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ON SOME RESONANT BOUNDARY VALUE PROBLEM
ON AN INFINITE INTERVAL

Katarzyna Szymańska-Dębowska

Abstract. The existence of at least one solution to a nonlinear second

order differential equation on the half-line with the boundary conditions
x′(0) = 0 and with the first derivative vanishing at infinity is proved.

1. Introduction

In the paper the following asymptotic boundary value problem

(1.1) x′′ = f(t, x, x′), x′(0) = 0, lim
t→∞
x′(t) = 0,

where f :R+ ×Rk ×Rk → Rk is continuous and satisfies the appropriate growth
conditions, is studied. Observe that the corresponding homogeneous linear prob-
lem, i.e.

x′′ = 0, x′(0) = 0, lim
t→∞
x′(t) = 0,

has nontrivial constant solutions; hence we deal with a resonant situation.
The problem (1.1) has been already studied in [13]. In that paper, we have

obtained the existence result in a completely different way than by using stan-
dard methods for resonant problems (by standard methods we mean methods
considered, for instance, in the following papers: [1]–[4], [7], [10]–[12]). The

2010 Mathematics Subject Classification. 34B15, 34b40.

Key words and phrases. Nonlinear, asymptotic boundary value problem, resonant prob-
lem, set-valued maps, decomposable maps, Rδ-sets.

c©2010 Juliusz Schauder Center for Nonlinear Studies

119



120 K. Szymańska-Dębowska

method used in [13] enabled us to get existence under weak assumptions: a lin-
ear growth condition and a sign condition for the nonlinear term f . Similar
assumptions appear also for other boundary value problems.

2. Preliminaries

First, we shall introduce notation and terminology.
By a space we mean a metric space. Given a space X with a metric d, a set

A ⊂ X and ε > 0, B(A, ε) := {x ∈ X | dA(x) := infa∈A d(x, a) < ε} denotes the
open ε-neighbourhood of A. Recall that a space X is an absolute neighbourhood
retract (we write X ∈ ANR) if, given a space Y and a homeomorphic embedding
i:X → Y of X onto a closed subset i(X) ⊂ Y , i(X) is a neighbourhood retract
of Y , i.e. there is an open neighbourhood U of i(X) in Y and a retraction
r:U → i(X) (a map r:U → i(X) is a retraction provided that r(y) = y for
y ∈ i(X)).
We shall say that a nonempty space X is contractible provided there exist

x0 ∈ X and a homotopy h:X× [0, 1]→ X such that h(x, 0) = x and h(x, 1) = x0
for every x ∈ X.
A compact (nonempty) space X is an Rδ-set (we write X ∈ Rδ) if there

is a decreasing sequence Xn of compact contractible spaces such that X =⋂
n≥1Xn.
Let X, Y be spaces. A set-valued map Φ:X ( Y is upper semicontinuous

(written u.s.c.) if, given an open V ⊂ Y , the set {x ∈ X | Φ(x) ⊂ V } is open. We
say that Φ:X ( Y is an Rδ-map if it is u.s.c. and, for each x ∈ X, Φ(x) ∈ Rδ.
By a decomposable map we mean a pair (D,F ) consisting of a set-valued map

F :X ( Y and a diagram D:X
Φ
( Z

ϕ−→ Y , where Z ∈ ANR, Φ:X ( Z is an
Rδ-map, and ϕ:Z → Y a single-valued continuous map, such that F = ϕ ◦ Φ.
A superposition of a set-valued map with compact values and a continuous

function is an u.s.c. map, so any decomposable map is u.s.c.

We say the two decomposable maps (D0, F0), (D1, F1) where Dk:X
Φk
(

Zk
ϕk−→ Y , k = 0, 1 are homotopic (we write (D0, F0) ' (D1, F1)) if there is

a decomposable map (D̆, F̆ ) with D̆:X × [0, 1]
Φ̆
( Z

ϕ̆−→ Y and maps jk:Zk →
Z, k = 0, 1 such that the diagram

X
Φ0 //

i0
��

Z0

j0
��

ϕ0

##GGGGGG

X × [0, 1] Φ̆ // Z
ϕ̆

// Y

X

i1

OO

Φ1
// Z1

j1

OO

ϕ1

;;wwwwww

where ik(x) = (x, k) for x ∈ X, k = 0, 1, is commutative.
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Theorem 2.1 ([8, p. 1797]). If a decomposable map (D,F ):X ( X, where
X is a compact ANR and is homotopic to identity idX , i.e. there is a decom-
posable map (D′, F ′):X ( X such that (D,F ) ' (D′, F ′) and F ′(x) = x for
x ∈ X, then

Λ(D,F ) = λ(idX) = χ(X).

Hence, if χ(X) 6= 0, then Fix(F ) 6= ∅.

The following simple corollary will be of crucial importance.

Corollary 2.2. Let Q be a compact polyhedron with nontrivial Euler char-
acteristic χ(Q) 6= 0. If a decomposable map (D,F ):Q ( Q is homotopic to
identity, then Fix(F ) 6= ∅.

Now, we shall present a result about the topological structure of the set of
solutions of some nonlinear functional equation.

Theorem 2.3 ([6, p. 159]). Let X be a space, (E, ‖ · ‖) a Banach space and
h:X → E a proper map, i.e. h is continuous and for every compact K ⊂ E
the set h−1(K) is compact. Assume further that for each ε > 0 a proper map
hε:X → E is given and the following two conditions are satisfied:
(a) ‖hε(x)− h(x)‖ < ε, for every x ∈ X;
(b) for any ε > 0 and u ∈ E such that ‖u‖ ≤ ε, the equation hε(x) = u has
exactly one solution.

Then the set S = h−1(0) is Rδ.

Denote by BC(R+,Rk) (we write BC) the Banach space of continuous and
bounded functions with supremum norm and by BCL(R+,Rk) (we write BCL)
its closed subspace of continuous and bounded functions which have finite limits
at +∞.
The following theorem gives a sufficient condition for compactness in the

space BC and, by the definition, in the space BCL as well.

Theorem 2.4 ([9]). If B ⊂ BC satisfies following conditions:
(a) there exists L>0, that for every x∈B and t∈ [0,∞) we have |x(t)|≤L,
(b) for each t0 ≥ 0, the family B is equicontinuous at t0,
(c) for any ε > 0 there exist T > 0 and δ > 0 such that if |x(T )−y(T )| ≤ δ,
then |x(t)− y(t)| ≤ ε for t ≥ T and all x, y ∈ B.

Then B is relatively compact in BC.

3. The main result

Let us consider an asymptotic BVP

(3.1) x′′ = f(t, x, x′), x′(0) = 0, lim
t→∞
x′(t) = 0,
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where f :R+ × Rk × Rk → Rk is continuous.
The following assumptions will be needed throughout the paper:

(i) |f(t, x, y)| ≤ a(t)|y|+ b(t), where
∫∞
0 a(s) ds <∞,

∫∞
0 b(s) ds <∞;

(ii) there exists M > 0 such that xifi(t, x, y) > 0 for t ≥ 0, y ∈ Rk, x ∈ Rk

and |xi| ≥M , i = 1, . . . , k.

Definition 3.1. A function x:R+ → Rk is called a solution of (3.1) if the
following holds:

(a) x ∈ C2(R+,Rk);
(b) x′′(t) = f(t, x(t), x′(t)) for every t ∈ R+;
(c) x′(0) = 0, limt→∞ x′(t) = 0.

Now, we can formulate our main result.

Theorem 3.2. Under assumptions (i) and (ii), problem (3.1) has at least
one solution.

The proof will be divided into a sequence of lemmas.
Given c ∈ Rk and x ∈ BCL let

A(c, x)(t) =
∫ t
0
f

(
s, c+

∫ s
0
x(u) du, x(s)

)
ds, t ≥ 0.

It is clear that A(c, x): [0,∞)→ Rk is continuous. For t ≥ 0,

|A(c, x)(t)| ≤
∫ t
0
(a(s)|yc(s)|+ b(s)) ds ≤M1‖x‖BC +M2,

where

M1 :=
∫ ∞
0
a(s) ds, M2 :=

∫ ∞
0
b(s) ds.

Hence

(3.2) ‖A(c, x)(t)‖BC ≤M1 ‖x‖BC +M2.

Therefore A(c, x) ∈ BC.
Moreover, observe that the function [0,∞) 3 t 7→ f(t, c +

∫ t
0 yc(u) du, yc(t))

is integrable. Hence, in particular, limt→∞A(c, x)(t) exists, i.e. A(c, x) ∈ BCL.
It follows that the operator A:Rk × BCL→ BCL is well-defined.

Lemma 3.3. Under assumption (i) the operator A:Rk × BCL → BCL is
completely continuous.

Proof. The continuity of A is an easy consequence of the Lebesque Dom-
inated Convergence Theorem. It order to prove the complete continuity let us
consider the set B := {y = A(c, x) | c ∈ Rk, ‖x‖ ≤ R}, where R > 0. We shall
see that B is relatively compact in BCL. To this reason we use Theorem 2.4.
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First observe that B is bonded (see (3.2)): for any y ∈ B,

‖y‖BC ≤M1R+M2.

Hence the condition (a) of the Theorem 2.4 holds true.
We shall now show that the family B is equicontinuos, i.e. given t0 ≥ 0 and

ε > 0, there is δ > 0 such that if t ≥ 0 and |t − t0| < δ, then |y(t) − y(t0)| < ε
for any c ∈ Rk and y ∈ B. Let us choose an arbitrary ε > 0. By (i) , there exist
δ1, δ2 > 0 such that

if |t− t0| < δ1, then
∫ max{t0,t}
min{t0,t}

a(s) ds <
ε

2R
,

if |t− t0| < δ2, then
∫ max{t0,t}
min{t0,t}

b(s) ds <
ε

2
.

Let δ = min{δ1, δ2}. Then, for |t− t0| < δ, we get

|y(t)− y(t0)| ≤
∫ max{t0,t}
min{t0,t}

∣∣∣∣f(s, c+ ∫ s
0
x(u) du, x(s))

∣∣∣∣ ds
≤ R
∫ max{t0,t}
min{t0,t}

a(s) ds+
∫ max{t0,t}
min{t0,t}

b(s) ds < R ε2R +
ε
2 = ε.

It remains to prove condition (c) of Theorem 2.4, i.e. we shall show that given
ε > 0, there are T > 0 and δ > 0 such that for any y, z ∈ B if |y(T )− z(T )| < δ,
then |y(t)− z(t)| < ε for any t ≥ T . There is T > 0 such that∫ ∞

T

a(s) ds <
ε

6R
,

∫ ∞
T

b(s) ds <
ε

6
.

Let δ := ε/3. If |y(T )− z(T )| ≤ δ, then for t ≥ T we get

|y(t)− z(t)| ≤ |y(T )− z(T )|+ 2R
∫ ∞
T

a(s) ds+ 2
∫ ∞
T

b(s) ds

≤ ε
3
+ 2R

ε

6R
+ 2
ε

6
= ε,

and the proof is complete. �

Given c ∈ Rk, let x ∈ BCL and x = λA(c, x) for some λ ∈ [0, 1]. Then

x(t) = λ
∫ t
0
f

(
s, c+

∫ s
0
x(u) du, x(s)

)
ds.

The Gronwall inequality implies that

(3.3) |x(t)| ≤M2eM1 .

Therefore, the Leray–Schauder Alternative implies that for each c ∈ Rk the set
Fix(A(c, · )) of fixed points of A(c, · ): BCL→ BCL is nonempty.
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Lemma 3.4. Let assumption (i) hold and let Φ:Rk ( BCL be given by
Φ(c) := Fix(A(c, · )). The set-valued map Φ is upper semicontinuous with com-
pact values.

Proof. The set-valued map Φ is upper semicontinuous with compact values
if given a sequence (cn) in Rk, cn → c0 and (xn) ∈ Φ(cn), (xn) has a converging
subsequence to some x0 ∈ Φ(x0). Taking any sequence (cn), cn → c0 and
(xn) ∈ Φ(cn) we have

(3.4) xn = A(cn, xn).

By (3.3), we get that the fixed points of A(c, · ) are equibounded for any c. Hence
both sequences (xn) and (cn) are bounded. Lemma 3.3 yields that the operator
A is completely continuous. Then, by (3.4), (xn) is relatively compact. Hence,
passing to a subsequence if necessary, we may assume that xn → x0 in BCL.
The continuity of A implies that x0 = A(c0, x0). Hence, x0 ∈ Φ(c0) and the
proof is complete. �

Lemma 3.5. If assumption (i) holds, then Φ is an Rδ-map.

Proof. Since the map Φ is u.s.c., it remains to show that for any c ∈ Rk

the set Φ(c) is Rδ. Let X = {x ∈ BCL | ‖x‖ ≤ L}, where L := M2eM1 is taken
from (3.3). We will show that if A(c, · ):X → BCL is a compact map (it is easy
to see that Ac is compact) and h:X → BCL is a compact vector field associated
with A(c, · ), i.e. h(x) = x−A(c, x), then there exists a sequence hn:X → BCL
of continuous proper mappings satisfying conditions (a) and (b) of Theorem 2.3
with respect to h.
First, notice that A(c, x) = 0 for every x ∈ X. Moreover, for every T ∈ (0,∞)

and for every x, y ∈ BCL, if x(t) = y(t) for each t ∈ [0, T ], then A(c, x)(t) =
A(c, y)(t) for each t ∈ [0, T ].
For the proof it is sufficient to define a sequence An(c, ·):X → BCL of com-

pact maps such that A(c, x) = limn→∞An(c, x) uniformly in X and show that
hn(x) = x − An(c, x) is a one-to-one map. To do this we define auxiliary map-
pings rn:R+ → R+ by

rn(t) :=

{
0 for t ∈ [0, 1/n],
t− 1/n for t ∈ (1/n,∞).

Now we are able to define the sequence (An(c, · )) as follows

(3.5) An(c, x) = A(c, x)(rn(t)), for x ∈ X, n ∈ N.

It is easy to see that Anc are continuous and compact. Since |rn(t) − t| ≤ 1/n,
we deduce from the compactness of A(c, · ) and (3.5) that An(c, x) → A(c, x)
uniformly in X.



On Some Resonant Boundary Value Problem on an Infinite Interval 125

Now, we shall prove that hn is a one-to-one map. Assume that fore some
x, y ∈ X we have hn(x) = hn(y). This implies that

x− y = An(c, x)−An(c, y).

If t ∈ [0, 1/n], then we have

x(t)− y(t) = A(c, x)(rn(t))−A(c, y)(rn(t)) = A(c, x)(0)−A(c, y)(0) = 0.

Thus, we obtain x(t) = y(t) for every t ∈ [0, 1/n].
If t ∈ [1/n, 2/n], then we have that 0 < rn(t) ≤ 1/n. Hence, by the property

of operator A(c, . . . ) mentioned above, we get x(t) = y(t) for t ∈ [0, 2/n]. Finally,
by repeating the procedure infinitely many times we infer that x(t) = y(t) for
every t ∈ [0,∞). Therefore hn is a one-to-one map. Hence the assumptions of
Theorem 2.3 hold and h−1(0) = FixA(c, · ) is an Rδ-set. �

Remark 3.6. For a different treatment of Lemma 3.5, see [5].

Let ϕ: BCL→ Rk be given by ϕ(y) = limt→∞ y(t). It is easily seen that ϕ is
continuous. Hence the map g = ϕ ◦ Φ is decomposable with a decomposition

Rk
Φ
( BCL

ϕ−→ Rk.

If, for some c ∈ Rk, 0 ∈ g(c), then there is y ∈ Φ(c) (in other words y′(t) =
f(t, c+

∫ t
0 y(s) ds, y(t))) such that 0 = limt→∞ y(t). Putting x(t) := c+

∫ t
0 y(s) ds,

we see that
x′′(t) = f(t, x(t), x′(t)), x′(0) = 0 = lim

t→∞
x′(t),

i.e. x is a solution to the initial equation (3.1).
Now, set M̂ :=M + 1, where M is as in (ii).

Lemma 3.7. Let Q := [−M̂, M̂ ]k. There is c̃ ∈ Q such that 0 ∈ g(c̃).

Proof. Let ci = M̂ and y ∈ Φ(c). First, we shall show that yi(t) ≥ 0 for
t ≥ 0. We have yi(0) = 0. Assume that for some t we have yi(t) < 0. Then
there exists t∗ := inf{t | yi(t) < 0} such that, yi(t∗) = 0 and yi(t) ≥ 0 for t < t∗.
Since yi(t) is continuous there exists t1 > t∗ such that

∫ t1
t∗
|yi(t)| dt ≤ 1. Hence,

we get

xi(t) = ci +
∫ t
t∗

yi(s) ds ≥M + 1 +
∫ t
t∗

yi(s) ds ≥M for t ∈ [t∗, t1].

Now, by condition (ii) we get xi(t)fi(t, x(t), y(t)) = xi(t)y′i(t) > 0. Hence
y′i(t) > 0 for t ∈ [t∗, t1]. It means that yi(t) is increasing on [t∗, t1]. Since
yi(t∗) = 0, we get a contradiction. Hence yi(t) ≥ 0 for t ≥ 0.
Moreover, by the above arguments, limt→∞ yi(t) > 0.
Let d = (d1, . . . , dk) ∈ Rk. By the definition of g, for i = 1, . . . , k, we get

(3.6) if d ∈ g(c1, . . . , ci−1, M̂ , ci+1, . . . , ck), then di > 0.
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We can proceed analogously to prove that, for every i = 1, . . . , k,

(3.7) if d ∈ g(c1, . . . , ci−1,−M̂, ci+1, . . . , ck), then di < 0.

Let gi = Pig for i = 1, . . . , k, where Pi:Rk → R is the projection onto the
i-th axis. By (3.6) and (3.7), for i = 1, . . . , k, we have

gi(c1, . . . , ci−1, M̂ , ci+1, . . . , ck) ⊂ (0,∞),
gi(c1, . . . , ci−1,−M̂, ci+1, . . . , ck) ⊂ (−∞, 0).

It is easy to see that gi is u.s.c. map. By (3.6) and the fact that gi is u.s.c.
there exists γi > 0 such that for any c ∈ Q, where ci ∈ (M̂ − γi, M̂ ], we get
gi(c) ⊂ (0,∞), for every i = 1, . . . , k. Similarly, by (3.7) and the fact that gi is
u.s.c. there exists βi > 0 such that for any c ∈ Q, where ci ∈ [−M̂,−M̂ + βi),
we have gi(c) ⊂ (−∞, 0), for every i = 1, . . . , k.
The image of g is compact, hence ĝ := sup{|d| | d ∈ gi(c), c ∈ Q, i =

1, . . . , k} <∞.
Let δ := min

{
β1, . . . , βk, γ1, . . . , γk, M̂

}
and set ε := δ/ĝ. Considering the

set-valued mapping given by Fi(c) = ci − εgi(c) we get the following inequality

−M̂ ≤ ci − εy ≤ M̂, for any ci ∈ [−M̂, M̂ ] and y ∈ gi(c).

Now, let us consider the multi-valued mapping F (c) = c−εg(c), where c ∈ Q.
By the above, we get that F maps the hypercube Q into itself.
Let us define a pair (D,F ) consisting of a set-valued map F :Q( Q and the

diagram

D:Q
Φ0
( BCL

ϕ−→ Q,

where F = ϕ ◦Φ0 and Φ0(c) := {x ∈ BCL | x(t) = c− εy(t), t ∈ R+, y ∈ Φ(c)}.
Notice, that BCL, as a Banach space, is ANR. Moreover, Φ0 is an Rδ-map.

Hence (D,F ) is a decomposable map.
Now, to apply Corollary 2.2, it is sufficient to show that the decomposable

map (D,F ) is homotopic to the identity idQ, which means that there exists
a decomposable map (D′, F ′):Q( Q such that (D,F ) ' (D′, F ′) and F ′(c) = c
for c ∈ Q.
Let D′:Q

Φ1
( BCL

ϕ−→ Q, where Φ1:Q 3 c → x(t) ≡ c ∈ BCL, then
F ′:Q→ Q and F ′(c) = c for every c ∈ Q.
Now, let us put X,Y = Q, Z = Z0 = Z1 = BCL, ϕ = ϕ0 = ϕ1 and consider

the following decomposable map (D̆, F̆ ) with D̆:Q×[0, 1]
Φ̆
( BCL

ϕ−→ Q, where
Φ̆(c, λ) := {x ∈ BCL | x(t) = (1−λ)y(t)+λz(t), t ∈ R+, y ∈ Φ0(c), z ∈ Φ1(c)}.
It is immediate to see that Φ̆ is an Rδ-map. Moreover, one can see that the
appropriate diagram is commutative. Hence, (D,F ) is homotopic to the identity.
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The Euler characteristic of Q satisfies χ(Q) = 1. Thus, by Corollary 2.2,
Fix(F ) 6= ∅ and hence there exists c̃ ∈ Q such that c̃ ∈ F (c̃).
On the other hand F (c̃) = c̃− εg(c̃). Thus 0 ∈ F (c̃)− c̃ = −εg(c̃), and from

this 0 ∈ g(c̃). �

This ends the proof of Theorem 3.2 and completes the paper.
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