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NONTRIVIAL SOLUTIONS
FOR NONVARIATIONAL

QUASILINEAR NEUMANN PROBLEMS

Nikolaos S. Papageorgiou — Sandrina R. A. Santos — Vasile Staicu

Abstract. We consider a nonlinear nonvariational Neumann problem with

a nonsmooth potential. Using the spectrum of the assymptotic (as |x| →
∞) differential operator and degree theoretic techniques based on the degree

map of certain multivalued perturbations of (S)+-operators, we establish

the existence of at least one nontrivial smooth solution.

1. Introduction

Let Z ⊆ Rn be a bounded domain with a C2-boundary ∂Z. We consider the
following quasilinear Neumann problem with a nonsmooth potential (hemivari-
ational inequality):

(1.1)

{ −div(A(z, x(z))Dx(z)) ∈ ∂j(z, x(z)) a.e. on Z,
∂x

∂n
= 0 on ∂Z.

Here A(z, x) is a bounded, N ×N -matrix valued Caratheodory function (i.e.
it is measurable in z ∈ Z and continuous in x ∈ R) and j(z, x) is a measurable
potential function which is only locally Lipschitz and in general nonsmooth in the
x ∈ R variable. By ∂j(z, x) we denote the generalized (Clarke) subdifferential of
x→ j(z, x) (see Section 2).
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In the last decade, nonlinear elliptic problems driven by the p-Laplacian dif-
ferential operator have attracted a lot of interest. Most of the works focused
on the Dirichlet problem with a smooth potential (i.e. j(z, · ) ∈ C1(R)). The
study of the corresponding Neumann problem is lagging behind. In this di-
rection we mention the works of G. Anello and G. Cordaro [1], D. Arcoya and
L. Orsina [2], P. A. Binding, P. Drabek and Y. Huang [3], F. Faraci [7], T. Godoy,
J. P. Gossez and S. Paczka [10], Y. Huang [14] (problems with a smooth poten-
tial) and M. Filippakis, L. Gasinski and N. S. Papageorgiou [8], S. Hu and
N. S. Papageorgiou [13], S. Marano and D. Motreanu [15], D. Motreanu and
N. S. Papageorgiou [16], F. Papalini [18], [19] (problems with a nonsmooth po-
tential).

In all the aforementioned works the p-Laplacian differential operator is used.
The p-Laplacian is (p−1)-homogeneous and so the Lusternik–Schnirelmann the-
ory can be applied to determine its spectral properties. Moreover, the operator
is variational and so the methods of critical point theory can be used to obtain
solutions of the boundary value problems. For this reason, in all the above works
the approach is variational. In contrast, in problem (1.1) the differential operator
x → −div(A(z, x)Dx) is neither homogeneous nor variational. So the minimax
methods of critical point theory (smooth and nonsmooth alike) fail and we need
to device new techniques in order to deal with problem (1.1). For this reason,
we assume that for almost all z ∈ Z, the matrix-valued map x → A(z, x) has
an asymptotic limit as |x| → ∞. Then, using the spectrum of the correspond-
ing asymptotic linear differential operator, we are able to overcome the lack of
homogeneity of the original differential operator and provide conditions for the
solvability of problem (1.1). We use the spectrum of the asymptotic differential
operator together with degree theoretic methods based on the degree map for
multivalued perturbations of (S)+-operators due to S. Hu and N. S. Papageor-
giou [11] (see also S. Hu and N. S. Papageorgiou [12]) and we are able to establish
the existence of nontrivial smooth solutions.

Finally we mention that hemivariational inequalities are a useful tool in
nonsmooth mechanics. Several such applications can be found in the book of
Z. Naniewicz N. S. Panagiotopoulos [17].

2. Hypotheses and mathematical background

The hypotheses on the matrix-valued function A(z, x) are the following:

H(A): A:Z × R → RN×N is a map such that

(a) for all x ∈ R, z 7→ A(z, x) is measurable;
(b) for almost all z ∈ Z, x 7→ A(z, x) is continuous;
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(c) there exist constants 0 < c0 < c1 such that

c0‖ξ‖ ≤ ‖A(z, x)ξ‖ ≤ c1‖ξ‖

for almost all z ∈ Z, all x ∈ R and all ξ ∈ RN ;
(d) there exists a constant c2 > 0 such that

c2‖ξ‖2 ≤ (A(z, x)ξ, ξ)RN

for almost all z ∈ Z, all x ∈ R and all ξ ∈ RN ;
(e) there exists Â ∈ L∞(Z,RN × RN ) such that

A(z, x) → Â(z) for a.a. z ∈ Z, as |x| → ∞.

Using the asymptotic limit function Â(z) of hypothesis H(A)(e), we consider
the following linear Neumann eigenvalue problem:

(2.1)

{ −div(Â(z)Dx(z)) = λx(z) a.e. on Z,
∂x

∂n
= 0 on ∂Z.

In what follows by 〈 · , · 〉 we denote the duality brackets for the pair (H1(Z),
H1(Z)∗). Then let V̂ ∈ L(H1(Z),H1(Z)∗) be the continuous linear operator
defined by

〈V̂ (x), y〉 =
∫

Z

(Â(z)Dx(z), Dy(z))RN dz for all x, y ∈ H1(Z).

For every ε > 0 and every x ∈ H1(Z), we have:

〈V̂ (x), x〉+ ε‖x‖2
2 ≥ c2‖Dx‖2

2 + ε‖x‖2
2 ≥ c3‖x‖2

2

with c3 = min{ε, c2}. Then, by virtue of Corollary 7D of R. Showalter [20,
p. 78], we know that problem (2.1) has a sequence of eigenvalues {λn}n≥0, λ0 =
0 < λ1 ≤ . . . ≤ λn → ∞, with corresponding eigenfunctions which form an
orthonormal basis in L2(Z) and an orthogonal basis in H1(Z).

Moreover, these eigenvalues admit variational characterizations via the cor-
responding Rayleigh quotients. Using this spectrum, we can now state the hy-
potheses on the nonsmooth potential j(z, x):

H(j): j:Z × R → R is a function such that j(z, 0) = 0 almost everywhere on Z

and

(a) for all x ∈ R, z 7→ j(z, x) is measurable;
(b) for almost all z ∈ Z, x 7→ j(z, x) is locally Lipschitz;
(c) for every r > 0, there exists ar ∈ L∞(Z)+ such that

|u| ≤ ar(z) for a.a. z ∈ Z, all |x| ≤ r and all u ∈ ∂j(z, x);
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(d) there exist an integer k ≥ 0 and functions θ̂, θ ∈ L∞(Z) such that

λk ≤ θ̂(z) ≤ θ(z) ≤ λk+1 a.e. on Z,

where the first and the third inequalities are strict on sets of positive
Lebesgue measure and

θ̂(z) ≤ lim inf
|x|→∞

u

|x|p−2x
≤ lim sup

|x|→∞

u

|x|p−2x
≤ θ(z)

uniformly for almost all z ∈ Z and all u ∈ ∂j(z, x);
(e) there exist functions η̂, η ∈ L∞(Z) such that

η(z) ≤ 0 a.e. on Z,

where the inequality is strict on a set of positive Lebesgue measure and

η̂(z) ≤ lim inf
x→0

u

|x|p−2x
≤ lim sup

x→0

u

|x|p−2x
≤ η(z)

uniformly for almost all z ∈ Z and all u ∈ ∂j(z, x).
Due to the nonsmoothness of the potential function j(z, x), we will use

some elements of the subdifferential theory for locally Lipschitz functions (see
F. H. Clarke [6]). Also, due to the nonvariational character of our problem, we
will use degree theoretic arguments based on the degree map for multivalued
perturbations of (S)+-operators (see S. Hu and N. S. Papageorgiou [11], [12]).
So, in what follows, we present some basic definitions and facts from these two
theories, which will be used in the sequel.

Let X be a Banach space, X∗ its dual and denote by 〈 · , · 〉 the duality
brackets for the pair (X,X∗). Given a locally Lipschitz function ϕ:X → R,
we define the generalized directional derivative of ϕ at x ∈ X in the direction
h ∈ X, ϕ0(x;h), by

ϕ0(x;h) = lim sup
λ↓0

x′→x

ϕ(x′ + λh)− ϕ(x′)
λ

.

The function h → ϕ0(x;h) is sublinear, continuous and it is the support
function of a nonempty, convex and w∗-compact set ∂ϕ(x), defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x;h) for all h ∈ X}.

The multifunction x→ ∂ϕ(x) is the “generalized (or Clarke) subdifferential”
of ϕ. If ϕ:X → R is continuous and convex, then it is locally Lipschitz and the
generalized subdifferential of ϕ coincides with the subdifferential in the sense of
convex analysis, ∂cϕ(x), given by

∂cϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ(x+ h)− ϕ(x) for all h ∈ X}.

If ϕ ∈ C1(X), then ϕ is locally Lipschitz and ∂ϕ(x) = {ϕ′(x)}.
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A multifunction G:X → 2X∗ \ {∅} is said to be upper semicontinuous (u.s.c.
for short) if, for every closed set C ⊆ X∗, we have that

G−(C) = {x ∈ X : G(x) ∩ C 6= ∅}

is closed in X. The generalized subdifferential multifunction x→ ∂ϕ(x) is u.s.c.
from X with the norm topology into X∗ furnished with the w∗-topology.

We say that a multifunction G:X → 2X∗ \ {∅} belongs in class (P), if it is
u.s.c., for every x ∈ X, G(x) is closed, convex and for every A ⊆ X bounded, we
have

G(A) =
⋃

x∈A

G(x)

is relatively compact in X∗.
From A. Cellina [5] (see also S. Hu and N. S. Papageorgiou [12, p. 106]), we

know that if G:D ⊆ X → 2X∗ \ {∅} is an u.s.c. multifunction with closed and
convex values, then given ε > 0, we can find a continuous map gε:D → X∗ such
that

gε(x) ∈ G((x+Bε) ∩D) +B∗
ε

for all x ∈ D and gε(D) ⊆ convG(D). Here Bε = {x ∈ X : ‖x‖ < ε} and
B∗

ε = {x∗ ∈ X∗ : ‖x∗‖ < ε}.
Note that, if the multifunction G belongs in class (P), then the continuous

approximate selector gε is compact.
Now we can define the degree map that we shall use in the study of problem

(1.1). Suppose X is a reflexive Banach space. Then, by the Troyanski renorming
theorem (see L. Gasinski and N. S. Papageorgiou [9, p. 911]), we can equivalently
renorm X so that both X and X∗ are locally uniformly convex and with Fréchet
differentiable norms. So, in what follows, we assume that both X and X∗ are
locally uniformly convex. Hence, if F :X → X∗ is the duality map defined by

F(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2},

we have that F is a homeomorphism.
An operator A:X → X∗, which is single-valued and everywhere defined, is

said to be of type (S)+, if for every sequence {xn}n≥1 ⊆ X such that xn
w−→ x

in X and lim sup n→∞〈A(xn), xn − x〉 ≤ 0, one has xn → x in X.
Let U be a bounded open set in X and let A:U → X∗ be a demicontinuous

operator of type (S)+. Let {Xα}α∈J be the family of all finite dimensional
subspaces of X and let Aα be the Galerkin approximation of A with respect to
Xα, that is

〈Aα(x), y〉Xα
= 〈A(x), y〉

for all x ∈ U ∩Xα and all y ∈ Xα.
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By 〈 · , · 〉Xα
we denote the duality brackets for the pair (Xα, X

∗
α). Then, for

x∗ /∈ A(∂U), the degree map d(S)+(A,U, x∗) is defined by

d(S)+(A,U, x∗) = dB(Aα, U ∩Xα, x
∗)

for Xα large enough (in the sense of inclusion). Here dB stands for the classical
Brouwer degree map. If X is separable and A is bounded (maps bounded sets to
bounded ones), then we can use only a countable subfamily {Xn}n≥1 of {Xα}α∈J

such that ⋃
n≥1

Xn = X.

More details on the degree map d(S)+ can be found in F. Browder [4] and I. Skryp-
nik [21].

If G:X → 2X∗ \ {∅} is a multifunction belonging in class (P), then for every
x∗ /∈ (A+G)(∂U), d̂(A+G,U, x∗) is defined by

d̂(A+G,U, x∗) = d(S)+(A+ gε, U, x
∗)

for ε > 0 small, where gε is the continuous approximate selector of G mentioned
earlier. Note that since G belongs in class (P), gε:U → X∗ is compact and so
x 7→ A(x) + gε(x) is still of type (S)+. More about the degree map d̂, can be
found in S. Hu-N. S. Papageorgiou [11], [12].

One of the fundamental properties of a degree map is the homotopy invari-
ance property. To formulate this property for the degree map d̂, we need to
define the admissible homotopies for A and G.

Definition 2.1. (a) A one-parameter family {At}t∈[0,1] of maps from U

into X∗, is said to be a homotopy of class (S)+, if for any {xn}n≥1 ⊆ U such
that xn

w−→ x and for any {tn}n≥1 ⊆ [0, 1] with tn → t for which

lim sup
n→∞

〈Atn
(xn), xn − x〉 ≤ 0,

one has xn → x in X and Atn
(xn) w−→ At(xn) in X∗ as n→∞.

(b) A one-parameter family {Gt}t∈[0,1] of multifunctions Gt:U → 2X∗ \ {∅}
is said to be a homotopy of class (P), if (t, x) 7→ G(t, x) is u.s.c. from [0, 1]×X

into 2X∗ \ {∅}, for every (t, x) ∈ [0, 1]× U the set is closed, convex and⋃
{Gt(x) : t ∈ [0, 1], x ∈ U}

is compact in X∗.

With these admissible homotopies for A and G, the homotopy invariance
property of d̂ can be formulated as follows:



Nontrivial Solutions for Nonvariational Quasilinear Neumann Problems 45

If {At}t∈[0,1] is a homotopy of class (S)+ such that for every t ∈ [0, 1],
At is bounded, {Gt}t∈[0,1] is a homotopy of class (P) and x∗: [0, 1] → X∗

is a continuous map such that

x∗t /∈ (At +Gt)(∂U) for all t ∈ [0, 1],

then d̂(At +Gt, U, x
∗
t ) is independent of t ∈ [0, 1].

Also the normalization property has the following form:

d̂(F , U, x∗) = d(S)+(F , U, x∗) = 1 for all x∗ ∈ F(U).

Both degree maps d(S)+ and d̂ have all the usual properties such as normal-
ization, homotopy invariance, solution property, additivity with respect to the
domain, excision property, product property etc.

3. Existence of solutions

Let V :H1(Z) → H1(Z)∗ be the nonlinear operator defined by

〈V (x), y〉 =
∫

Z

(A(z, x)Dx,Dy)RN dz for all x, y ∈ H1(Z).

Proposition 3.1. If hypotheses H(A) hold, then V is an (S)+-operator.

Proof. Suppose that xn
w−→ x in H1(Z) and assume that

(3.1) lim sup
n→∞

〈V (xn), xn − x〉 ≤ 0.

By definition

〈V (xn), xn − x〉 =
∫

Z

(A(z, xn)Dxn, Dxn −Dx)RN dz.

We have (see H(A)(d))

(3.2) 〈V (xn), xn − x〉 =
∫

Z

(A(z, xn)Dxn, Dxn −Dx)RN dz

=
∫

Z

(A(z, xn)Dxn −A(z, xn)Dx,Dxn −Dx)RN dz

+
∫

Z

(A(z, xn)Dx,Dxn −Dx)RN dz

≥ c2‖Dxn −Dx‖2
2 +

∫
Z

(A(z, xn)Dx,Dxn −Dx)RN dz

Because xn
w→ x in H1(Z) and recalling that H1(Z) is embedded compactly

in L2(Z), we can say that xn → x in L2(Z). By passing to a subsequence, if
necessary, we may also assume that

xn(z) → x(z) a.e. on Z



46 N. S. Papageorgiou — S. R. A. Santos — V. Staicu

and
|xn(z)| ≤ h(z) for a.a. z ∈ Z, all n ≥ 1 and with h ∈ L2(Z)+.

Then
A(z, xn(z))Dx(z) → A(z, x(z))Dx(z) a.e. on Z

(see H(A)(b)). This fact, together with H(A)(c) and the dominated convergence
theorem, imply

A( · , xn( · ))Dx( · ) → A( · , x( · ))Dx( · ) in L2(Z,RN ) as n→∞.

Since Dxn
w−→ Dx in L2(Z,RN ), it follows that∫

Z

(A(z, xn)Dx,Dxn −Dx)RN dz → 0 as n→∞.

Returning to (3.2), passing to the limit as n→∞ and using (3.1) and (3.3), we
obtain

‖Dxn → Dx‖2
2 → 0 as n→∞,

hence
xn → x in H1(Z) as n→∞.

By Urysohn’s criterion for convergent sequences, this convergence is true for
the original sequence {xn}n≥1 ⊆ H1(Z). �

Let N :L2(Z) → 2L2(Z) be the multivalued Nemytskĭı operator corresponding
to the subdifferential multifunction (z, x) 7→ ∂j(z, x), i.e.

N(x) = S2
∂j( · ,x( · )) = {u ∈ L2(Z) : u(z) ∈ ∂j(z, x(z)) a.e. on Z}.

Proposition 3.2. If hypotheses H(j) hold, then N has nonempty, weakly
compact and convex values in L2(Z) and it is u.s.c. from L2(Z) endowed with
the norm topology into L2(Z) with the weak topology (denoted by L2(Z)w).

Proof. By virtue of hypotheses H(j)(c) and (d), we see that the values of N
are L2(Z)-bounded sets, which are easily seen to be closed and convex. Therefore
for every x ∈ L2(Z), the set N(x) ⊆ L2(Z) is weakly compact and convex. We
need to show that it is nonempty. For this purpose, let {sn}n≥1 ⊆ L2(Z) be
simple functions such that

sn(z) → x(z) a.e. on Z and |sn(z)| ≤ |x(z)|

for almost all z ∈ Z and all n ≥ 1.
Because of hypothesis H(j)(a), for every x ∈ R, the multifunction z 7→

∂j(z, x) is graph measurable. So, by a straightforward application of the Yankov–
von Neumann–Aumann selection theorem (see S. Hu and N. S. Papageorgiou [12,
p. 158]), we can find a measurable function fn:Z → R such that

fn(z) ∈ ∂j(z, x(z))
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for almost all z ∈ Z, all n ≥ 1. Hypotheses H(j)(c), (d) imply that

|fn(z)| ≤ c3(1 + |x(z)|)

for almost all z ∈ Z, all n ≥ 1 and some c3 > 0, hence {fn}n≥1 ⊆ L2(Z) is
bounded. Therefore, we may assume (at least for a subsequence), that

fn
w−→ f in L2(Z).

Since the subdifferential multifunction has closed and convex values, by Mazur’s
lemma, we obtain

f(z) ∈ ∂j(z, x(z)) a.e. on Z,

hence f ∈ N(x), therefore N(x) 6= ∅.
Note that the weak topology on bounded subsets of L2(Z) is metrizable.

Therefore, in order to show the upper semicontinuity of N from L2(Z) into
L2(Z)w, it suffices to show that its graph

GrN = {(x, u) ∈ L2(Z)× L2(Z) : u ∈ N(x)}

is sequentially closed in L2(Z)×L2(Z)w (see S. Hu and N. S. Papageorgiou [12,
p. 38]). So let {(xn, un)}n≥1 ⊆ GrN and assume that xn → x in L2(Z) and
un

w−→ u in L2(Z) as n→∞. We have

un(z) ∈ ∂j(z, xn(z)) for a.a. z ∈ Z, all n ≥ 1.

Invoking Proposition 3.9 of S. Hu and N. S. Papageorgiou [12, p. 694], in the
limit as n→∞, we obtain

u(z) ∈ ∂j(z, x(z)) a.e. on Z,

hence u ∈ N(x). So GrN is sequentially closed in L2(Z) × L2(Z)w and from
this we conclude that N is usc from L2(Z) into L2(Z)w. �

Recalling that H1(Z) is a separable Hilbert space, which is embedded com-
pactly and densely in L2(Z), we have that L2(Z)∗ = L2(Z) is embedded com-
pactly and densely in H1(Z)∗. Therefore an immediate consequence of Proposi-
tion 3.2, is the following corollary:

Corollary 3.3. If hypotheses H(j) hold, then N :H1(Z) → 2H1(Z)∗ \ {∅} is
a multifunction belonging in class (P).

Proposition 3.1 and Corollary 3.3 permit the definition of the degree d̂ for
the nonlinear multivalued operator x 7→ V (x) − N(x). To compute this degree
for various sets we will need the following auxiliary result.
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For every integer k ≥ 0, let E(λk) denote the eigenspace corresponding to
the eigenvalue λk. Set

Hk =
k⊕

i=0

E(λi) and Ĥk =
⊕

i≥k+1

E(λi).

Then we have the orthogonal direct sum decomposition

H1(Z) = Hk ⊕ Ĥk.

Lemma 3.4.

(a) If θ ∈ L∞(Z)+ and θ(z) ≤ λk+1 almost everywhere on Z with strict
inequality on a set of positive Lebesgue measure, then there exists ξ1 > 0
such that

ψ1(x̂) =
∫

Z

(Â(z)Dx̂,Dx̂)RN dz −
∫

Z

θ|x̂|2 dz ≥ ξ1‖x̂‖2 for all x̂ ∈ Ĥk.

(b) If θ̂ ∈ L∞(Z)+ and θ̂(z) ≥ λk almost everywhere on Z with strict
inequality on a set of positive Lebesgue measure, then there exists ξ2 > 0
such that

ψ2(x) =
∫

Z

θ̂|x|2 dz −
∫

Z

(Â(z)Dx,Dx)RN dz ≥ ξ2‖x‖2 for all x ∈ Hk.

(c) If η ∈ L∞(Z) and η(z) ≤ 0 almost everywhere on Z with strict inequality
on a set of positive Lebesgue measure, then there exists ξ0 > 0 such that

ψ0(x) =
∫

Z

(Â(z)Dx,Dx)RN dz −
∫

Z

η|x|2 dz ≥ ξ0‖x‖2 for all x ∈ H1(Z).

Proof. (a) From the variational characterization of λk+1 we have ψ1 ≥ 0.
Suppose that the result is not true. Exploiting the 2-homogeneity of ψ1, we can
find {x̂n}n≥1 ⊆ Ĥk such that

‖x̂n‖ = 1 for all n ≥ 1 and ψ1(x̂n) ↓ 0 as n→∞.

We may assume that

x̂n
w−→ x̂ ∈ Ĥk in H1(Z) and x̂k → x̂ in L2(Z) as n→∞.

Note that
∫

Z
(Â(z)Dx,Dx)RN dz is equivalent to the usual L2(Z,RN ) norm (see

hypothesis H(A)(c)) and recall that the norm in a Banach space is w-lower
semicontinuous. Hence

(3.3)
∫

Z

(Â(z)Dx̂,Dx̂)RN dz ≤
∫

Z

θ|x̂|2 dz ≤ λk+1‖x̂‖2
2

therefore ∫
Z

(Â(z)Dx̂,Dx̂)RN dz = λk+1‖x̂‖2
2
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(from the variational characterization of λk+1). Hence x̂ ∈ E(λk+1). But the
elements of E(λk+1) have the unique continuation property (see for example
L. Gasinski and N. S. Papageorgiou [9]). So x(z) 6= 0 almost everywhere on Z.
Then from (3.3) and using the hypothesis on θ, we have∫

Z

(Â(z)Dx,Dx)RN dz < λk+1‖x̂‖2
2,

which contradicts the variational characterization of λk+1.
The proofs of (b) and (c) are similar to those of (a) and are ommited. �

Using this lemma, we can compute the d̂-degree of V −N for large balls.

Proposition 3.5. If hypotheses H(j) hold, then there exists R0 > 0 such
that

d̂(V −N,BR, 0) = (−1)dim Hk for all R ≥ R0.

Proof. Let ĝ ∈ L∞(Z)+ be such that λk ≤ ĝ(z) ≤ λk+1 almost everywhere
on Z with strict inequalities on sets (in general different) of positive Lebesgue
measure. We consider the admissible homotopy h1: [0, 1]×H1(Z) → 2H1(Z)∗\{∅}
defined by

h1(t, x) = tV (x) + (1− t)V̂ (x)− tN(x)− (1− t)ĝx.

Claim. We can find R0 > 0 such that 0 /∈ h1(t, x) for all t ∈ [0, 1] and all
‖x‖ = R ≥ R0.

We argue indirectly. So suppose the Claim is not true. Then we can find
{tn}n≥1 ⊆ [0, 1] and {xn}n≥1 ⊆ H1(Z) such that

(3.4) tn → t ∈ [0, 1], ‖xn‖ → ∞ and 0 ∈ h1(tn, xn) for all n ≥ 1.

From the inclusion in (3.4), we know that for every n ≥ 1, we can find un ∈ N(xn)
such that

(3.5) tnV (xn) + (1− tn)V̂ (xn) = tnun + (1− tn)ĝxn.

Let yn = xn/‖xn‖, n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and so we may assume
that

yn
w−→ y in H1(Z) and yn → y in L2(Z) as n→∞.

We divide (3.5) by ‖xn‖ and we have

(3.6) tn
V (xn)
‖xn‖

+ (1− tn)V̂ (yn) = tn
un

‖xn‖
+ (1− tn)ĝyn

We take duality brackets with yn − y. Hence

tn

〈
V (xn)
‖xn‖

, yn − y

〉
+ (1− tn)

〈
V̂ (yn), yn − y

〉
= tn

∫
Z

un

‖xn‖
(yn − y) dz + (1− tn)

∫
Z

ĝyn(yn − y) dz.
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From hypotheses H(j)(c) and (d), we know that

(3.7) |u| ≤ c3(1 + |x|)

for almost all z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x). Because of (3.7) and since
yn → y in L2(Z), we have∫

Z

un

‖xn‖
(yn − y) dz → 0 and

∫
Z

ĝyn(yn − y) dz → 0

as n→∞. Therefore it follows that

(3.8) lim
n→∞

[
tn

〈
V (xn)
‖xn‖

, yn − y

〉
+ (1− tn)〈V̂ (yn), yn − y〉

]
= 0.

We have

(3.9)
〈
V (xn)
‖xn‖

, yn − y

〉
=

∫
Z

(A(z, xn)Dyn, Dyn −Dy)RN dz

=
∫

Z

(A(z, xn)(Dyn −Dy), Dyn −Dy)RN dz

+
∫

Z

(A(z, xn)Dy,Dyn −Dy)RN dz

≥ c2‖Dyn −Dy‖2
2 +

∫
Z

(A(z, xn)Dy,Dyn −Dy)RN dz

(see H(A)(d)). Note that |xn(z)| → ∞ almost everywhere on {y 6= 0}. Therefore
by hypothesis H(A)(e)

A(z, xn(z)) → Â(z) a.e. on {y 6= 0} as n→∞.

Also from Stampacchia’s theorem we know that Dy(z) = 0 almost everywhere
on {y = 0}. Therefore finally we can say that

A(z, xn(z))Dy(z) → Â(z)Dy(z) a.e. on Z.

From this convergence, hypothesis H(A)(c) and the dominated convergence the-
orem, it follows that

A( · , xn( · ))Dy( · ) → Â( · )Dy( · ) in L2(Z,RN ),

hence

(3.10)
∫

Z

(A(z, xn(z))Dy(z), Dyn(z)−Dy(z))RN dz → 0 as n→∞
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Moreover,

(3.11) 〈V̂ (yn), yn − y〉 =
∫

Z

(Â(z)Dyn, Dyn −Dy)RN dz

=
∫

Z

(Â(z)(Dyn −Dy), Dyn −Dy)RN dz

+
∫

Z

(Â(z)Dy,Dyn −Dy)RN dz

≥ c2‖Dyn −Dy‖2
2 +

∫
Z

(Â(z)Dy,Dyn −Dy)RN dz

(see H(A)(d) and (e)). Because Dyn
w−→ Dy in L2(Z,RN ), we have

(3.12)
∫

Z

(Â(z)Dy,Dyn −Dy)RN dz → 0 as n→∞.

Returning to (3.8), using (3.9)–(3.12) and passing to the limit as n → ∞, we
obtain

‖Dyn −Dy‖2 → 0 as n→∞,

therefore

yn → y in H1(Z) as n→∞.

So ‖y‖ = 1, hence y 6= 0.
By virtue of (3.7), {un/‖xn‖}n≥1 ⊆ L2(Z) is bounded. So we may assume

that
un

‖xn‖
w−→ h in L2(Z) as n→∞.

Given ε > 0 and n ≥ 1, we introduce the following two sets

C+
ε,n =

{
z ∈ Z : xn(z) > 0, θ̂(z)− ε ≤ un(z)

xn(z)
≤ θ(z) + ε

}
and

C−
ε,n =

{
z ∈ Z : xn(z) < 0, θ̂(z)− ε ≤ un(z)

xn(z)
≤ θ(z) + ε

}
.

Note that

xn(z) →∞ for a.a. z ∈ {y > 0} and xn(z) → −∞ for a.a. z ∈ {y < 0}.

Then hypothesis H(j)(d) implies that

χC+
ε,n

(z) → 1 a.e. on {y > 0} and χC−
ε,n

(z) → 1 a.e. on {y < 0}.

Via the dominated convergence theorem, we have∥∥∥∥(1− χC+
ε,n

)
un

‖xn‖

∥∥∥∥
L1({y>0})

→ 0 and
∥∥∥∥(1− χC−

ε,n
)
un

‖xn‖

∥∥∥∥
L1({y<0})

→ 0
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as n→∞. From the definition of the set C+
ε,n, we have

χC+
ε,n

(z)(θ(z)− ε)yn(z) ≤ χC+
ε,n

(z)
un(z)
‖xn‖

= χC+
ε,n

(z)
un(z)
xn(z)

yn(z) ≤ χC+
ε,n

(z)(θ(z) + ε)yn(z)

almost everywhere on Z. Passing to the limit as n → ∞ and using Mazur’s
lemma, we obtain

(θ̂(z)− ε)y(z) ≤ h(z) ≤ (θ(z) + ε)y(z) a.e. on {y > 0}.

Because ε > 0 was arbitrary, we let ε ↓ 0 and have

(3.13) θ̂(z)y(z) ≤ h(z) ≤ θ(z)y(z) a.e. on {y > 0}.

Similarly working with the set C−
ε,n, we obtain

(3.14) θ(z)y(z) ≤ h(z) ≤ θ̂(z)y(z) a.e. on {y < 0}.

Finally, it is clear from (3.7) that

(3.15) h(z) = 0 a.e. on {y = 0}.

From (3.13)–(3.15) it follows that there exists g∞ ∈ L∞(Z)+ such that

θ̂(z) ≤ g∞(z) ≤ θ(z) a.e. on Z and h(z) = g∞(z)y(z) a.e. on Z.

For every v ∈ L∞(Z), we have〈
V (xn)
‖xn‖

, v

〉
=

∫
Z

(A(z, xn)Dyn, Dv)RN dz.

Recall that yn → y in H1(Z). So we may assume that

Dyn(z) → Dy(z) a.e. on Z.

Since |xn(z)| → ∞ almost everywhere on {y 6= 0}, hypothesis H(A)(e) implies
that

A(z, xn) → Â(z) a.e. on {y 6= 0}.
Also Dy(z) = 0 almost everywhere on {y = 0}. Hence

A(z, xn)Dyn(z) → 0 a.e. on {y = 0}.

Therefore

A(z, xn(z))Dyn(z) → Â(z)Dy(z) a.e. on Z as n→∞.

From this convergence, hypothesis H(A)(c) and the dominated convergence the-
orem, we infer that

A( · , xn( · ))Dyn( · ) → Â( · )Dy( · ) in L2(Z,RN ) as n→∞.



Nontrivial Solutions for Nonvariational Quasilinear Neumann Problems 53

Hence ∫
Z

(A(z, xn)Dyn, Dv)RN dz →
∫

Z

(Â(z)Dy,Dv)RN dz,

so 〈
V (xn)
‖xn‖

, v

〉
→ 〈V̂ (y), v〉 for all v ∈ H1(Z),

therefore
V (xn)
‖xn‖

→ V̂ (y) in H1(Z)∗.

Returning to (3.6) and passing to the limit as n→∞, we obtain

(3.16) V̂ (y) = (tg∞ + (1− t)ĝ)y = gy,

with g = tg∞ + (1− t)ĝ ∈ L∞(Z)+, θ̂(z) ≤ g(z) ≤ θ(z) almost everywhere on Z.
From (3.16) we have

(3.17)

{ −div(Â(z)Dy(z)) = g(z)y(z) a.e. on Z,
∂y

∂n
= 0 on ∂Z.

Exploiting the monotonicity of the eigenvalues on the weight function (see for
example L. Gasinski and N. S. Papageorgiou [9]), we have

1 = λ̂k(λk) > λ̂k(g) and 1 = λ̂k+1(λk+1) < λ̂k+1(g).

Using this in (3.17), we infer that y = 0, a contradiction to the fact that ‖y‖ = 1.
This proves the Claim.

The Claim permits the use of the homotopy invariance property of the degree
map d̂. So

(3.18) d̂(V −N,BR, 0) = d(S)+(V̂ − ĝI, BR,0) for all R ≥ R0.

We have to compute d(S)+(V̂ − ĝI, BR,0). To this end we consider the or-
thogonal direct sum decomposition

H1(Z) = Hk ⊕ Ĥk.

Let pk and p̂k be the orthogonal projections on the component spacesHk and Ĥk,
respectively. Also let F :H1(Z) → H1(Z)∗ be the duality map for the Sobolev
space H1(Z). We consider the (S)+-homotopy h2: [0, 1] × H1(Z) → H1(Z)∗

defined by

h2(t, x) = t(p̂∗k(F(x̂))− x) + (1− t)(V̂ − ĝI)(x),

where for every x ∈ H1(Z), we have x = x + x̂ with x = pk(x) ∈ Hk, x̂ =
p̂k(x) ∈ Ĥk.
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Next we show that h2(t, x) 6= 0 for all t ∈ [0, 1] and all x 6= 0. Indeed, since
on the finite dimensional space Hk all norms are equivalent, we have that

〈h2(t, x), x̂− x〉 ≥ t〈F(x̂), x̂〉+ tc4‖x‖2 + (1− t)〈V̂ (x)− ĝx, x̂− x〉

≥ tc4‖x‖2 + (1− t)
[ ∫

Z

(Â(z)Dx̂,Dx̂)RN dz −
∫

Z

ĝx̂2 dz

+
∫

Z

ĝx2 dz −
∫

Z

(Â(z)Dx,Dx)RN dz

]
,

for some c4 ∈ (0, 1). Here we have used the orthogonality of the component
spaces.

Using Lemma 3.4(a) and (b) we obtain

〈h2(t, x), x̂− x〉 ≥ tc4‖x‖2 + (1− t)ξ̂‖x‖2 ≥ c5‖x‖2,

with ξ̂ = min{ξ1, ξ2}, for for some c5 ∈ (0, 1), hence

h2(t, x) 6= 0 for all t ∈ [0, 1] and all x 6= 0.

Invoking, once again, the homotopy invariance property of the degree map d̂, we
have

(3.19) d(S)+(V̂ − ĝI, Br,0) = d(S)+(p̂∗k ◦ F ◦ p̂k − pk, Br,0) for all r > 0.

Set

B
bHk

r/2 = {x̂ ∈ Ĥk : ‖x̂‖ < r/2} and BHk

r/2 = {x ∈ Hk : ‖x‖ < r/2}.

Then from the excision and product properties of the degree, we have

(3.20) d(S)+(p̂∗k ◦ F ◦ p̂k − pk, Br,0)

= d(S)+(F |
bHk
, B

bHk

r/2, 0).dB(−I,BHk

r/2, 0) = 1.(−1)dim Hk

From (3.18)–(3.20), we conclude that

d̂(V −N,BR, 0) = (−1)dim Hk for all R ≥ R0. �

Next we conduct a similar computation for small balls.

Proposition 3.6. If hypotheses H(j) hold, then there exists ρ0 > 0 such that

d̂(V −N,Bρ, 0) = 1 for all 0 < ρ ≤ ρ0.

Proof. Let A0 ∈ L∞(Z,RN×N ) be defined by A0(z) = A(z, 0). We intro-
duce the continuous linear operator V0 ∈ L(H1(Z),H1(Z)∗) defined by

〈V0(x), y〉 =
∫

Z

(A0(z)Dx,Dy)RN dz for all x, y ∈ H1(Z).
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We consider the admissible homotopy h3: [0, 1] ×H1(Z) → H1(Z)∗ defined
by

h3(t, x) = tV (x) + (1− t)V0(x)− tN(x)− (1− t)ĥx,

with ĥ ∈ L∞(Z) satisfying η̂(z) ≤ ĥ(z) ≤ η(z) almost everywhere on Z.
Claim There exists ρ0 > 0 such that 0 /∈ h3(t, x) for all t ∈ [0, 1] and all

0 < ‖x‖ = ρ ≤ ρ0.
Again we argue by contradiction. So suppose that the Claim is not true.

Then we can find {tn}n≥1 ⊆ [0, 1] and {xn}n≥1 ⊆ H1(Z) such that

(3.21) tn → t ∈ [0, 1], ‖xn‖ → 0 and 0 ∈ h3(tn, xn) for all n ≥ 1

Note that hypothesis H(j)(e) implies that we can find δ > 0 such that |u| ≤
c5|x| for almost all z ∈ Z, all |x| ≤ δ, all u ∈ ∂j(z, x) and some c5 > 0.

On the other hand from (3.7), we see that there exists c6 = c6(δ) > 0 such
that |u| ≤ c6|x| for almost all z ∈ Z, all |x| > δ and all u ∈ ∂j(z, x). Hence we
can say that

(3.22) |u| ≤ c7|x|

for almost all z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x), with c7 = max{c5, c6}.
From the inclusion in (3.21), we have

(3.23) tnV (xn) + (1− tn)V0(xn) = tnun + (1− tn)ĥxn

with un ∈ N(xn). We set

yn =
xn

‖xn‖
, n ≥ 1.

We may assume that

yn
w−→ y in H1(Z) and yn → y in L2(Z) as n→∞.

We divide (3.23) with ‖xn‖ and obtain

(3.24) tn
V (xn)
‖xn‖

+ (1− tn)V0(yn) = tn
un

‖xn‖
+ (1− tn)ĥyn.

Taking duality brackets with yn − y, we have

tn

〈
V (xn)
‖xn‖

, yn − y

〉
+ (1− tn)〈V0(yn), yn − y〉

= tn

∫
Z

un

‖xn‖
(yn − y) dz + (1− tn)

∫
Z

ĥyn(yn − y) dz.

Note that ∫
Z

un

‖xn‖
(yn − y) dz → 0

(see (3.22)) and ∫
Z

ĥyn(yn − y) dz → 0 as n→∞.
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Since ‖xn‖ → 0, we may assume that xn(z) → 0 almost everywhere on Z and so

A(z, xn(z)) → A0(z) a.e. on Z

(see H(A)(b)). Then arguing as in the proof of Proposition 3.5, we show that

yn → y in H1(Z), hence ‖y‖ = 1, i.e. y 6= 0.

In addition, for every v ∈ H1(Z), we have〈
V (xn)
‖xn‖

, v

〉
=

∫
Z

(A(z, xn)Dyn, Dv)RN dz

→
∫

Z

(A0(z)Dy,Dv)RN dz = 〈V0(y), v〉,

hence
V (xn)
‖xn‖

w−→ V0(y) in H1(Z)∗.

From (3.22), we see that {un/‖xn‖}n≥1 ⊆ L2(Z) is bounded. So we may assume
that

un

‖xn‖
w−→ β in L2(Z) as n→∞.

Given ε > 0 and n ≥ 1, we introduce the sets

D+
ε,n =

{
z ∈ Z : xn(z) > 0, η̂(z)− ε ≤ un(z)

xn(z)
≤ η(z) + ε

}
and

D−
ε,n =

{
z ∈ Z : xn(z) < 0, η̂(z)− ε ≤ un(z)

xn(z)
≤ η(z) + ε

}
.

Since ‖xn‖ → 0, we may assume that xn(z) → 0 almost everywhere on Z. Hence
by virtue of hypothesis H(j)(e), we have

χD+
ε,n

(z) → 1 a.e. on {y > 0} and χD−
ε,n

(z) → 1 a.e. on {y < 0}.

Arguing as in the proof of Proposition 3.5, we infer that β = h0y, with h0 ∈
L∞(Z),

η̂(z) ≤ h0(z) ≤ η(z) a.e. on Z.

We pass to the limit as n → ∞ in (3.24) and obtain V0(y) = hy, with h =
th0 + (1 − t)ĥ ∈ L∞(Z), η̂(z) ≤ h(z) ≤ η(z) almost everywhere on Z. We take
duality brackets with y. So∫

Z

(A0(z)Dy,Dy)RN dz =
∫

Z

hy2 dz ≤ 0

therefore
‖Dy‖2 = 0, i.e. y = ĉ ∈ R

(see H(A)(d)). Note that ĉ 6= 0 (since ‖y‖ = 1). Hence

0 =
∫

Z

(A0(z)Dy,Dy)RN dz = |ĉ|2
∫

Z

h dz < 0,
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a contradiction. Therefore the Claim is true.
The Claim permits the use of the homotopy invariance property and we have

(3.25) d̂(V −N,Bρ, 0) = d(S)+(V0 − ĥI, Bρ, 0) for all 0 < ρ ≤ ρ0.

To compute d(S)+(V0 − ĥI, Bρ, 0), we consider the (S)+-homotopy

h4(t, x) = t(V0 − ĥI)(x) + (1− t)F(x).

Then, for every t ∈ [0, 1] and x 6= 0, we have

〈h4(t, x), x〉 = t

[ ∫
Z

(A0(z)Dx,Dx)RN dz −
∫

Z

ĥx2 dz

]
+ (1− t)‖x‖2

≥ tξ0‖x‖2 + (1− t)‖x‖2 > 0.

(see Lemma 3.4(c)). Therefore, once again, the homotopy invariance property
implies

d(S)+(V0 − ĥI, Bρ, 0) = d(S)+(F , Bρ, 0) = 1 for all 0 < ρ,

hence
d(V −N,Bρ, 0) = 1 for all 0 < ρ ≤ ρ0

(see (3.25)). �

Now, we are ready for the existence result concerning problem (1.1).

Theorem 3.7. If hypotheses H(A) and H(j) hold and dimHk is odd, then
problem (1.1) has a nontrivial solution x ∈ C1(Z).

Proof. We may assume that ρ0 < R0 and let 0 < ρ ≤ ρ0 and R0 ≤ R.
Then from the additivity and excision properties of the degree map d̂, we have

d̂(V −N,BR, 0) = d̂(V −N,Bρ, 0) + d̂(V −N,BR \Bρ, 0),

hence
(−1)dim Hk = 1 + d̂(V −N,BR \Bρ, 0)

(see Propositions 3.5 and 3.6), so

d̂(V −N,BR \Bρ, 0) = −2.

So from the solution property, we know that we can find x ∈ BR \Bρ such that
0 ∈ V (x)−N(x), hence 0 = V (x)− u with u ∈ N(x), so{ −div(A(z, x(z))Dx(z)) = u(z) ∈ ∂j(z, x(z)) a.e. on Z,

∂x

∂n
= 0 on ∂Z.

Moreover, from standard regularity theory we have x ∈ C1(Z) (see for example
L. Gasinski and N. S. Papageorgiou [9]). So x ∈ C1(Z) is a nontrivial solution of
(1.1) and note that the Neumann boundary condition is understood pointwise.�

Remark 3.8. If k = 0, then Hk = R and so the Theorem 3.7 applies.
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