ON SOME RESONANT BOUNDARY VALUE PROBLEM ON AN INFINITE INTERVAL

Katarzyna Szymańska-Dębowska

Abstract

The existence of at least one solution to a nonlinear second order differential equation on the half-line with the boundary conditions $x^{\prime}(0)=0$ and with the first derivative vanishing at infinity is proved.

1. Introduction

In the paper the following asymptotic boundary value problem

$$
\begin{equation*}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right), \quad x^{\prime}(0)=0, \quad \lim _{t \rightarrow \infty} x^{\prime}(t)=0 \tag{1.1}
\end{equation*}
$$

where $f: \mathbb{R}_{+} \times \mathbb{R}^{k} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is continuous and satisfies the appropriate growth conditions, is studied. Observe that the corresponding homogeneous linear problem, i.e.

$$
x^{\prime \prime}=0, \quad x^{\prime}(0)=0, \quad \lim _{t \rightarrow \infty} x^{\prime}(t)=0,
$$

has nontrivial constant solutions; hence we deal with a resonant situation.
The problem (1.1) has been already studied in [13]. In that paper, we have obtained the existence result in a completely different way than by using standard methods for resonant problems (by standard methods we mean methods considered, for instance, in the following papers: [1]-[4], [7], [10]-[12]). The

[^0]method used in [13] enabled us to get existence under weak assumptions: a linear growth condition and a sign condition for the nonlinear term f. Similar assumptions appear also for other boundary value problems.

2. Preliminaries

First, we shall introduce notation and terminology.
By a space we mean a metric space. Given a space X with a metric d, a set $A \subset X$ and $\varepsilon>0, B(A, \varepsilon):=\left\{x \in X \mid d_{A}(x):=\inf _{a \in A} d(x, a)<\varepsilon\right\}$ denotes the open ε-neighbourhood of A. Recall that a space X is an absolute neighbourhood retract (we write $X \in$ ANR) if, given a space Y and a homeomorphic embedding $i: X \rightarrow Y$ of X onto a closed subset $i(X) \subset Y, i(X)$ is a neighbourhood retract of Y, i.e. there is an open neighbourhood U of $i(X)$ in Y and a retraction $r: U \rightarrow i(X)$ (a map $r: U \rightarrow i(X)$ is a retraction provided that $r(y)=y$ for $y \in i(X))$.

We shall say that a nonempty space X is contractible provided there exist $x_{0} \in X$ and a homotopy $h: X \times[0,1] \rightarrow X$ such that $h(x, 0)=x$ and $h(x, 1)=x_{0}$ for every $x \in X$.

A compact (nonempty) space X is an R_{δ}-set (we write $X \in R_{\delta}$) if there is a decreasing sequence X_{n} of compact contractible spaces such that $X=$ $\bigcap_{n \geq 1} X_{n}$.

Let X, Y be spaces. A set-valued map $\Phi: X \multimap Y$ is upper semicontinuous (written u.s.c.) if, given an open $V \subset Y$, the set $\{x \in X \mid \Phi(x) \subset V\}$ is open. We say that $\Phi: X \multimap Y$ is an R_{δ}-map if it is u.s.c. and, for each $x \in X, \Phi(x) \in R_{\delta}$.

By a decomposable map we mean a pair (D, F) consisting of a set-valued map $F: X \multimap Y$ and a diagram $D: X \xrightarrow{\Phi} Z \stackrel{\varphi}{\longrightarrow} Y$, where $Z \in$ ANR, $\Phi: X \multimap Z$ is an R_{δ}-map, and $\varphi: Z \rightarrow Y$ a single-valued continuous map, such that $F=\varphi \circ \Phi$.

A superposition of a set-valued map with compact values and a continuous function is an u.s.c. map, so any decomposable map is u.s.c.

We say the two decomposable maps $\left(D_{0}, F_{0}\right),\left(D_{1}, F_{1}\right)$ where $D_{k}: X \xrightarrow{\Phi_{k}}$ $Z_{k} \xrightarrow{\varphi_{k}} Y, k=0,1$ are homotopic (we write $\left.\left(D_{0}, F_{0}\right) \simeq\left(D_{1}, F_{1}\right)\right)$ if there is a decomposable map (\breve{D}, \breve{F}) with $\breve{D}: X \times[0,1] \xrightarrow{\breve{\Phi}} Z \stackrel{\breve{\varphi}}{ } Y$ and maps $j_{k}: Z_{k} \rightarrow$ $Z, k=0,1$ such that the diagram

where $i_{k}(x)=(x, k)$ for $x \in X, k=0,1$, is commutative.

Theorem 2.1 ([8, p. 1797]). If a decomposable map $(D, F): X \multimap X$, where X is a compact ANR and is homotopic to identity id_{X}, i.e. there is a decomposable map $\left(D^{\prime}, F^{\prime}\right): X \multimap X$ such that $(D, F) \simeq\left(D^{\prime}, F^{\prime}\right)$ and $F^{\prime}(x)=x$ for $x \in X$, then

$$
\Lambda(D, F)=\lambda\left(\operatorname{id}_{X}\right)=\chi(X)
$$

Hence, if $\chi(X) \neq 0$, then $\operatorname{Fix}(F) \neq \emptyset$.
The following simple corollary will be of crucial importance.
Corollary 2.2. Let Q be a compact polyhedron with nontrivial Euler characteristic $\chi(Q) \neq 0$. If a decomposable map $(D, F): Q \multimap Q$ is homotopic to identity, then $\operatorname{Fix}(F) \neq \emptyset$.

Now, we shall present a result about the topological structure of the set of solutions of some nonlinear functional equation.

Theorem 2.3 ([6, p. 159]). Let X be a space, $(E,\|\cdot\|)$ a Banach space and $h: X \rightarrow E$ a proper map, i.e. h is continuous and for every compact $K \subset E$ the set $h^{-1}(K)$ is compact. Assume further that for each $\varepsilon>0$ a proper map $h_{\varepsilon}: X \rightarrow E$ is given and the following two conditions are satisfied:
(a) $\left\|h_{\varepsilon}(x)-h(x)\right\|<\varepsilon$, for every $x \in X$;
(b) for any $\varepsilon>0$ and $u \in E$ such that $\|u\| \leq \varepsilon$, the equation $h_{\varepsilon}(x)=u$ has exactly one solution.

Then the set $S=h^{-1}(0)$ is R_{δ}.
Denote by $\mathrm{BC}\left(\mathbb{R}_{+}, \mathbb{R}^{k}\right)$ (we write BC) the Banach space of continuous and bounded functions with supremum norm and by $\operatorname{BCL}\left(\mathbb{R}_{+}, \mathbb{R}^{k}\right)$ (we write BCL) its closed subspace of continuous and bounded functions which have finite limits at $+\infty$.

The following theorem gives a sufficient condition for compactness in the space BC and, by the definition, in the space BCL as well.

Theorem 2.4 ([9]). If $B \subset \mathrm{BC}$ satisfies following conditions:
(a) there exists $L>0$, that for every $x \in B$ and $t \in[0, \infty)$ we have $|x(t)| \leq L$,
(b) for each $t_{0} \geq 0$, the family B is equicontinuous at t_{0},
(c) for any $\varepsilon>0$ there exist $T>0$ and $\delta>0$ such that if $|x(T)-y(T)| \leq \delta$, then $|x(t)-y(t)| \leq \varepsilon$ for $t \geq T$ and all $x, y \in B$.
Then B is relatively compact in BC.

3. The main result

Let us consider an asymptotic BVP

$$
\begin{equation*}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right), \quad x^{\prime}(0)=0, \quad \lim _{t \rightarrow \infty} x^{\prime}(t)=0 \tag{3.1}
\end{equation*}
$$

where $f: \mathbb{R}_{+} \times \mathbb{R}^{k} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is continuous.
The following assumptions will be needed throughout the paper:
(i) $|f(t, x, y)| \leq a(t)|y|+b(t)$, where $\int_{0}^{\infty} a(s) d s<\infty, \int_{0}^{\infty} b(s) d s<\infty$;
(ii) there exists $M>0$ such that $x_{i} f_{i}(t, x, y)>0$ for $t \geq 0, y \in \mathbb{R}^{k}, x \in \mathbb{R}^{k}$ and $\left|x_{i}\right| \geq M, i=1, \ldots, k$.

Definition 3.1. A function $x: \mathbb{R}_{+} \rightarrow \mathbb{R}^{k}$ is called a solution of (3.1) if the following holds:
(a) $x \in C^{2}\left(\mathbb{R}_{+}, \mathbb{R}^{k}\right)$;
(b) $x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)$ for every $t \in \mathbb{R}_{+}$;
(c) $x^{\prime}(0)=0, \lim _{t \rightarrow \infty} x^{\prime}(t)=0$.

Now, we can formulate our main result.
Theorem 3.2. Under assumptions (i) and (ii), problem (3.1) has at least one solution.

The proof will be divided into a sequence of lemmas.
Given $c \in \mathbb{R}^{k}$ and $x \in \mathrm{BCL}$ let

$$
A(c, x)(t)=\int_{0}^{t} f\left(s, c+\int_{0}^{s} x(u) d u, x(s)\right) d s, \quad t \geq 0
$$

It is clear that $A(c, x):[0, \infty) \rightarrow \mathbb{R}^{k}$ is continuous. For $t \geq 0$,

$$
|A(c, x)(t)| \leq \int_{0}^{t}\left(a(s)\left|y_{c}(s)\right|+b(s)\right) d s \leq M_{1}\|x\|_{\mathrm{BC}}+M_{2}
$$

where

$$
M_{1}:=\int_{0}^{\infty} a(s) d s, \quad M_{2}:=\int_{0}^{\infty} b(s) d s
$$

Hence

$$
\begin{equation*}
\|A(c, x)(t)\|_{\mathrm{BC}} \leq M_{1}\|x\|_{\mathrm{BC}}+M_{2} \tag{3.2}
\end{equation*}
$$

Therefore $A(c, x) \in \mathrm{BC}$.
Moreover, observe that the function $[0, \infty) \ni t \mapsto f\left(t, c+\int_{0}^{t} y_{c}(u) d u, y_{c}(t)\right)$ is integrable. Hence, in particular, $\lim _{t \rightarrow \infty} A(c, x)(t)$ exists, i.e. $A(c, x) \in \mathrm{BCL}$. It follows that the operator $A: \mathbb{R}^{k} \times \mathrm{BCL} \rightarrow \mathrm{BCL}$ is well-defined.

Lemma 3.3. Under assumption (i) the operator $A: \mathbb{R}^{k} \times \mathrm{BCL} \rightarrow \mathrm{BCL}$ is completely continuous.

Proof. The continuity of A is an easy consequence of the Lebesque Dominated Convergence Theorem. It order to prove the complete continuity let us consider the set $B:=\left\{y=A(c, x) \mid c \in \mathbb{R}^{k},\|x\| \leq R\right\}$, where $R>0$. We shall see that B is relatively compact in BCL. To this reason we use Theorem 2.4.

First observe that B is bonded (see (3.2)): for any $y \in B$,

$$
\|y\|_{\mathrm{BC}} \leq M_{1} R+M_{2}
$$

Hence the condition (a) of the Theorem 2.4 holds true.
We shall now show that the family B is equicontinuos, i.e. given $t_{0} \geq 0$ and $\varepsilon>0$, there is $\delta>0$ such that if $t \geq 0$ and $\left|t-t_{0}\right|<\delta$, then $\left|y(t)-y\left(t_{0}\right)\right|<\varepsilon$ for any $c \in \mathbb{R}^{k}$ and $y \in B$. Let us choose an arbitrary $\varepsilon>0$. By (i), there exist $\delta_{1}, \delta_{2}>0$ such that

$$
\begin{aligned}
& \text { if }\left|t-t_{0}\right|<\delta_{1}, \text { then } \int_{\min \left\{t_{0}, t\right\}}^{\max \left\{t_{0}, t\right\}} a(s) d s<\frac{\varepsilon}{2 R}, \\
& \text { if }\left|t-t_{0}\right|<\delta_{2}, \quad \text { then } \int_{\min \left\{t_{0}, t\right\}}^{\max \left\{t_{0}, t\right\}} b(s) d s<\frac{\varepsilon}{2}
\end{aligned}
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then, for $\left|t-t_{0}\right|<\delta$, we get

$$
\begin{aligned}
\left|y(t)-y\left(t_{0}\right)\right| & \leq \int_{\min \left\{t_{0}, t\right\}}^{\max \left\{t_{0}, t\right\}}\left|f\left(s, c+\int_{0}^{s} x(u) d u, x(s)\right)\right| d s \\
& \leq R \int_{\min \left\{t_{0}, t\right\}}^{\max \left\{t_{0}, t\right\}} a(s) d s+\int_{\min \left\{t_{0}, t\right\}}^{\max \left\{t_{0}, t\right\}} b(s) d s<R \frac{\varepsilon}{2 R}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

It remains to prove condition (c) of Theorem 2.4, i.e. we shall show that given $\varepsilon>0$, there are $T>0$ and $\delta>0$ such that for any $y, z \in B$ if $|y(T)-z(T)|<\delta$, then $|y(t)-z(t)|<\varepsilon$ for any $t \geq T$. There is $T>0$ such that

$$
\int_{T}^{\infty} a(s) d s<\frac{\varepsilon}{6 R}, \quad \int_{T}^{\infty} b(s) d s<\frac{\varepsilon}{6}
$$

Let $\delta:=\varepsilon / 3$. If $|y(T)-z(T)| \leq \delta$, then for $t \geq T$ we get

$$
\begin{aligned}
|y(t)-z(t)| & \leq|y(T)-z(T)|+2 R \int_{T}^{\infty} a(s) d s+2 \int_{T}^{\infty} b(s) d s \\
& \leq \frac{\varepsilon}{3}+2 R \frac{\varepsilon}{6 R}+2 \frac{\varepsilon}{6}=\varepsilon
\end{aligned}
$$

and the proof is complete.
Given $c \in \mathbb{R}^{k}$, let $x \in \mathrm{BCL}$ and $x=\lambda A(c, x)$ for some $\lambda \in[0,1]$. Then

$$
x(t)=\lambda \int_{0}^{t} f\left(s, c+\int_{0}^{s} x(u) d u, x(s)\right) d s
$$

The Gronwall inequality implies that

$$
\begin{equation*}
|x(t)| \leq M_{2} e^{M_{1}} \tag{3.3}
\end{equation*}
$$

Therefore, the Leray-Schauder Alternative implies that for each $c \in \mathbb{R}^{k}$ the set $\operatorname{Fix}(A(c, \cdot))$ of fixed points of $A(c, \cdot): \mathrm{BCL} \rightarrow \mathrm{BCL}$ is nonempty.

Lemma 3.4. Let assumption (i) hold and let $\Phi: \mathbb{R}^{k} \multimap$ BCL be given by $\Phi(c):=\operatorname{Fix}(A(c, \cdot))$. The set-valued map Φ is upper semicontinuous with compact values.

Proof. The set-valued map Φ is upper semicontinuous with compact values if given a sequence $\left(c_{n}\right)$ in $\mathbb{R}^{k}, c_{n} \rightarrow c_{0}$ and $\left(x_{n}\right) \in \Phi\left(c_{n}\right),\left(x_{n}\right)$ has a converging subsequence to some $x_{0} \in \Phi\left(x_{0}\right)$. Taking any sequence $\left(c_{n}\right), c_{n} \rightarrow c_{0}$ and $\left(x_{n}\right) \in \Phi\left(c_{n}\right)$ we have

$$
\begin{equation*}
x_{n}=A\left(c_{n}, x_{n}\right) \tag{3.4}
\end{equation*}
$$

By (3.3), we get that the fixed points of $A(c, \cdot)$ are equibounded for any c. Hence both sequences $\left(x_{n}\right)$ and $\left(c_{n}\right)$ are bounded. Lemma 3.3 yields that the operator A is completely continuous. Then, by $(3.4),\left(x_{n}\right)$ is relatively compact. Hence, passing to a subsequence if necessary, we may assume that $x_{n} \rightarrow x_{0}$ in BCL. The continuity of A implies that $x_{0}=A\left(c_{0}, x_{0}\right)$. Hence, $x_{0} \in \Phi\left(c_{0}\right)$ and the proof is complete.

Lemma 3.5. If assumption (i) holds, then Φ is an R_{δ}-map.
Proof. Since the map Φ is u.s.c., it remains to show that for any $c \in \mathbb{R}^{k}$ the set $\Phi(c)$ is R_{δ}. Let $X=\{x \in \mathrm{BCL} \mid\|x\| \leq L\}$, where $L:=M_{2} e^{M_{1}}$ is taken from (3.3). We will show that if $A(c, \cdot): X \rightarrow \mathrm{BCL}$ is a compact map (it is easy to see that A_{c} is compact) and $h: X \rightarrow \mathrm{BCL}$ is a compact vector field associated with $A(c, \cdot)$, i.e. $h(x)=x-A(c, x)$, then there exists a sequence $h_{n}: X \rightarrow \mathrm{BCL}$ of continuous proper mappings satisfying conditions (a) and (b) of Theorem 2.3 with respect to h.

First, notice that $A(c, x)=0$ for every $x \in X$. Moreover, for every $T \in(0, \infty)$ and for every $x, y \in \mathrm{BCL}$, if $x(t)=y(t)$ for each $t \in[0, T]$, then $A(c, x)(t)=$ $A(c, y)(t)$ for each $t \in[0, T]$.

For the proof it is sufficient to define a sequence $A^{n}(c, \cdot): X \rightarrow \mathrm{BCL}$ of compact maps such that $A(c, x)=\lim _{n \rightarrow \infty} A^{n}(c, x)$ uniformly in X and show that $h_{n}(x)=x-A^{n}(c, x)$ is a one-to-one map. To do this we define auxiliary mappings $r_{n}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$by

$$
r_{n}(t):= \begin{cases}0 & \text { for } t \in[0,1 / n] \\ t-1 / n & \text { for } t \in(1 / n, \infty)\end{cases}
$$

Now we are able to define the sequence $\left(A^{n}(c, \cdot)\right)$ as follows

$$
\begin{equation*}
A^{n}(c, x)=A(c, x)\left(r_{n}(t)\right), \quad \text { for } x \in X, n \in \mathbb{N} \tag{3.5}
\end{equation*}
$$

It is easy to see that A_{c}^{n} are continuous and compact. Since $\left|r_{n}(t)-t\right| \leq 1 / n$, we deduce from the compactness of $A(c, \cdot)$ and (3.5) that $A^{n}(c, x) \rightarrow A(c, x)$ uniformly in X.

Now, we shall prove that h_{n} is a one-to-one map. Assume that fore some $x, y \in X$ we have $h_{n}(x)=h_{n}(y)$. This implies that

$$
x-y=A^{n}(c, x)-A^{n}(c, y)
$$

If $t \in[0,1 / n]$, then we have

$$
x(t)-y(t)=A(c, x)\left(r_{n}(t)\right)-A(c, y)\left(r_{n}(t)\right)=A(c, x)(0)-A(c, y)(0)=0
$$

Thus, we obtain $x(t)=y(t)$ for every $t \in[0,1 / n]$.
If $t \in[1 / n, 2 / n]$, then we have that $0<r_{n}(t) \leq 1 / n$. Hence, by the property of operator $A(c, \ldots)$ mentioned above, we get $x(t)=y(t)$ for $t \in[0,2 / n]$. Finally, by repeating the procedure infinitely many times we infer that $x(t)=y(t)$ for every $t \in[0, \infty)$. Therefore h_{n} is a one-to-one map. Hence the assumptions of Theorem 2.3 hold and $h^{-1}(0)=\operatorname{Fix} A(c, \cdot)$ is an $R_{\boldsymbol{\delta}}$-set.

Remark 3.6. For a different treatment of Lemma 3.5, see [5].
Let $\varphi: \mathrm{BCL} \rightarrow \mathbb{R}^{k}$ be given by $\varphi(y)=\lim _{t \rightarrow \infty} y(t)$. It is easily seen that φ is continuous. Hence the map $g=\varphi \circ \Phi$ is decomposable with a decomposition

$$
\mathbb{R}^{k} \xrightarrow{\Phi} \mathrm{BCL} \stackrel{\varphi}{\longrightarrow} \mathbb{R}^{k}
$$

If, for some $c \in \mathbb{R}^{k}, 0 \in g(c)$, then there is $y \in \Phi(c)$ (in other words $y^{\prime}(t)=$ $\left.f\left(t, c+\int_{0}^{t} y(s) d s, y(t)\right)\right)$ such that $0=\lim _{t \rightarrow \infty} y(t)$. Putting $x(t):=c+\int_{0}^{t} y(s) d s$, we see that

$$
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right), \quad x^{\prime}(0)=0=\lim _{t \rightarrow \infty} x^{\prime}(t)
$$

i.e. x is a solution to the initial equation (3.1).

Now, set $\widehat{M}:=M+1$, where M is as in (ii).
Lemma 3.7. Let $Q:=[-\widehat{M}, \widehat{M}]^{k}$. There is $\widetilde{c} \in Q$ such that $0 \in g(\widetilde{c})$.
Proof. Let $c_{i}=\widehat{M}$ and $y \in \Phi(c)$. First, we shall show that $y_{i}(t) \geq 0$ for $t \geq 0$. We have $y_{i}(0)=0$. Assume that for some t we have $y_{i}(t)<0$. Then there exists $t_{*}:=\inf \left\{t \mid y_{i}(t)<0\right\}$ such that, $y_{i}\left(t_{*}\right)=0$ and $y_{i}(t) \geq 0$ for $t<t_{*}$. Since $y_{i}(t)$ is continuous there exists $t_{1}>t_{*}$ such that $\int_{t_{*}}^{t_{1}}\left|y_{i}(t)\right| d t \leq 1$. Hence, we get

$$
x_{i}(t)=c_{i}+\int_{t_{*}}^{t} y_{i}(s) d s \geq M+1+\int_{t_{*}}^{t} y_{i}(s) d s \geq M \quad \text { for } t \in\left[t_{*}, t_{1}\right]
$$

Now, by condition (ii) we get $x_{i}(t) f_{i}(t, x(t), y(t))=x_{i}(t) y_{i}^{\prime}(t)>0$. Hence $y_{i}^{\prime}(t)>0$ for $t \in\left[t_{*}, t_{1}\right]$. It means that $y_{i}(t)$ is increasing on $\left[t_{*}, t_{1}\right]$. Since $y_{i}\left(t_{*}\right)=0$, we get a contradiction. Hence $y_{i}(t) \geq 0$ for $t \geq 0$.

Moreover, by the above arguments, $\lim _{t \rightarrow \infty} y_{i}(t)>0$.
Let $d=\left(d_{1}, \ldots, d_{k}\right) \in \mathbb{R}^{k}$. By the definition of g, for $i=1, \ldots, k$, we get

$$
\begin{equation*}
\text { if } \quad d \in g\left(c_{1}, \ldots, c_{i-1}, \widehat{M}, c_{i+1}, \ldots, c_{k}\right), \quad \text { then } \quad d_{i}>0 \tag{3.6}
\end{equation*}
$$

We can proceed analogously to prove that, for every $i=1, \ldots, k$,

$$
\begin{equation*}
\text { if } \quad d \in g\left(c_{1}, \ldots, c_{i-1},-\widehat{M}, c_{i+1}, \ldots, c_{k}\right), \quad \text { then } \quad d_{i}<0 \tag{3.7}
\end{equation*}
$$

Let $g_{i}=\mathrm{P}_{i} g$ for $i=1, \ldots, k$, where $\mathrm{P}_{i}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is the projection onto the i-th axis. By (3.6) and (3.7), for $i=1, \ldots, k$, we have

$$
\begin{aligned}
g_{i}\left(c_{1}, \ldots, c_{i-1}, \widehat{M}, c_{i+1}, \ldots, c_{k}\right) & \subset(0, \infty) \\
g_{i}\left(c_{1}, \ldots, c_{i-1},-\widehat{M}, c_{i+1}, \ldots, c_{k}\right) & \subset(-\infty, 0)
\end{aligned}
$$

It is easy to see that g_{i} is u.s.c. map. By (3.6) and the fact that g_{i} is u.s.c. there exists $\gamma_{i}>0$ such that for any $c \in Q$, where $c_{i} \in\left(\widehat{M}-\gamma_{i}, \widehat{M}\right]$, we get $g_{i}(c) \subset(0, \infty)$, for every $i=1, \ldots, k$. Similarly, by (3.7) and the fact that g_{i} is u.s.c. there exists $\beta_{i}>0$ such that for any $c \in Q$, where $c_{i} \in\left[-\widehat{M},-\widehat{M}+\beta_{i}\right)$, we have $g_{i}(c) \subset(-\infty, 0)$, for every $i=1, \ldots, k$.

The image of g is compact, hence $\widehat{g}:=\sup \left\{|d| \mid d \in g_{i}(c), c \in Q, i=\right.$ $1, \ldots, k\}<\infty$.

Let $\delta:=\min \left\{\beta_{1}, \ldots, \beta_{k}, \gamma_{1}, \ldots, \gamma_{k}, \widehat{M}\right\}$ and set $\varepsilon:=\delta / \widehat{g}$. Considering the set-valued mapping given by $F_{i}(c)=c_{i}-\varepsilon g_{i}(c)$ we get the following inequality

$$
-\widehat{M} \leq c_{i}-\varepsilon y \leq \widehat{M}, \quad \text { for any } c_{i} \in[-\widehat{M}, \widehat{M}] \text { and } y \in g_{i}(c)
$$

Now, let us consider the multi-valued mapping $F(c)=c-\varepsilon g(c)$, where $c \in Q$. By the above, we get that F maps the hypercube Q into itself.

Let us define a pair (D, F) consisting of a set-valued map $F: Q \multimap Q$ and the diagram

$$
D: Q \xrightarrow{\Phi_{0}} \mathrm{BCL} \xrightarrow{\varphi} Q,
$$

where $F=\varphi \circ \Phi_{0}$ and $\Phi_{0}(c):=\left\{x \in \mathrm{BCL} \mid x(t)=c-\varepsilon y(t), t \in \mathbb{R}_{+}, y \in \Phi(c)\right\}$.
Notice, that BCL, as a Banach space, is $A N R$. Moreover, Φ_{0} is an R_{δ}-map. Hence (D, F) is a decomposable map.

Now, to apply Corollary 2.2 , it is sufficient to show that the decomposable map (D, F) is homotopic to the identity id $_{Q}$, which means that there exists a decomposable map $\left(D^{\prime}, F^{\prime}\right): Q \multimap Q$ such that $(D, F) \simeq\left(D^{\prime}, F^{\prime}\right)$ and $F^{\prime}(c)=c$ for $c \in Q$.

Let $D^{\prime}: Q \xrightarrow{\Phi_{1}} \mathrm{BCL} \xrightarrow{\varphi} Q$, where $\Phi_{1}: Q \ni c \rightarrow x(t) \equiv c \in \mathrm{BCL}$, then $F^{\prime}: Q \rightarrow Q$ and $F^{\prime}(c)=c$ for every $c \in Q$.

Now, let us put $X, Y=Q, Z=Z_{0}=Z_{1}=\mathrm{BCL}, \varphi=\varphi_{0}=\varphi_{1}$ and consider the following decomposable map (\breve{D}, \breve{F}) with $\breve{D}: Q \times[0,1] \xrightarrow{\breve{\Phi}} \mathrm{BCL} \xrightarrow{\varphi} Q$, where $\breve{\Phi}(c, \lambda):=\left\{x \in \mathrm{BCL} \mid x(t)=(1-\lambda) y(t)+\lambda z(t), t \in \mathbb{R}_{+}, y \in \Phi_{0}(c), z \in \Phi_{1}(c)\right\}$. It is immediate to see that $\breve{\Phi}$ is an R_{δ}-map. Moreover, one can see that the appropriate diagram is commutative. Hence, (D, F) is homotopic to the identity.

The Euler characteristic of Q satisfies $\chi(Q)=1$. Thus, by Corollary 2.2, $\operatorname{Fix}(F) \neq \emptyset$ and hence there exists $\widetilde{c} \in Q$ such that $\widetilde{c} \in F(\widetilde{c})$.

On the other hand $F(\widetilde{c})=\widetilde{c}-\varepsilon g(\widetilde{c})$. Thus $0 \in F(\widetilde{c})-\widetilde{c}=-\varepsilon g(\widetilde{c})$, and from this $0 \in g(\widetilde{c})$.

This ends the proof of Theorem 3.2 and completes the paper.
Acknowledgments. The author wishes to thank to the anonymous referee for helpful comments.

References

[1] J. Andres, G. Gabor and L. Górniewicz, Boundary value problems on infinite intervals, Trans. Amer. Math. Soc. 351 (1999), 4861-4903.
[2] J. W. Bebernes and, L. K. Jackson, Infinite interval boundary value problems for $y^{\prime \prime}=f(x, y)$, Duke Math. J. 34 (1967), 39-47.
[3] A. Constantin, On an infinite interval boundary value problem, Annali di Matematica pura ed applicata (IV) V, vol. CLXXVI, 1999, pp. 379-394.
[4] M. Furi and P. Pera, A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Ann. Polon. Math. XLVII (1987), 331-346.
[5] G. Gabor, On the acyclicity of fixed point sets of multivalued maps, Topol. Methods Nonlinear Anal. 14 (2000), 327-343.
[6] A. Granas and M. Frigon, Topological Methods in Differential Equations and Inclusions, Kluwer Academic Publishers, 1995.
[7] W. Karpińska, A note on bounded solutions of second order differential equations at resonance, Topol. Methods Nonlinear Anal. 14 (1999), 371-384.
[8] W. Kryszewski and S. Plaskacz, Periodic solutions to impulsive differential inclusions with constraints, Nonlinear Anal. 65 (2006), 1794-1804.
[9] B. Przeradzki, The existence of bounded solutions for differential equations in Hilbert spaces, Ann. Pol. Math. LVI 2 (1992), 103-121.
[10] , A new continuation method for the study of nonlinear equations at resonance, J. Math. Anal. Appl. 180 (1993), 553-565.
[11] P. J. Rabier and C. A. Stuart, A Sobolev space approach to boundary value problems on the half-line, Comm. Contemp. Math. 7 (2005), 1-36.
[12] D. O'REgAn, Solvability of some singular boundary value problems on the semi-infinite interval, Canad. J. Math. 48 (1996), 143-158.
[13] K. Szymańska, On an asymptotic boundary value problem for second order differential equations, J. Appl. Anal. 12 (2006), 109-119.

Manuscript received November 13, 2007
Katarzyna Szymańska-Dębowska
Institute of Mathematics
Technical University of Łódź
ul. Wólczańska 215
90-924 Łódź, POLAND
E-mail address: grampa@zbiorcza.net.lodz.pl
TMNA: Volume $36-2010-\mathrm{N}^{\mathrm{o}} 1$

[^0]: 2010 Mathematics Subject Classification. 34B15, 34b40.
 Key words and phrases. Nonlinear, asymptotic boundary value problem, resonant problem, set-valued maps, decomposable maps, R_{δ}-sets.

