞ ≤M, for every y ∈ S(f, y0).

Define

f̃(t, y(t)) =


f(t, y(t)) if ‖y(t)‖ ≤M,

f

(
t,
My(t)
‖y(t)‖

)
if ‖y(t)‖ ≥M.

Since f is L1-Carathéodory, the function f̃ is Carathéodory and is integrably
bounded by (C2). So there exists h ∈ L1(J,R+) such that

(4.2) ‖f̃(t, x)‖ ≤ h(t), for a.e. t and all x ∈ Rn.

Consider the modified problem{
y′(t) = f̃(t, y(t)) for a.e. t ∈ J,
y(0)− g(y) = y0.

We can easily prove that S(f, y0) = S(f̃ , y0) = Fix F̃ , where F̃ :C(J,Rn) →
C(J,Rn) is as defined by

F̃ (y)(t) = y0 − g(y) +
∫ t

t0

f̃(s, y(s)) ds, t ∈ [t0, b].

By the inequality (4.2) and the continuity of g, we deduce that

‖F̃ (y)‖∞ ≤ ‖y0‖+Mγ + β + ‖h‖L1 := R.

Then F̃ is uniformly bounded. As in Theorem 3.11, we can prove that

F̃ :C(J,Rn) → C(J,Rn)

is compact which allows us to define the compact perturbation of the identity
G̃(y) = y − F̃ (y) which is a proper map. From the compactness of F̃ and the
Lasota–Yorke approximation theorem, we can easily prove that all conditions of
Theorem 4.9 are met. Therefore, the solution set S(f̃ , y0) = G̃−1(0) is an Rδ set
and hence an acyclic space by Lemma 4.6. �

4.3. σ-selectionable multivalued maps. The following definitions and
theorem can be found in [33], [36] (see also [3, p. 86]). Let (X, d) and (Y, d′) be
two metric spaces.

Definition 4.12. We say that a map F :X → P(Y ) is σ-Ca-selectionable
if there exists a decreasing sequence of compact valued u.s.c. maps Fn:X → Y

satisfying:

(a) Fn has a Carathédory selection, for all n ≥ 0 (Fn are called Ca-
selectionable),

(b) F (x) =
⋂

n≥0 Fn(x), for all x ∈ X.
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Definition 4.13.

(a) A single-valued map f : [0, a]×X → Y is said to be measurable-locally-
Lipschitz (mLL) if f( · , x) is measurable for every x ∈ X, and for every
x ∈ X, there exists a neighbourhood Vx of x ∈ X and an integrabe
function Lx: [0, a] → [0,∞) such that

d′(f(t, x1), f(t, x2)) ≤ Lx(t)d(x1, x2) for every t ∈ [0, a] and x1, x2 ∈ Vx.

(b) A multi-valued mapping F : [0, a] × X → P(Y ) is mLL-selectionable if
it has an mLL-selection.

Definition 4.14. We say that a multivalued map φ: [0, a] × Rn → P(Rn)
with closed values is upper-Scorza–Dragoni if, given δ > 0, there exists a closed
subset Aδ ⊂ [0, 1] such that the measure µ([0, a] \Aδ) ≤ δ and the restriction φδ

of φ to Aδ × Rn is u.s.c.

Theorem 4.15 (see [33, Theorem 19.19]). Let E and E1 be two separable
Banach spaces and let F : [a, b] × E → Pcp,cv(E1) be an upper-Scorza–Dragoni
map. Then F is σ-Ca-selectionable, the maps Fn: [a, b] × E → P(E1) (n ∈ N)
are almost upper semicontinuous, and we have

Fn(t, e) ⊂ conv
( ⋃

x∈E

Fn(t, x)
)
.

Moreover, if F is integrably bounded, then F is σ-mLL-selectionable.

Let S(y0) denote the set of all solutions of problem (1.2). Now, we are in
position to state and prove another characterization of the geometric structure
of S(y0).

Theorem 4.16. Let F : J × Rn → Pcp,cv(Rn) be a Carathéodory and an
mLL-selectionable multi-valued map which satisfies conditions (A1) and (H3).
Then, for every y0 ∈ Rn, the set S(y0) is contractible.

Proof. Let f ⊂ F be a measurable, locally Lipschitz selection and consider
the single-valued problem

(4.3)

{
y′(t) = f(t, y(t)) for a.e. t ∈ J,
y(0) + g(y) = y0.

Since f and g are Lipschitz function, by the Banach fixed point theorem, we can
prove that problem (4.3) has exactly one solution for every y0 ∈ Rn. Define the
homotopy h:S(y0)× [0, 1] → S(y0) by

h(y, α)(t) =

{
y(t) for t ∈ [0, αb],

x(t) for αb < t ≤ b,
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where x = S(f, y0) is the unique solution of problem (4.3). In particular,

h(y, α) =

{
y for α = 1,

x for α = 0.

We will prove that h is a continuous homotopy. Let (yn, αn) ∈ S(y0) × [0, 1]
be such that (yn, αn) → (y, α), as n → ∞. We need to show that h(yn, αn) →
h(y, α). We have

h(yn, αn)(t) =

{
yn(t) for t ∈ [0, αnb],

x(t) for t ∈ (αnb, b].

(a) If limn→∞ αn = 0, then

h(y, 0)(t) =

{
y0 − g(y) for t = 0,

x(t) for t ∈ (0, b].

From (A1) and (H3), there exists M > 0 such that

‖yn‖∞ ≤M, for each n ∈ N.

Hence,

‖h(yn, αn)− h(y, α)‖∞ ≤ ‖g(yn)− g(y)‖∞ + ψ(M)
∫ αnb

0

p(s) ds,

which tends to 0 as n→∞. The case when limn→∞ αn = 1 is treated similarly.
(b) If αn 6= 0 and 0 < limn→∞ αn = α < 1, then we may distinguish between

two sub-cases:
(i) yn ∈ S(y0) implies the existence of vn ∈ SF,yn

such that for t ∈ [0, αnb]

yn(t) = y0 − g(yn) +
∫ t

0

vn(s) ds.

Since F (t, · ) is u.s.c. for every ε > 0, there exists n0 ≥ 0 such that for any
n ≥ n0, we have

vn(t) ∈ F (t, yn(t)) ⊂ F (t, y(t)) + εB(0, 1), for a.e. t ∈ [0, αb].

In addition, F ( · , · ) has compact convex values, so there exists a subsequence
vnm

( · ) ∈ conv{vn} such that vnm
( · ) converges to a limit v( · ) satisfying

v(t) ∈ F (t, y(t)) + εB(0, 1), for all ε > 0.

Therefore,
v(t) ∈ F (t, y(t)), for a.e. t ∈ [0, αb].

Now {yn} converges to y so ‖yn‖∞ ≤ R for some R > 0. Then Assumption (A1)
implies that

‖vnm
(t)‖ ≤ p(t)ψ(M), for a.e. t ∈ [0, b].
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By the Lebesgue dominated convergence theorem, it follows that

v ∈ L1([0, b],Rn) ⇒ v ∈ SF,y.

Using the continuity of g, we find that for t ∈ [0, b],

y(t) = y0 − g(y) +
∫ t

0

v(s) ds.

(ii) If t ∈ (αnb, b], then

h(yn, αn)(t) = h(y, α)(t) = x(t).

Thus,
‖h(yn, αn)− h(y, α)‖∞ → 0, as n→∞.

Therefore, h is a continuous function, proving that S(y0) is contractible to the
point x = S(f, y0). �

A further precise result is given in the following theorem.

Theorem 4.17. Let F : J×Rn → Pcp,cv(Rn) be a Carathéodory and a Ca-se-
lectionable multi-valued map. Assume the additional conditions in Theorem 4.16
are satisfied. Then the solution set S(y0) is Rδ-contractible and acyclic.

Proof. Replace the singlevalued homotopy h:S(y0)× [0, 1] → S(y0) in The-
orem 4.16 by the multivalued homotopy Π:S(y0)× [0, 1] → P(S(y0)) defined by

Π(x, α) = {y ∈ S(f, αb, x)},

where f ⊂ F , and S(f, αb, x) is the solution set of the problem,{
y′ = f(t, y(t)) for a.e. t ∈ (αb, b],

y(0)− g(y) = x(0) for t ∈ [0, αb].

From the definition of Π, Π(x, 0) = S(f, 0, x) and x ∈ Π(x, 1) for every x ∈ S(y0).
It remains to prove that Π( · , · ) is u.s.c.; this can be done as in [31], [25].

Next, we claim that Π(x, α) is an Rδ set for each fixed α ∈ [0, 1] and x ∈ S(x).
Clearly Π(x, α) = S(x). Since F is σ-Ca-selectionable, there exists a decreas-
ing sequence of multivalued maps Fk: [0, b] × Rn → P(Rn) (k ∈ N) that have
Carathéodory selections and satisfy

Fk+1(t, u) ⊂ Fk(t, u), for almost all t ∈ [0, b], u ∈ Rn

and

F (t, u) =
∞⋂

k=0

Fk(t, u), u ∈ Rn.

Then

Π(y0, α) =
∞⋂

k=0

S(Fk, y0),
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where S(Fk, x) is solution of the problem{
y′(t) ∈ Fk(t, y(t)) for a.e. t ∈ J,
y(0) + g(y) = y0.

Theorem 3.1 implies that Π(x, α) and S(Fk, y0) are compact sets. Moreover,
from Theorem 4.16, the sets S(Fk, y0) are contractible sets. Therefore, Π(x, α)
is an Rδ set.

As a consequence, all properties in Definition 4.8 are satisfied, so the set
S(y0) is Rδ-contractible. This completes the proof of the theorem. �

We next derive some additional results regarding the topological structure of
the solution sets.

Theorem 4.18. Let F : J×Rn → Pcp,cv(Rn) be a Carathéodory and a σ-Ca-
selectionable multi-valued map. Assume that all additional conditions of Theo-
rem 4.16 are satisfied. Then the solution set S(y0) is an Rδ set.

Proof. Since F is σ-Ca-selectionable, there exists a decreasing sequence
of multivalued maps Fk: [0, b] × Rn → P(Rn) (k ∈ N) that have Carathéodory
selections and satisfy

Fk+1(t, u) ⊂ Fk(t, u), for almost all t ∈ [0, b], u ∈ Rn,

and

F (t, x) =
∞⋂

k=0

Fk(t, x), x ∈ Rn.

Then,

S(y0) =
∞⋂

k=0

S(Fk, y0).

From Theorem 4.17, the set S(Fk, y0) is contractible for each k ∈ N. Hence
S(y0) is an Rδ set. �

Theorem 4.19. Let F : J × Rn → Pcp,cv(Rn) be a Carathéodory and a σ-
mLL-selectionable map. Assume that all conditions of Theorem 4.16 are fulfilled.
Then the solution set S(y0) is an Rδ set.

Proof. It is enough to prove that F is a σ-mLL-selectionable and then
apply Theorem 4.16. �

Theorem 4.20. Let F : J ×Rn → Pcp,cv(Rn) be upper-Scorza–Dragoni. As-
sume that all conditions of Theorem 4.16 are satisfied. Then the solution set
S(y0) is an Rδ.

Proof. Since F is upper-Scorza–Dragoni, then from Theorem 4.15, F is
a σ-Ca-selection map. Therefore S(y0) is an Rδ-set. �
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5. Existence results in a closed set

Let K be a closed subset of Rn. For a point x ∈ Rn, we define

TK(x) =
{
y ∈ Rn : lim

t→0+
inf

1
t
d(x+ ty,K) = 0

}
,

which is called the Bouligand tangent cone to K at x. A nonempty closed subset
K ⊂ Rn is called a proximate retract provided there exists an open neighbour-
hood U of K in Rn and a retraction r:U → Rn such the following two conditions
satisfied:

(i) r(x) = x for all x ∈ K,
(ii) ‖x− r(x)‖ = d(x,K), for every x ∈ U .

It is well known that the class of all proximate retracts is quite rich; in particular,
it contains convex sets and C2-manifolds. It is easy to see that, for given K, if
r:U → K exists, then it is unique. Since one can take a sufficiently small U ,
for example by restricting U to U ∩ {x ∈ Rn : dist(x,K) < δ}, δ > 0, we may
assume that ‖r(x)− x‖ ≤ δ, for a given δ > 0 and x ∈ U . The following lemmas
play an important role in our considerations.

Lemma 5.1 ([34]). Let K be a proximate retract. Then

TK(r(x)) ⊆ {y ∈ Rn : 〈y, x− r(x)〉 ≤ 0}, for any x ∈ U,

where 〈 · , · 〉 denotes the inner product in Rn.

Proof. If x ∈ K, then r(x) = x. Hence, for every y ∈ TK(r(x)), we have

〈y, x− r(x)〉 = 0.

This implies that TK(r(x)) ⊆ {y ∈ Rn : 〈y, x − r(x)〉 ≤ 0}. Hence, we assume
that x ∈ U \K and y ∈ Rn are such that 〈y, x− r(x)〉 > 0; then

lim
t→0+

d(r(x) + ty,Rn \B(x, ‖x− r(x)‖))
t

> 0.

In fact,

lim
t→0+

d(r(x) + ty, ∂B(x, ‖x− r(x)‖))
t

≥ lim
t→0+

‖x− r(x)‖ − ‖x+ ty − r(x)‖
t

= lim
t→0+

(‖x− r(x)‖ − ‖x− ty − r(x)‖)‖x− r(x)− ty‖
t‖x− r(x)− ty‖

≥ lim
t→0+

−〈−ty, x− r(x)− ty〉
t‖x− r(x)− ty‖

= lim
t→0+

−t2‖y‖+ t〈y, x− r(x)〉
t‖x− r(x) + ty‖

= lim
t→0+

〈y, x− r(x)〉
‖x− r(x) + ty‖

= lim
t→0+

〈y, x− r(x)〉
‖x− r(x)‖

> 0.
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On other hand, K ⊂ Rn \B(x, ‖x− r(x)‖), and so

d(r(x) + ty,K) ≥ d(r(x) + ty, Rn \B(x, ‖x− r(x)‖).

In conclusion, y 6∈ TK(r(x)). �

Lemma 5.2 ([34]). Let K be a proximate retract, r:U → K a metric retrac-
tion and s > 0 be such that K ∩ B(0, s) 6= ∅, where B(0, s) is the closure of
B(0, s) in Rn. Then there exists ε0 > 0 such that, for any 0 < ε ≤ ε0, there exist
subsets K ⊂ Kε ⊂ U of Rn, Kε closed and Uε open, and a continuous retraction
rε:Uε → Kε such that the following conditions are satisfied:

(a)
⋂

0<ε≤ε0
Kε = K,

(b) ‖rε(x)− x‖ = dist(x,Kε), for all x ∈ Uε ∩B(O, s),
(c) TKε(x) ⊆ {y ∈ Rn : 〈y, y − r(x)〉 ≤ 0}, for any x ∈ Kε ∩B(0, s).

Lemma 5.3 ([52], [53]). Let K be a proximate retract, let U be an open
neighbouirhood of K in Rn, and let r:U → K be a metric retraction. Assume
further that ε > 0 is chosen in such a way that O2ε(K) ⊂ U . Then we have:

(A1) O2ε(K) is a approximate retract;
(A2) {y ∈ Rn : 〈y, x− r(x)〉 ≤ 0} ⊂ TOε(K)(x), for all x ∈ Oε(K);
(A3) TK(r(x)) ⊂ {y ∈ Rn : 〈y, x− r(x)〉 ≤ 0}, for all x ∈ Oε(K),

where
O2ε(K) = {x ∈ Rn : d(x, a) < ε for some a ∈ K}.

5.1. Viable solutions on proximate retracts. In this subsection we shall
discuss the existence of viable solutions of some classes of differential inclusions
with with nonlocal conditions. Our approach here is based on [27], [29], [32],
[34]; we give natural generalizations of some of the results contained, therein, for

(5.1)

{
y′(t) ∈ F (t, y(t)) for a.e. t ∈ [0, b],

y(0)− g(y) = y0,

where F : [0, b]×K → P(Rn) is a multivalued map and g:C([0, b],K) → y0 +K

is a given function.

Definition 5.4. A function y ∈ AC([0, b],Rn) is called a solution of (5.1)
(or a viable solution), if there exists v ∈ L1([0, b],K) such that y′(t) = v(t) for
almost every t ∈ [0, b], and y′(t) ∈ F (t, y(t)) for almost all (a.a.) t ∈ [0, b] such
that y(t) ∈ K for each t ∈ [0, b] and y(0)− g(y) = y0.

To solve problem (5.1), we consider the following auxiliary problem:

(5.2)

{
y′(t) ∈ F̃ (t, y(t)) for a.e. t ∈ [0, b],

y(0)− g(y) = y0,
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where F̃ : [0, b]× Rn → Rn is defined by

F̃ (t, y) =

{
α(y)F (t, r(y)) if y ∈ U and t ∈ [0, b],

0 if y 6∈ U and t ∈ [0, b],

where r:U → K is the metric retraction and α: Rn → [0, 1] is a continuous
Uryshon function such that α|K ≡ 1 and α|Rn\K ≡ 0. Obviously, F̃ is unique up
to the choice of the Uryshon function α.

Proposition 5.5. If F : [0, b]×K → P(Rn) is a Carathédory multifunction
in K, then F̃ : [0, b]× Rn → P(Rn) is a Carathédory function on Rn.

Definition 5.6. A map F : [0, b]×K → P(Rn) tangent toK, is called weakly
tangent (tangent) to K, if F (t, y)∩TK(y) 6= ∅, (F (t, y) ⊂ TK(y)), for y ∈ K and
almost all t ∈ [0, b].

Lemma 5.7. Let F : [0, b]×Rn → P(Rn) tangent to K, be a proximate retract
in Rn. If y ∈ AC([0, b],Rn) is a solution of the problem (5.2) and y0 + g(y) ∈ K,
then y(t) ∈ K, for each t ∈ [0, b].

Proof. Let d: [0, b] → R+ be defined by d(t) = d(y(t),K), t ∈ [0, b]. We
show that d(t) = 0 for all t ∈ [0, b]. Since y(0) = g(y) + y0, we have d(0) = 0,
and from the definition of d, we see that

|d(t+ h)− d(t)| ≤ ‖y(t+ h)− y(t)‖, t ∈ [0, b],

and so d is an absolutely continuous function. Let t0 ∈ [0, b] be such that
y′(t0) ∈ F (t0, y(t0)). If y(t0) ∈ U , then y′(t0) ∈ TK(r(y(t0))), and

(5.3) lim
t→0+

inf
d(r(y(t0)) + hy′(t0),K)

h
= 0.

We have

d(y(t0+h),K)−d(y(t0),K) ≤ ‖y(t0+h)−y(t0)−hy′(t0)‖+d(y(t0)+hy′(t0),K),

and from (5.3), we obtain

lim
h→0+

inf
d(t0 + h)− d(t0)

h
≤ 0.

If y(t0) 6∈ U , then y′(t0) = 0, and

d(t0 +h)−d(t0) ≤ ‖y(t0 +h)−y(t0)−hy′(t0)‖ ⇒ lim
h→0+

inf
d(t0 + h)− d(t0)

h
≤ 0.

Since d is differentiable almost everywhere and its derivative d′(t) ≤ 0 for almost
every t ∈ [0, b], it is nonincreasing. But d(0) = 0 and hence d(t) = 0 for every
t ∈ [0, b]. �

Now, we present the first result of this section.
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Theorem 5.8. Let F : [0, b] ×K → Pcp,cv(Rn) be a Carathédory multifunc-
tion, tangent to K, an approximate retract to Rn, and let g satisfy (H3). Assume
further the following conditions hold:

(R1) there exist p ∈ L1([0, b],R+) and ψ: [0,∞) → (0,∞) such that

‖F (t, u)‖P ≤ p(t)ψ(‖u‖) for all u ∈ Rn,

(R2) the function g:C([0, b],Rn) → Rn is continuous and L(C([0, b],Rn)) ⊂
K, where L(y) = g(y) + y0.

Then the problem (5.1) has at least one viable solution, the solution set is compact
and is an Rδ-set.

Proof. We consider the modified problem

(5.4)

{
y′(t) ∈ F̃ (t, y(t)) for a.e. t ∈ [0, b],

y(0)− g(y) = y0,

where F̃ is defined in problem (5.2). From Theorem 3.1, the problem (5.4) has
at least one solution y(t) and

S(F̃ ) = {y | y is a solution of the problem (5.2)}

is compact. By Lemma 5.7, we have y(t) ∈ K for all t ∈ [0, b]. Hence,

F̃ (t, y(t)) = F (t, y(t)), t ∈ [0, b].

This implies that y(t) is a solution of problem (5.1) and

S(F,K) = {y | y is a solution of the problem (5.1)} = S(F̃ ).

Now, we show that S(F̃ ) is an Rδ-set. From Theorem 3.1, there exist M > 0
such that for every y solution of the problem (5.2) we have ‖y‖∞ < M . We set

F̃M (t, y) =


F̃ (t, y) if ‖y‖ ≤M and t ∈ [0, b],

F̃

(
t,
My

‖y‖

)
if ‖y‖ ≥M and t ∈ [0, b].

It is clear that F̃M is an integrably bounded Carathédory map and S(F̃ ) =
S(F̃M ). As in [22] (see Lemma 1), there exists an almost upper semicontinuous,
integrably bounded map G: [0, b] × Rn → Pcp,cv(Rn) such the S(G) = S(F̃M ).
From theorem [33], G is σ-mLL-selectionable; then there exists a sequence of
multivalued maps {Gk}k=1, such that

Gk+1(t, u) ⊂ Gk(t, u) for almost every t ∈ [0, b], u ∈ Rn,

and G(t, u) =
⋂∞

k=1Gk(t, u). By Theorems 3.1 and 4.16, S(Gk) is compact and
contractible, and so S(F ) is Rδ-set. �
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Theorem 5.9. Let F : [0, b] ×K → Pcp,cv(Rn) be a Carathédory multifunc-
tion, weakly tangent to K, an approximate retract to Rn, and assume g satisfies
(H3). Also assume that all the conditions of Theorem 5.8 hold. Then the solution
of problem (5.1) is a nonempty set and an Rδ-set.

Proof. Let r:U → K be the metric retraction. According (A1), we choose
ε > 0 such that O2ε(K) ⊂ U and O2ε(K) is a proximate neighbourhood retract.
We consider the multivalued map T :Oε(K) → Pcl(Rn) defined by

T (x) = {y ∈ Rn : 〈y, x− r(x)〉 ≤ 0}.

We easily prove that T has a closed graph in Oε(K) × Rn. The multivalued
mapping

Fε: [0, b]×Oε(K) → Pcl(Rn)

defined by

Fε(t, y) = F (t, r(y)) ∩ T (r(y))

is Carathéodory integrably bounded. From Lemma 5.3, Fε satisfies the tangent
to K condition. From Theorem 5.8, S(Fε) is Rδ. Finally, we can observe that,
for every y0 ∈ K, we have

S(F ) =
∞⋂

n=1

S(F1/n).

Hence, S(F ) is Rδ-set. �

6. Concluding remarks

In this paper, we have investigated problem (1.2) under various assumptions
on the right hand side multivalued nonlinearity, and we have obtained a number
of new results regarding existence of solutions. The main assumptions on the
nonlinearity are the Carathéodory and the Lipschitz conditions with respect to
the Hausdorff distance in generalized metric spaces. When the multivalued non-
linearity is also σ-Ca- or σ-mLL-selectionable, based on Aronszajn type results,
we investigated the geometric properties of the solution set, proving that it is Rδ,
contractible, or acyclic. Also, the existence of viable solutions of differential in-
clusions with nonlocal conditions and their topological and geometric structures
were investigated.
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mate retracts of Hilbert spaces, Internat. J. Non-Linear Differential Equations: Theory

Methods and Applications 3 (1997), 13–26.

[35] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.

[36] G. Haddad and J. M. Lasry, Periodic solutions of functional differential inclusions
and fixed points of σ-selectionable correspondences, J. Math. Anal. Appl. 96 (1983),

295–312.

[37] D. M. Hyman, On decreasing sequeness of compact absolute retracts, Fund. Math. 64

(1969), 91–97.

[38] Sh. Hu and N. S. Papageorgiou, Handbook of Multi-valued Analysis, Volume I: The-

ory, Kluwer, Dordrecht, 1997.

[39] , Handbook of Multi-valued Analysis. Volume II: Applications, Kluwer, Dor-

drecht, The Netherlands, 2000.

[40] S. Hu, N. S. Papageorgiou and V. Lakshmikantham, On the properties of the
solutions set of semilinear evolution inclusions, Nonlinear Anal. 24 (1995), 1683–1712.
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