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GLOBAL EXISTENCE, ASYMPTOTIC BEHAVIOR
AND BLOW-UP OF SOLUTIONS

FOR A VISCOELASTIC EQUATION
WITH STRONG DAMPING AND NONLINEAR SOURCE

Wenjun Liu

Abstract. This paper deals with the initial-boundary value problem for

the viscoelastic equation with strong damping and nonlinear source. Firstly,

we prove the local existence of solutions by using the Faedo-Galerkin ap-
proximation method and Contraction Mapping Theorem. By virtue of the

potential well theory and convexity technique, we then prove that if the

initial data enter into the stable set, then the solution globally exists and
decays to zero with a polynomial rate, and if the initial data enter into

the unstable set, then the solution blows up in a finite time. Moreover, we
show that the solution decays to zero with an exponential or polynomial
rate depending on the decay rate of the relaxation function.

1. Introduction

In this paper, we are concerned with the following initial-boundary value
problem for nonlinear viscoelastic equations with strong damping and nonlinear
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source

(1.1)

utt −∆u +
∫ t

0

g(t− s)∆u(x, s) ds

− ω∆ut + µut = |u|r−2u, (x, t) ∈ Ω× (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× [0,∞),

where Ω is an open bounded Lipschitz subset of Rn (n ≥ 1). The relaxation
function g is a positive and uniformly decaying function. The functions u0 and
u1 are given initial data satisfying

u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω),(1.2)

ω > 0, µ > −ωλ1,(1.3)

where λ1 is the first eigenvalue of the operator −∆ under homogeneous Dirichlet
boundary conditions, and

(1.4) 2 < r ≤ 2∗ = 2n/(n− 2) if n ≥ 3, 2 < r < ∞ if n = 1, 2.

This type of problem arises in viscoelasticity and in system governing the longi-
tudinal motion of a viscoelastic configuration obeying a nonlinear Boltzmann’s
model (see [1], [4]).

In the absence of the viscoelastic term (that is, if g = 0), the equation in
(1.1) reduces to the damped wave equation

(1.5) utt −∆u− ω∆ut + µut = |u|r−2u, (x, t) ∈ Ω× (0,∞).

This equation has been extensively studied by many mathematicians. Sufficient
conditions for the existence of nonglobal as well as global solutions in the nondis-
sipative case (ω = µ = 0) were obtained by L. E. Payne and D. H. Sattinger [23]
where they introduced the concepts of stable and unstable sets. For the case
ω = 0 and µ > 0, R. Ikehata [9] gave a characterization of the global solutions
decaying to zero. He also gave a characterization of the existence of blow-up
solutions, but restricted to sufficiently small coefficient µ. The later result was
improved by J. A. Esquivel-Avila in [7] for any positive coefficient µ. Recently,
F. Gazzola and M. Squassina [8] considered equation (1.5) where strong damping
term was included (ω > 0) and proved global existence and finite time blow-up
of solutions.

As far as the viscoelastic term
∫ t

0
g(t− s)∆u(x, s) ds is concerned, problems

related to (1.1) have also been extensively studied and many results concerning
existence, decay and blow up have been established. For example, the following
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equation

utt −∆u +
∫ t

0

g(t− τ)∆u(τ) dτ + a(x)ut + |u|γu = 0, (x, t) ∈ Ω× (0,∞)

has been considered by Cavalcanti et al [5], where a: Ω → R+ is a function, which
may be null on a part of Ω. Under the condition that a(x) ≥ a0 > 0 on ω ⊂ Ω,
with ω satisfying some geometric restrictions and −ξ1g(t) ≤ g′(t) ≤ −ξ2g(t),
t ≥ 0 to guarantee ‖g‖L1((0,∞)) is small enough, they proved an exponential rate
of decay. S. Berrimi and S. A. Messaoudi [2] improved Cavalcanti’s result by
introducing a different functional, which allowed them to weaken the conditions
on both a and g. In the related work, M. M. Cavalcanti et al. [4] studied
solutions of

|ut|ρutt −∆u−∆utt +
∫ t

0

g(t− τ)∆u(τ) dτ − γ∆ut = 0, (x, t) ∈ Ω× (0,∞),

for ρ > 0 and proved a global existence result for γ ≥ 0 and an exponential
decay for γ > 0. This result was later extended by Messaoudi and Tatar [20] to
a situation where a source term is competing with the strong damping mechanism
and the one induced by the viscosity. More recently, S. A. Messaoudi and N.-
E. Tatar [21] considered

|ut|ρutt −∆u−∆utt +
∫ t

0

g(t− s)∆u(x, s) ds = b|u|p−2u, (x, t) ∈ Ω× (0,∞),

where b > 0, p > 2 are constants, in which the source term competes with
the dissipation induced by the viscoelastic term only. By introducing a new
functional and using potential well method, they obtained the global existence
of solutions and the uniform decay of the energy when the initial data are in
some stable set.

Concerning blow-up results, S. A. Messaoudi [18] investigated the equation

utt −∆u +
∫ t

0

g(t− τ)∆u(τ) dτ + aut|ut|m−2 = b|u|r−2u, (x, t) ∈ Ω× (0,∞).

He proved that any weak solution with negative initial energy blows up in finite
time if r > m and ∫ ∞

0

g(s) ds ≤ r − 2
r − 2 + 1/r

while continue to exist for any initial data in the appropriate space if m ≥ r. This
latter result was improved by the same author in [19] for positive initial energy
under suitable conditions on g, m and r. For results of same nature, we refer
the reader to H. A. Levine and J. Serrin [14], H. A. Levine and S. R. Park [13],
W. J. Liu [16], W. J. Liu and M. X. Wang [17], F. Q. Sun and M. X. Wang [24],
[25], E. Vitillaro [26].
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Motivated by [3], [4], [8], [9], [18], we intend to study the global existence,
asymptotic behavior and blow-up of solutions to the initial boundary value prob-
lem (1.1) in the present work. The main difficulties we encounter here arise from
the simultaneous appearance of the viscoelastic term, the strong damping term,
as well as the nonlinear source term. We will show that if the initial data is in
the stable set, the solution is global and decaying to zero when only the non-
positivity of g′ is needed. Moreover, we will show that the solution decays to
zero with an exponential or polynomial rate depending on the decay rate of the
relaxation function g. On the contrary, if the initial data is in the unstable set,
the solution will blow up in a finite time. To achieve our goal, we use the poten-
tial well theory, Faedo–Galerkin approximation, perturbed energy method and
concavity technique.

This paper is organized as follows. In the next section we present some as-
sumptions, notations and state our main results. In Section 3 we prove the local
existence of solutions for problem (1.1). In Section 4 we discuss the global exis-
tence and asymptotic behavior of solutions. In Section 5 we show the exponential
or polynomial decay of the solution. A finite time blow-up result for initial data
in the unstable set is obtained in the last section.

2. Preliminaries and main results

In this section we present some assumptions, notations and state our main
results. We first make the following assumptions.

(G1) g: R+ → R+ is a nonincreasing differentiable function satisfying

1−
∫ ∞

0

g(s) ds = l > 0.

(G2) There exists a positive constant ξ such that

g′(t) ≤ −ξgp(t), t ≥ 0, 1 ≤ p <
3
2
.

Remark 2.1. (G1) is necessary to guarantee the hyperbolicity of the sys-
tem (1.1).

We use the standard Lebesgue space Lr(Ω) (1 ≤ r ≤ ∞) and Sobolev space
H1

0 (Ω). We denote by ‖u‖r the Lr(Ω) norm and by ‖∇·‖2 the Dirichlet norm in
H1

0 (Ω). Moreover, for later use we denote by 〈 · , · 〉 the duality pairing between
H−1(Ω) and H1

0 (Ω). For all v, w ∈ H1
0 (Ω), we put

(v, w)∗ = ω

∫
Ω

∇v · ∇w dx + µ

∫
Ω

vw dx, ‖v‖∗ = (v, v)1/2
∗ .
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By (1.3), ‖·‖∗ is an equivalent norm over H1
0 (Ω). For r satisfies (1.4), we assume

that B is the optimal constant of the embedding inequality

‖u‖r ≤ B‖∇u‖2, u ∈ H1
0 (Ω).

We introduce the following functionals as in [3], [20], [21]:

I(t) := I(u(t)) =
(

1−
∫ t

0

g(s) ds

)
‖∇u(t)‖22 + (g ◦ ∇u)(t)− ‖u(t)‖r

r,(2.1)

J(t) := J(u(t))(2.2)

=
1
2

[(
1−

∫ t

0

g(s) ds

)
|∇u(t)‖22 + (g ◦ ∇u)(t)

]
− 1

r
‖u(t)‖r

r,

E(t) := E(u(t), ut(t)) = J(t) +
1
2
‖ut(t)‖22,(2.3)

where

(g ◦ ∇u)(t) =
∫ t

0

g(t− τ)||∇u(t)−∇u(τ)||22 dτ ≥ 0.

To state our main results we introduce the definition of a weak solution to
problem (1.1).

Definition 2.2. A weak solution to the initial-boundary value problem (1.1)
over [0, T ] is a function

u ∈ C([0, T ],H1
0 (Ω)) ∩ C1([0, T ], L2(Ω)) ∩ C2([0, T ],H−1(Ω))

with ut ∈ L2([0, T ],H1
0 (Ω)) such that u(x, 0) = u0 ∈ H1

0 (Ω), ut(x, 0) = u1 ∈
L2(Ω) and

〈utt(t), φ〉+
∫

Ω

∇u(t) · ∇φdx−
∫

Ω

∇φ ·
∫ t

0

g(t− s)∇u(s) ds dx

+ ω

∫
Ω

∇ut(t) · ∇φdx + µ

∫
Ω

ut(t)φdx =
∫

Ω

|u(t)|r−2u(t)φdx

for all test function φ ∈ H1
0 (Ω) and for almost all t ∈ [0, T ].

We are now in a position to state our main results. Our first theorem estab-
lishes the existence and uniqueness of a local weak solution to problem (1.1).

Theorem 2.3. Assume that (1.2)–(1.4) and (G1) hold. Then problem (1.1)
has a unique weak solution over [0, T ] for some T small enough. If

Tmax = sup{T > 0 : u = u(t) exists on [0, T ]} < ∞,

then ‖u(t)‖r →∞ as t ↗ Tmax.
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Theorem 2.4. Assume that (1.2)–(1.4) and (G1) hold and let u be the
unique local solution to problem (1.1). In addition, assume that u0, u1 satisfy

E(0) < d1 :=
r − 2
2r

(
l

B2

)r/(r−2)

,(2.4)

I(0) > 0.(2.5)

Then the solution is global and bounded. Moreover, there exists a constant M > 0
such that

E(t) ≤ M

1 + t
, for all t ∈ [0,∞),(2.6)

lim
t→∞

[(
1−

∫ t

0

g(s) ds

)
‖∇u(t)‖22 + (g ◦ ∇u)(t)

]
= lim

t→∞
‖ut(t)‖2 = 0.(2.7)

Observe that in the previous theorem, only the non-positivity of g′ was
needed and µ can be negetive. We have established the polynomial decay result
(see (2.6)) for the global solutions of problem (1.1). In the next section, we shall
prove further decay result by strengthening the conditions on g and µ.

Theorem 2.5. Assume that (1.2)–(1.4), (G1) and (G2) hold, µ > 0 and
let u be the global solution to problem (1.1). Then, for each t0 > 0, there exist
positive constants K and k such that the solution of (1.1) satisfies, for all t ≥ t0,

(2.8) E(t) ≤

{
Ke−kt if p = 1,

K(1 + t)−1/(p−1) if 1 < p < 3/2.

Theorem 2.6. (1.2)–(1.4), (G1) hold and let u be the unique local solution
to problem (1.1). For any fixed δ < 1, assume that u0, u1 satisfy

E(0) = δd1,(2.9)

I(0) < 0.(2.10)

Suppose that

(2.11)
∫ ∞

0

g(s) ds ≤ r − 2

r − 2 + 1/[(1− δ̂)2r + 2δ(1− δ̂)]

where δ̂ = max{0, δ}, and suppose further that
∫
Ω

u0u1 dx > 0 for 0 ≤ E(0) < d1,
then Tmax < ∞.

For t ≥ 0, we define d(t) = infu∈H1
0 (Ω)\{0} supλ≥0 J(λu). Then, the following

lemma shows that d1 is the lower bound of d(t).
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Lemma 2.7. For t ≥ 0, we have 0 < d1 ≤ d(t) ≤ d2(u) = supλ≥0 J(λu),
where

d2(u) =
r − 2
2r

[
(1−

∫ t

0
g(s) ds)‖∇u(t)‖22 + (g ◦ ∇u)(t)

‖u(t)‖2r

]r/(r−2)

.

Proof. Since

J(λu) =
λ2

2

[(
1−

∫ t

0

g(s) ds

)
‖∇u‖22 + (g ◦ ∇u)

]
− λr

r
‖u‖r

r,

we get

d

dλ
J(λu) = λ

[(
1−

∫ t

0

g(s) ds

)
‖∇u‖22 + (g ◦ ∇u)

]
− λr−1‖u‖r

r

and

d2

dλ2
J(λu) =

[(
1−

∫ t

0

g(s) ds

)
‖∇u‖22 + (g ◦ ∇u)

]
− (r − 1)λr−2‖u‖r

r.

Let d
dλJ(λu) = 0, which implies

λ1 = 0, λ2 =
[
(1−

∫ t

0
g(s) ds)‖∇u‖22 + (g ◦ ∇u)

‖u‖r
r

]1/(r−2)

.

An elementary calculation shows

d2

dλ2
J(λ1u) > 0 and

d2

dλ2
J(λ2u) < 0.

So, we have

sup
λ≥0

J(λu) = J(λ2u) =
r − 2
2r

[
(1−

∫ t

0
g(s) ds)‖∇u(t)‖22 + (g ◦ ∇u)(t)

‖u(t)‖2r

]r/(r−2)

≥ r − 2
2r

(
l

B2

)r/(r−2)

> 0.

We conclude the result. �

3. Local existence of solutions

To obtain the local existence of solutions for problem (1.1), we consider firstly
a related linear problem. Then, we use the well-known Contraction Mapping
Theorem to prove the existence of solutions to the nonlinear problem. Let us
now consider, for v given, the linear problem

(3.1)

utt −∆u +
∫ t

0

g(t− s)∆u(x, s) ds

− ω∆ut + µut = |v|r−2v, (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],
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where u is the sought solution.
For a given T > 0, consider the spaceH = C([0, T ],H1

0 (Ω))∩C1([0, T ], L2(Ω))
endowed with the norm

‖u‖2H = max
t∈[0,T ]

(‖ut(t)‖22 + l‖∇u(t)‖22).

We first prove the following

Lemma 3.1. Assume that (1.3), (1.4) and (G1) hold. For every T > 0, every
v ∈ H and every initial data u0, u1 satisfying (1.2), there exists a unique

u ∈ H ∩ C2([0, T ],H−1(Ω)) such that ut ∈ L2([0, T ],H1
0 (Ω))

which solves the linear problem (3.1).

Proof. We use the Faedo–Galerkin approximation method. For every h≥1,
let Wh = Span{w1, . . . , wh}, where {wj} is the orthogonal complete system of
eigenfunctions of −∆ in H1

0 (Ω) such that ‖wj‖2 = 1 for all j. Then {wj} is
orthogonal and complete in L2(Ω) and in H1

0 (Ω); denote by {λj} the related
eigenvalues repeated according to their multiplicity. Let

(3.2) uh
0 =

h∑
j=1

( ∫
Ω

∇u0 · ∇wj dx

)
wj and uh

1 =
h∑

j=1

( ∫
Ω

u1wj dx

)
wj ,

so that uh
0 ∈ Wh, uh

1 ∈ Wh, uh
0 → u0 in H1

0 (Ω) and uh
1 → u1 in L2(Ω) as h →∞.

We seek approximate solutions uh(t) to the problem (3.1) of the form

(3.3) uh(t) =
h∑

j=1

γh
j (t)wj , h = 1, 2, . . .

where the coefficients γh
j (t) satisfy γh

j (t) =
∫
Ω

uh(t)whdx with

(3.4)

∫
Ω

[
üh(t)−∆uh(t) +

∫ t

0

g(t− s)∆uh(s) ds

−ω∆u̇h(t) + µu̇h(t)− |v(t)|r−2v(t)
]
η dx = 0,

uh(0) = uh
0 , u̇h(0) = uh

1 ,

for every η ∈ Wh and t ≥ 0. For j = 1, · · · , h, taking η = wj in (3.4) yields
the following Cauchy problem for a linear ordinary differential equation with
unknown γh

j .

(3.5)

γ̈h
j (t) + (ωλj + µ)γ̇h

j (t) + λjγ
h
j (t)

−λj

∫ t

0

g(t− s)γh
j (s) ds =

∫
Ω

|v(t)|r−2v(t)wj dx,

γh
j (0) =

∫
Ω

u0wj dx, γ̇h
j (0) =

∫
Ω

u1wj dx.
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For all j, the Cauchy problem (3.5) yields a unique local solution γh
j ∈ C2[0, tm].

In turn, this gives a unique uh(t) in an interval [0, tm] defined by (3.3) and
satisfying (3.4). In particular, (3.3) implies that u̇h(t) ∈ H1

0 (Ω) for every t ∈
[0, tm] so that Sobolev inequality entails

(3.6) ‖u̇h(t)‖2∗ ≤ C‖∇u̇h(t)‖2, for all t ∈ [0, tm].

In the next step, we obtain the a priori estimate for the solution uh(t) so
that it can be extended to the whole interval [0, T ] according to the extension
theorem.

Step 1. (a priori estimate) Taking η = u̇h(t) in (3.4), we have

(3.7)
d

dt
(‖∇uh(t)‖22 + ‖u̇h(t)‖22) + 2‖u̇h(t)‖2∗

− 2
∫ t

0

g(t− s)
∫

Ω

∇u̇h(t) · ∇uh(s) dx ds = 2
∫

Ω

|v(t)|r−2v(t)u̇h(t) dx.

For the last term on the left hand side of (3.7) we have

(3.8) 2
∫ t

0

g(t− s)
∫

Ω

∇u̇h(t) · ∇uh(s) dx ds

=2
∫ t

0

g(t− s)
∫

Ω

∇u̇h(t) · [∇uh(s)−∇uh(t)] dx ds

+ 2
∫ t

0

g(t− s)
∫

Ω

∇u̇h(t) · ∇uh(t) dx ds

= −
∫ t

0

g(t− s)
d

dt

∫
Ω

|∇uh(s)−∇uh(t)|2 dx ds

+
∫ t

0

g(s)
(

d

dt

∫
Ω

|∇uh(t)|2 dx

)
ds

= − d

dt

[ ∫ t

0

g(t− s)
∫

Ω

|∇uh(s)−∇uh(t)|2 dx ds

]
+

d

dt

[ ∫ t

0

g(s)
( ∫

Ω

|∇uh(t)|2 dx

)
ds

]
+

∫ t

0

g′(t− s)
∫

Ω

|∇uh(s)−∇uh(t)|2 dx ds− g(t)
∫

Ω

|∇uh(t)|2 dx.

Inserting (3.8) into (3.7) and integrating over [0, t] ⊂ [0, T ], we obtain

(3.9)
(

1−
∫ t

0

g(s) ds

)
‖∇uh(t)‖22 + ‖u̇h(t)‖22 + 2

∫ t

0

‖u̇h(s)‖2∗ ds

−
∫ t

0

(g′ ◦ ∇uh)(s) ds + (g ◦ ∇uh)(t) +
∫ t

0

∫
Ω

g(s)|∇uh(s)|2 dx ds

= ‖∇uh
0‖22 + ‖uh

1‖22 + 2
∫ t

0

∫
Ω

|v(s)|r−2v(s)u̇h(s) dx ds,
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for every h ≥ 1. We estimate the last term in the right-hand side of (3.9)
thanks to Hölder, Sobolev and Young inequalities (recall r ≤ 2∗, (3.6) and v ∈
C([0, T ],H1

0 (Ω)):

(3.10) 2
∫ t

0

∫
Ω

|v(s)|r−2v(s)u̇h(s) dx ds ≤ 2
∫ t

0

‖v(s)‖r−1
r ‖u̇h(s)‖r ds

≤ C1

∫ t

0

‖v(s)‖2(r−1)
r ds +

∫ t

0

‖u̇h(s)‖2r ds ≤ C T +
∫ t

0

‖u̇h(s)‖2∗ ds.

By using (G1), (3.10) and the fact that

−
∫ t

0

(g′ ◦ ∇uh)(s) ds + (g ◦ ∇uh)(t) +
∫ t

0

∫
Ω

g(s)|∇uh(s)|2 dx ds ≥ 0,

estimate (3.9) yields

l‖∇uh(t)‖22 + ‖u̇h(t)‖22 +
∫ t

0

‖u̇h(s)‖2∗ ds ≤ ‖∇uh
0‖22 + ‖uh

1‖22 + CT.

Taking the convergence in (3.2) into consideration, we arrive at

‖uh‖2H +
∫ T

0

‖u̇h(s)‖2∗ ds ≤ CT

for every h ≥ 1, where CT > 0 is independent of h. By this uniform estimate
and (3.4), we have:

{uh} is bounded in L∞([0, T ],H1
0 (Ω)),

{u̇h} is bounded in L∞([0, T ], L2(Ω)) ∩ L2([0, T ],H1
0 (Ω)),

{üh} is bounded in L2([0, T ],H−1(Ω)).

Step 2. (passage to the limit) From the above boundedness, we can extract
a subsequence from {uh}, still denoted by {uh}, such that

uh → u weakly star in L∞([0, T ],H1
0 (Ω)),

u̇h → u̇ weakly in L2([0, T ],H1
0 (Ω)),

u̇h → u̇ weakly star in L∞([0, T ], L2(Ω)),
üh → ü weakly in L2([0, T ],H−1(Ω)).

Considering that the imbedding H1
0 (Ω) ↪→ L2(Ω) is compact and using the

Aubin-Lions compactness lemma (see J. L. Lions [15]), we deduce that

uh → u strongly in L2(QT ),
u̇h → u̇ strongly in L2(QT ), where QT := Ω× [0, T ].

The proof of uniqueness is easy and we omit it here. �

Now, we are ready to prove the local existence result.

Proof of Theorem 2.3. For M > 0 large and T > 0, we define a class of
functions as

MT = {u ∈ H : u(0) = u0, ut(0) = u1 and ‖u‖H ≤ M}.
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By the trace theorem, MT is nonempty if M is large enough, We also define
the map f from MT into H by u := f(v), where u is the unique solution of
the linear problem (3.1). We would like to show that f is a contraction map
satisfying f(MT ) ⊆MT for a suitable T > 0.

Firstly, we show f(MT ) ⊆MT . For this, we make use of the energy identity
(3.9) which yields

l‖∇u(t)‖22 + ‖ut(t)‖22 + 2
∫ t

0

‖ut(s)‖2∗ ds

≤‖∇u0‖22 + ‖u1‖22 + 2
∫ t

0

∫
Ω

|v(s)|r−2v(s)ut(s) dx ds

≤‖∇u0‖22 + ‖u1‖22 + C

∫ T

0

‖v(s)‖r−1
2∗ ‖ut(s)‖2∗ ds

≤‖∇u0‖22 + ‖u1‖22 + C

∫ T

0

‖v(s)‖r−1
∗ ‖ut(s)‖2∗ ds

≤‖∇u0‖22 + ‖u1‖22 + CTM2(r−1) + 2
∫ T

0

‖ut(s)‖22∗ ds,

for all t ∈ (0, T ]. This leads to

‖u‖2H ≤ ‖∇u0‖22 + ‖u1‖22 + CTM2(r−1).

By choosing M large enough so that ‖∇u0‖22 + ‖u1‖22 ≤ M2/2 then choose T

sufficiently small so that CTM2(r−1) ≤ M2/2, we get ‖u‖H ≤ M , which shows
that f maps MT into itself.

Next, we verify that f is a contraction. To this end we take v1 and v2 in
MT and set U = u1 − u2, V = v1 − v2, where u1 = f(v1) and u2 = f(v2). It’s
straightforward to verify that U satisfies

(3.11)

Utt −∆U +
∫ t

0

g(t− s)∆U(s) ds

− ω∆Ut + µUt = |v1|r−2v1 − |v2|r−2v2, (x, t) ∈ Ω× (0, T ],

U(x, 0) = Ut(x, 0) = 0, x ∈ Ω,

U(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ].

By multiplying the differential equation in (3.11) by Ut and integrating over
Ω× (0, t), we arrive at(

1−
∫ t

0

g(s) ds

)
‖∇U(t)‖22 + ‖Ut(t)‖22 + 2

∫ t

0

‖Ut(s)‖2∗ ds

−
∫ t

0

(g′ ◦ ∇U)(s) ds + (g ◦ ∇U)(t) +
∫ t

0

∫
Ω

g(s)|∇U(s)|2 dx ds

= 2
∫ t

0

∫
Ω

(|v1(s)|r−2v1(s)− |v2(s)|r−2v2(s))Ut(s) dx ds.
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Similar to the discussion in [8], we can get

(3.12) ‖f(v1)− f(v2)‖2H = ‖U‖2H ≤ CTM2(r−2)‖v1 − v2‖2H.

By choosing T so small that CTM2(r−2) < 1, (3.12) shows that f is a contraction.
The Contraction Mapping Principle then guarantee the existence of a unique u

satisfying u = f(u). Obviously it is a (weak) solution of (1.1).
The last statement of Theorem 2.3 can be proved similarly as in [8], therefore

we omit it. �

4. Global existence and decay of solutions

In this section, for the initial data in the stable set, we show that the solution
is global and decaying to zero. We need the following lemmas.

Lemma 4.1. Assume that (1.2)–(1.4) and (G1) hold. If u is the solution of
(1.1), then

(4.1) E′(t) =
1
2
(g′ ◦ ∇u)(t)− 1

2
g(t)‖∇u(t)‖22 − ‖ut(t)‖2∗ ≤ −‖ut(t)‖2∗ ≤ 0,

for almost every t ∈ [0, Tmax).

Proof. In view of (G1), multiplying the differential equation in (1.1) by ut

and integrating by parts over Ω, we obtain the result. �

Lemma 4.2. Under the same assumptions as in Theorem 2.4, one has I(t)>

0 for all t ∈ [0, Tmax).

Proof. Since I(0) > 0, there exists a T∗ ≤ Tmax such that I(t) ≥ 0 for all
t ∈ [0, T∗). This implies that

J(t) =
r − 2
2r

[(
1−

∫ t

0

g(s) ds

)
‖∇u‖22 + (g ◦ ∇u)

]
+

1
r
I(t)

≥ r − 2
2r

[(
1−

∫ t

0

g(s) ds

)
‖∇u‖22 + (g ◦ ∇u)

]
,

for all t ∈ [0, T∗). Thus, by (G1), (4.2) and Lemma 4.1, we have

l‖∇u‖22 ≤
(

1−
∫ t

0

g(s) ds

)
‖∇u‖22 ≤

2r

r − 2
J(t) ≤ 2r

r − 2
E(t) ≤ 2r

r − 2
E(0),

for all t ∈ [0, T∗). This combines with the Sobolev imbedding, (G1) and (2.4),
implies that

‖u‖r
r ≤ Br‖∇u‖r

2 ≤
Br

l
‖∇u‖r−2

2 l‖∇u‖22

≤ Br

l

(
2r

(r − 2)l
E(0)

)(r−2)/2

l‖∇u‖22 <

(
1−

∫ t

0

g(s) ds

)
‖∇u‖22,
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for all t ∈ [0, T∗). Therefore, I(t) > 0, for all t ∈ [0, T∗). By repeating this
procedure and using the fact that

lim
t→T∗

Br

l

(
2r

(r − 2)l
E(t)

)(r−2)/2

≤ Br

l

(
2r

(r − 2)l
E(0)

)(r−2)/2

< 1,

T∗ is extended to Tmax. �

Lemma 4.3. Under the same assumptions as in Theorem 2.4, the solution
is global in time. Moreover, there is a real number M > 0, such that

‖∇u(t)‖22 + ‖ut(t)‖22 ≤ M,(4.3) ∫ t

0

‖ut(s)‖22 ds ≤ d1

λ1ω + µ
,(4.4)

for all t ∈ [0,∞).

Proof. From (4.1), (4.2) and (2.3), we get

E(0) ≥E(t) +
∫ t

0

‖ut(s)‖2∗ ds = J(t) +
1
2
‖ut(t)‖22 +

∫ t

0

‖ut(s)‖2∗ ds(4.5)

≥ r − 2
2r

[(
1−

∫ t

0

g(s) ds

)
‖∇u(t)‖22 + (g ◦ ∇u)(t)

]
+

1
2
‖ut(t)‖22 +

∫ t

0

‖ut(s)‖2∗ ds

≥ r − 2
2r

l‖∇u(t)‖22 +
1
2
‖ut(t)‖22 +

∫ t

0

‖ut(s)‖2∗ ds.

Therefore,

l‖∇u(t)‖22 + ‖ut(t)‖22 ≤ CE(0),
∫ t

0

‖ut(s)‖2∗ ds ≤ d1,

where C is a positive constant, which depends only on r and l. Hence, u(t) is
bounded in H for all t > 0 and, by Theorem 2.3, global. Moreover, by Poincáre
inequality, we get∫ t

0

‖ut(s)‖22 ds ≤ d1

λ1ω + µ
, for all t ∈ [0,∞). �

Lemma 4.4. Under the same assumptions as in Theorem 2.4, there is a
constant M > 0, such that, for all t ∈ [0,∞),∫ t

0

I(u(s)) ds ≤ M,

∫ t

0

[(
1−

∫ τ

0

g(s) ds

)
‖∇u(τ)‖22 + (g ◦ ∇u)(τ)

]
dτ ≤ M.

Proof. Multiplying the differential equation in (1.1) by u and integrating
over Ω, using integration by parts and (2.1), we have

d

dt
〈ut(t), u(t)〉 − ‖ut(t)‖22 + I(u(t)) +

1
2

d

dt
‖u(t)‖2∗ = 0.
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By integrating the above inequality it follows that∫ t

0

I(u(s)) ds +
1
2
‖u(t)‖2∗

≤ 1
2
‖u0‖2∗ +

∫ t

0

‖ut(s)‖22 ds + ‖u1‖2‖u0‖2 + ‖ut(t)‖2‖u(t)‖2.

Therefore, from (4.4) and Ponicáre inequality, we have

(4.6)
∫ t

0

I(u(s)) ds ≤ 1
2
‖u0‖2∗ +

d1

λ1ω + µ
+ ‖u1‖2‖u0‖2 + C‖ut(t)‖2‖∇u(t)‖2.

Since Lemma 4.2 implies

η

[(
1−

∫ t

0

g(s) ds

)
‖∇u(t)‖22 + (g ◦ ∇u)(t)

]
≤ I(u(t)),

where

η = 1− Br

l

(
2r

(r − 2)l
E(0)

)(r−2)/2

> 0,

it follows from (4.6) and (4.3) that

η

∫ t

0

[(
1−

∫ τ

0

g(s) ds

)
‖∇u(τ)‖22 + (g ◦ ∇u)(τ)

]
dτ ≤

∫ t

0

I(u(τ)) dτ ≤ M,

with a constant M > 0. �

Proof of Theorem 2.4. We only need to prove (2.6) and (2.7). In fact,
note that the following inequality holds

d

dt
((1 + t)E(t)) ≤ E(t).

By integrating this inequality over [0, t], we have

(1 + t)E(t) ≤ E(0) +
1
2

∫ t

0

‖ut(s)‖22 ds +
∫ t

0

J(s) ds.

Since

rJ(t) = I(t) +
r − 2

2

[(
1−

∫ t

0

g(s) ds

)
‖∇u(t)‖22 + (g ◦ ∇u)(t)

]
,

the above inequality gives

(1 + t)E(t) ≤ E(0) +
1
2

∫ t

0

‖ut(s)‖22 ds +
1
r

∫ t

0

I(u(s)) ds

+
r − 2
2r

∫ t

0

[(
1−

∫ τ

0

g(s) ds

)
‖∇u(τ)‖22 + (g ◦ ∇u)(τ)

]
dτ.

Finally, by using Lemma 4.3 and Lemma 4.4 we obtain (2.6).
From Lemma 4.2 and (4.2), we get J(u(t)) ≥ 0 and I(u(t)) > 0. (2.6) implies

limt→∞E(t) = 0. Therefore, we have

‖ut(t)‖ → 0 and J(u(t)) → 0, as t →∞. �
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5. Exponential or polynomial decay of solutions

In this section we state and prove our exponential or polynomial decay result
which depend on the rate of the decay of the relaxation function g. For this
purpose, we adapt the method of S. Berrimi and S. A. Messaoudi in [3]. Since the
damping terms are included in our problem (1.1), we use the following “modified”
functional

(5.1) F (t) := E(t) + ε1G(t) + ε2H(t),

where ε1 and ε2 are positive constants and

G(t) :=
∫

Ω

(u(t)ut(t) +
µ

2
|u(t)|2) dx,

H(t) := −
∫

Ω

(µu(t) + ut(t))
∫ t

0

g(t− s)(u(t)− u(s)) ds dx.

Lemma 5.1. For ε1 and ε2 small enough, we have

(5.2) α1F (t) ≤ E(t) ≤ α2F (t)

holds for two positive constants α1 and α2.

Proof. Straightforward computations, in addition with Poincáre inequality
and (4.5), lead to

F (t) ≤E(t) +
ε1

2

∫
Ω

|ut(t)|2 dx +
(µ + 1)ε1

2

∫
Ω

|u(t)|2 dx

+
ε2

2

∫
Ω

(µu(t)− ut(t))2 dx

+
ε2

2

∫
Ω

( ∫ t

0

g(t− s)(u(t)− u(s)) ds

)2

dx

≤E(t) +
(

ε1

2
+ ε2

) ∫
Ω

|ut(t)|2 dx

+ λ−1
1

(
(µ + 1)ε1

2
+ µ2ε2

) ∫
Ω

|∇u(t)|2 dx

+
ε2

2
λ−1

1 (1− l)(g ◦ ∇u)(t) ≤ 1
α1

E(t)

and

F (t) ≥E(t)−
(

ε1

2
+ ε2

) ∫
Ω

|ut(t)|2 dx

− λ−1
1

(
(µ + 1)ε1

2
+ µ2ε2

) ∫
Ω

|∇u(t)|2 dx− ε2

2
λ−1

1 (1− l)(g ◦ ∇u)(t)

≥
(

1
2
− ε1

2
− ε2

) ∫
Ω

|ut(t)|2 dx
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+
[
l − λ−1

1

(
(µ + 1)ε1

2
+ µ2ε2

)]∫
Ω

|∇u(t)|2 dx

+
[
1− ε2

2
λ−1

1 (1− l)
]
(g ◦ ∇u)(t) ≥ 1

α2
E(t),

for ε1 and ε2 small enough. �

Lemma 5.2. Assume that (1.2)–(1.4), (G1) and (G2) hold. Then the func-
tional G(t) satisfies, along the solution of (1.1),

(5.3) G′(t) ≤ ‖ut(t)‖22 −
l

2
‖∇u(t)‖22 − ω‖∇ut(t)‖22

+
1
2l

[ ∫ t

0

g2−p(s) ds

]
(gp ◦ ∇u)(t) + ‖u(t)‖r

r.

Proof. By using the differential equation in (1.1), we easily see that

G′(t) =
∫

Ω

[u(t)utt(t) + u2
t (t) + µu(t)ut(t)] dx(5.4)

= ‖ut(t)‖22 − ‖∇u(t)‖22 − ω‖∇ut(t)‖22

+
∫

Ω

∇u(t) ·
∫ t

0

g(t− s)∇u(s) ds dx + ‖u(t)‖r
r.

Young’s inequality, (G1) and direct calculation (see [3]) yield

∫
Ω

∇u(t) ·
∫ t

0

g(t− s)∇u(s) ds dx ≤ 1
2
‖∇u(t)‖22(5.5)

+
1
2

∫
Ω

( ∫ t

0

g(t− s)(|∇u(s)−∇u(t)|+ |∇u(t)|) ds

)2

dx

≤ 1
2
‖∇u(t)‖22 +

1
2
(1 + η)

∫
Ω

( ∫ t

0

g(t− s)|∇u(t)| ds

)2

dx

+
1
2

(
1 +

1
η

) ∫
Ω

( ∫ t

0

g(t− s)|∇u(s)−∇u(t)| ds

)2

dx

≤ 1
2
‖∇u(t)‖22 +

1
2
(1 + η)(1− l)2‖∇u(t)‖22

+
1
2

(
1 +

1
η

)[∫ t

0

g2−p(s) ds

]
·
∫

Ω

∫ t

0

gp(t− s)|∇u(s)−∇u(t)|2 ds dx,

for any η > 0. By choosing η = l/(1 − l) and combining (5.4)–(5.5), we arrive
at (5.3). �
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Lemma 5.3. Assume that (1.2)–(1.4), (G1) and (G2) hold. Then the func-
tional H(t) satisfies,

(5.6) H ′(t) ≤
{

δ

[
1 + 2(1− l)2 + B2(r−1)

(
2rE(0)
(r − 2)l

)r−2]
+

µ(1− l)
2λ1

}
‖∇u(t)‖22

+
{

2δ +
1
4δ

(
2 +

1
λ1

+ ω

)}[∫ t

0

g2−p(s) ds

]
(gp ◦ ∇u)(t)

+
(1 + µ)g(0)

4δλ1
(−g′ ◦ ∇u)(t) + ωδ‖∇ut(t)‖22

+
{

δ −
( ∫ t

0

g(s) ds

)(
1− µ

2

)}
‖ut(t)‖22,

for any δ > 0.

Proof. Direct calculations give

H ′(t) = −
∫

Ω

(µut(t) + utt(t))
∫ t

0

g(t− s)(u(t)− u(s)) ds dx(5.7)

−
∫

Ω

(µu(t) + ut(t))
∫ t

0

g′(t− s)(u(t)− u(s)) ds dx

−
( ∫ t

0

g(s) ds

) ∫
Ω

(µu(t) + ut(t))ut(t) dx

=
∫

Ω

∇u(t) ·
( ∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
dx

−
∫

Ω

( ∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
·
( ∫ t

0

g(t− s)∇u(s) ds

)
dx

−
∫

Ω

|u(t)|r−2u(t)
( ∫ t

0

g(t− s)(u(t)− u(s)) ds

)
dx

−
∫

Ω

ut(t)
( ∫ t

0

g′(t− s)(u(t)− u(s)) ds

)
dx

−
( ∫ t

0

g(s) ds

)
‖ut(t)‖22

+ ω

∫
Ω

∇ut(t) ·
( ∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
dx

− µ

∫
Ω

u(t)
( ∫ t

0

g′(t− s)(u(t)− u(s)) ds

)
dx

− µ

( ∫ t

0

g(s) ds

) ∫
Ω

u(t)ut(t) dx.
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We now estimate the right side of (5.7). For δ > 0, similar as in [3], we have
the estimates of the first to the fourth terms:

(5.8)
∫

Ω

∇u(t) ·
( ∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
dx

≤ δ‖∇u(t)‖22 +
1
4δ

[ ∫ t

0

g2−p(s) ds

]
(gp ◦ ∇u)(t),

(5.9)
∫

Ω

( ∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)( ∫ t

0

g(t− s)∇u(s) ds

)
dx

≤ 2δ(1− l)2‖∇u(t)‖22 +
(

2δ +
1
4δ

)[∫ t

0

g2−p(s) ds

]
(gp ◦ ∇u)(t),

∫
Ω

|u(t)|r−2u(t)
( ∫ t

0

g(t− s)(u(t)− u(s)) ds

)
dx(5.10)

≤ δ‖u(t)‖2(r−1)
2(r−1) +

1
4δλ1

[ ∫ t

0

g2−p(s) ds

]
(gp ◦ ∇u)(t)

≤ δB2(r−1)

(
2rE(0)
(r − 2)l

)r−2

‖∇u(t)‖22

+
1

4δλ1

[ ∫ t

0

g2−p(s) ds

]
(gp ◦ ∇u)(t),

and

(5.11)
∫

Ω

ut(t)
( ∫ t

0

g′(t− s)(u(t)− u(s)) ds

)
dx

≤ δ‖ut(t)‖22 +
g(0)
4δλ1

(−g′ ◦ ∇u)(t).

For the sixth term

(5.12) ω

∫
Ω

∇ut(t) ·
( ∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
dx

≤ ωδ‖∇ut(t)‖22 +
ω

4δ

[ ∫ t

0

g2−p(s) ds

]
(gp ◦ ∇u)(t).

The seventh term

(5.13) µ

∫
Ω

u(t)
( ∫ t

0

g′(t− s)(u(t)− u(s)) ds

)
dx

≤ µδ

λ1
‖∇u(t)‖22 +

µg(0)
4δλ1

(−g′ ◦ ∇u)(t).
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The last term

(5.14) µ

( ∫ t

0

g(s) ds

) ∫
Ω

u(t)ut(t) dx

≤ µ

2λ1

( ∫ t

0

g(s) ds

)
‖∇u(t)‖22 +

µ

2

( ∫ t

0

g(s) ds

)
‖ut(t)‖22.

A combination of (5.7)–(5.14) yields (5.6). �

Proof of Theorem 2.5. Since g is continuous and g(0) > 0, then for any
t0 > 0 we have

(5.15)
∫ t

0

g(s) ds ≥
∫ t0

0

g(s) ds := g0 > 0, for all t ≥ t0.

By using (4.1), (5.1), (5.3), (5.6) and (5.15), we obtain

F ′(t) ≤ −
{

µ + ε2

[(
1− µ

2

)
g0 − δ

]
− ε1

}
‖ut(t)‖22 + ε1‖u(t)‖r

r

−
{

ε1l

2
− ε2

[
δ

(
1 + 2(1− l)2 +

µ

λ1

+ B2(r−1)

(
2rE(0)
(r − 2)l

)r−2)
+

µ(1− l)
2λ1

]}
‖∇u(t)‖22

+
{

ε1

2l
+ ε2

[
2δ +

1
4δ

(
2 +

1
λ1

+ ω

)]}
·
[ ∫ t

0

g2−p(s) ds

]
(gp ◦ ∇u)(t)

+
(

1
2
− ε2

(1 + µ)g(0)
4δλ1

)
(g′ ◦ ∇u)(t)− ω(1 + ε1 − δε2)‖∇ut(t)‖22.

At this point we fix δ > 0 and choose ε1 and ε2 satisfying

(5.16) k2 =
ε1l

2
− ε2

[
δ

(
1 + 2(1− l)2 +

µ

λ1

+ B2(r−1)

(
2rE(0)
(r − 2)l

)r−2)
+

µ(1− l)
2λ1

]
> 0.

We then pick ε1 and ε2 so small that (5.2) and (5.16) remain valid and

k1 =µ + ε2

[(
1− µ

2

)
g0 − δ

]
− ε1 > 0,

k3 =
(

1
2
− ε2

(1 + µ)g(0)
4δλ1

)
− 1

ξ

{
ε1

2l
+ ε2

[
2δ +

1
4δ

(
1 +

1
λ1

+ ω

)]}[∫ ∞

0

g2−p(s) ds

]
≥ 0,

k4 =ω(1 + ε1 − δε2) ≥ 0.



172 W. Liu

Therefore, using the assumption g′(t) ≤ −ξgp(t) in (G2), we have, for some
β > 0,

(5.17) F ′(t) ≤ −β[‖ut(t)‖22 − ‖u(t)‖r
r + ‖∇u(t)‖22 + (gp ◦ ∇u)(t)]

for all t ≥ t0.
Case 1. p = 1.
By virtue of the choice of ε1, ε2 and δ, estimate (5.17) yields, for some

constant α > 0,

(5.18) F ′(t) ≤ −αE(t), for all t ≥ t0.

Hence, with the help of the left hand side inequality in (5.2) and (5.18), we find

(5.19) F ′(t) ≤ −αα1F (t), for all t ≥ t0.

A simple integration of (5.19) over (t0, t) leads to

F (t) ≤ F (t0)eαα1t0e−αα1t, for all t ≥ t0.

Therefore, (2.8) is established by virtue of (5.2) again.
Case 2. 1 < p < 3/2.
Similar as the discussion in [3], we can obtain

(5.20) (gp ◦ ∇u) ≥ C1(g ◦ ∇u)p,

for some constant C1 > 0. Consequently, a combination of (5.20) and (5.17)
yields

F ′(t) ≤ −C2[‖ut(t)‖22 − ‖u(t)‖r
r + ‖∇u(t)‖22 + (g ◦ ∇u)p], for all t ≥ t0,

for some constant C2 > 0. On the other hand, since E(t) is uniformly bounded
(by E(0)), we have

Ep(t) ≤ C3[Ep−1(0)(‖ut(t)‖22 − ‖u(t)‖r
r + ‖∇u(t)‖22) + (g ◦ ∇u)p],

for all t ≥ t0 and some constant C3 > 0. Combining the last two inequalities
and (5.2), we obtain

(5.21) F ′(t) ≤ −C4F
p(t), for all t ≥ t0,

for some constant C4 > 0. A simple integration of (5.21) over (t0, t) gives

F (t) ≤ K(1 + t)−1/(p−1), for all t ≥ t0.

Therefore, (2.8) is obtained by virtue of (5.2). �



Viscoelastic Equation with Strong Damping and Nonlinear Source 173

6. Finite time blow-up of solutions

In this section, we prove a finite time blow-up result for initial data in the
unstable set. We need the following lemmas.

Lemma 6.1. Under the same assumptions as in Theorem 2.6, one has I(t) <

0 and

(6.1) d1 <
r − 2
2r

[(
1−

∫ t

0

g(s) ds

)
‖∇u‖22 + (g ◦ ∇u)

]
<

r − 2
2r

‖u‖r
r,

for all t ∈ [0, Tmax).

Proof. By Lemma 4.1 and (2.9), we have E(t) ≤ δd1 for all t ∈ [0, Tmax).
Furthermore, we can obtain I(t) < 0 for all t ∈ [0, Tmax). In fact, if it is not
true, then there exists some t∗ ∈ [0, Tmax) such that I(t∗) = 0. Thus I(t) < 0
for all 0 ≤ t < t∗, i.e.

(6.2)
(

1−
∫ t

0

g(s) ds

)
‖∇u‖22 + (g ◦ ∇u) < ‖u‖r

r, 0 ≤ t < t∗.

By the proof of Lemma 2.7, we get

(6.3) d <
r − 2
2r

[(
1−

∫ t

0

g(s) ds

)
‖∇u‖22 + (g ◦ ∇u)

]
, 0 ≤ t < t∗.

It follows from (6.2) and (6.3) that

‖u(t)‖r
r >

2r

r − 2
d1 > 0, 0 ≤ t < t∗.

By the continuity of t 7→ ‖u(t)‖r
r, we get u(t∗) 6= 0. By Lemma 2.7 and (2.2), we

obtain
d1 ≤

r − 2
2r

‖u(t∗)‖r
r = J(u(t∗)),

which contradicts to J(u(t∗)) ≤ E(t∗) < d1. By using Lemma 2.7 again, we
obtain (6.1). �

Lemma 6.3 ([11], [12]). Let L(t) be a positive, twice differentiable function,
which satisfies, for t > 0, the inequality

L(t)L′′(t)− (1 + α)L′(t)2 ≥ 0

with some α > 0. If L(0) > 0 and L′(0) > 0, then there exists a time T ∗ ≤
L(0)/[αL′(0)] such that limt→T∗− L(t) = ∞.

Proof of Theorem 2.6. We prove this result by adapting and modifying
the method used in [8] where a characterization of the blow-up solutions is proved
for problem (1.1) without the viscoelastic term:

∫ t

0
g(t−s)∆u(x, s) ds. However,

the authors have ignored the condition “L′(0) > 0” (see Lemma 6.3) when
exploiting the convexity technique. Therefore, we should modify the definition
of the auxiliary function here.
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Assume by contradiction that the solution u is global. Then, we consider
L: [0, T ] → R+ defined by

L(t) = ‖u(t)‖22 +
∫ t

0

‖u(τ)‖2∗ dτ + (T − t)‖u0‖2∗ + b(t + T0)2,

where T and T0 are positive constants to be chosen later, b > 0 if E(0) < 0 and
b = 0 if E(0) ≥ 0. Then L(t) > 0 for all t ∈ [0, T ]. Furthermore,

L′(t) = 2
∫

Ω

u(t)ut(t) dx + ‖u(t)‖2∗ − ‖u0‖2∗ + 2b(t + T0)(6.4)

= 2
∫

Ω

u(t)ut(t) dx + 2
∫ t

0

(u(τ), uτ (τ))∗ dτ + 2b(t + T0)

and, consequently,

L′′(t) = 2〈utt(t), u(t)〉+ 2‖ut(t)‖22 + 2(u(t), ut(t))∗ + 2b,

for almost every t ∈ [0, T ]. Testing the equation in (1.1) with u and plugging
the result into the expression of L′′ we obtain

L′′(t) = 2
[
‖ut(t)‖22 −

(
1−

∫ t

0

g(s) ds

)
‖∇u(t)‖22

−
∫

Ω

∇u(t) ·
( ∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
dx + ‖u(t)‖r

r + b

]
,

for almost every t ∈ [0, T ]. Therefore, we get

L(t)L′′(t)− r + 2
4

L′(t)2 = L(t)L′′(t)

+ (r + 2)
[
η(t)−

(
L(t)− (T − t)‖u0‖2∗

)(
‖ut(t)‖22 +

∫ t

0

‖uτ (τ)‖2∗ dτ + b

)]
,

where η: [0, T ] → R+ is the function defined by

η(t) =
(
‖u(t)‖22 +

∫ t

0

‖u(τ)‖2∗ dτ +b(t+T0)2
)(

‖ut(t)‖22 +
∫ t

0

‖ut(τ)‖2∗ dτ +b

)
−

( ∫
Ω

u(t)ut(t) dx +
∫ t

0

(u(t), ut(t))∗ dτ + b(t + T0)
)2

≥ 0.

As a consequence, we read the following differential inequality

(6.5) L(t)L′′(t)− r + 2
4

L′(t)2 ≥ L(t)ξ(t),
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for almost every t ∈ [0, T ], where ξ: [0, T ] → R+ is the map defined by

ξ(t) = − r‖ut(t)‖22 − 2
(

1−
∫ t

0

g(s) ds

)
‖∇u(t)‖22 − (r + 2)

∫ t

0

‖ut(τ)‖2∗ dτ

− 2
∫

Ω

∇u(t) ·
( ∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
dx + 2‖u(t)‖r

r − rb

= − 2rE(t) + r(g ◦ ∇u)(t) + (r − 2)
(

1−
∫ t

0

g(s) ds

)
‖∇u(t)‖22

− 2
∫

Ω

∇u(t) ·
( ∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
dx

− (r + 2)
∫ t

0

‖ut(τ)‖2∗ dτ − rb.

By (4.1), for all t ∈ [0, T ], we may also write

ξ(t) ≥ − 2rE(0) + r(g ◦ ∇u)(t) + (r − 2)
(

1−
∫ t

0

g(s) ds

)
‖∇u(t)‖22(6.6)

− 2
∫

Ω

∇u(t) ·
( ∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
dx

+ (r − 2)
∫ t

0

‖ut(τ)‖2∗ dτ − rb.

By using the Young’s inequality, we get

(6.7) 2
∫

Ω

∇u(t) ·
( ∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
dx

≤ 1
ε

∫ t

0

g(s) ds‖∇u(t)‖22 + ε(g ◦ ∇u)(t),

for any ε > 0. Substitute (6.7) for the fourth term of the righthand side of (6.6),
we obtain

ξ(t) ≥ − 2rE(0) +
[
(r − 2)−

(
r − 2 +

1
ε

) ∫ t

0

g(s) ds

]
‖∇u(t)‖22(6.8)

+ (r − ε)(g ◦ ∇u)(t) + (r − 2)
∫ t

0

‖ut(τ)‖2∗ dτ − rb.

If δ < 0, i.e. E(0) < 0, we choose ε = r in (6.8) and b small enough such
that b ≤ −2E(0). Then, by (2.11), we have

ξ(t) ≥
[
(r − 2)−

(
r − 2 +

1
r

) ∫ t

0

g(s) ds

]
‖∇u(t)‖22(6.9)

+ (r − 2)
∫ t

0

‖ut(τ)‖2∗ dτ + r(−2E(0)− b)
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≥
[
(r − 2)−

(
r − 2 +

1
r

) ∫ t

0

g(s) ds

]
‖∇u(t)‖22

+ (r − 2)
∫ t

0

‖ut(τ)‖2∗ dτ ≥ 0.

If 0 ≤ δ < 1, i.e. 0 ≤ E(0) = δd1 < d1, we choose ε = (1− δ)r + 2δ in (6.8).
Then, we get

ξ(t) ≥ −2rE(0) +
[
(r − 2)−

(
r − 2 +

1
(1− δ)r + 2δ

) ∫ t

0

g(s) ds

]
‖∇u(t)‖22

+ δ(r − 2)(g ◦ ∇u)(t) + (r − 2)
∫ t

0

‖ut(τ)‖2∗ dτ.

By (2.11), we have

(r − 2)−
(

r − 2 +
1

(1− δ)r + 2δ

) ∫ t

0

g(s) ds ≥ δ(r − 2)
(

1−
∫ t

0

g(s) ds

)
,

and therefore, by (6.1), we get

(6.10) ξ(t) ≥ − 2rE(0) + δ(r − 2)
[(

1−
∫ t

0

g(s) ds

)
‖∇u(t)‖22 + (g ◦ ∇u)(t)

]
+ (r − 2)

∫ t

0

‖ut(τ)‖2∗ dτ

≥ 2r(δd1 − E(0)) + (r − 2)
∫ t

0

‖ut(τ)‖2∗ dτ ≥ 0.

Therefore, by (6.5), (6.9) and (6.10), we obtain

L(t)L′′(t)− r + 2
4

L′(t)2 ≥ 0,

for almost every t ∈ [0, T ]. By (6.4), if E(0) < 0, we then choose T0 sufficiently
large such that L′(0) = 2

∫
Ω

u0u1 dx + 2bT0 > 0. If 0 ≤ E(0) < d1, the condition∫
Ω

u0u1 dx > 0 also ensure that L′(0) > 0. As (r + 2)/4 > 1, letting α =
(r − 2)/4, by using the concavity argument, we get limt→T∗− L(t) = ∞, which
implies that limt→T∗− ‖∇u(t)‖22 = ∞. �
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