HOMOCLINIC SOLUTIONS FOR A CLASS OF AUTONOMOUS SECOND ORDER HAMILTONIAN SYSTEMS WITH A SUPERQUADRATIC POTENTIAL

JOANNA JANCZEWSKA

Abstract. We will prove the existence of a nontrivial homoclinic solution for an autonomous second order Hamiltonian system \(\ddot{q} + \nabla V(q) = 0 \), where \(q \in \mathbb{R}^n \), a potential \(V: \mathbb{R}^n \to \mathbb{R} \) is of the form \(V(q) = -K(q) + W(q) \), \(K \) and \(W \) are \(C^1 \)-maps, \(K \) satisfies the pinching condition, \(W \) grows at a superquadratic rate, as \(|q| \to \infty \) and \(W(q) = o(|q|^2) \), as \(|q| \to 0 \). A homoclinic solution will be obtained as a weak limit in the Sobolev space \(W^{1,2}(\mathbb{R}, \mathbb{R}^n) \) of a sequence of almost critical points of the corresponding action functional. Before passing to a weak limit with a sequence of almost critical points each element of this sequence has to be appropriately shifted.

1. Introduction

This paper concerns the existence of homoclinic solutions for a certain class of autonomous second order Hamiltonian systems. Let us consider

\[\ddot{q} + \nabla V(q) = 0, \]

where \(q \in \mathbb{R}^n \) and a potential \(V: \mathbb{R}^n \to \mathbb{R} \) satisfies the following conditions:

\[(H_1) \quad V(q) = -K(q) + W(q), \] where \(K, W: \mathbb{R}^n \to \mathbb{R} \) are \(C^1 \)-maps,
(H2) there are constants $b_1, b_2 > 0$ such that for all $q \in \mathbb{R}^n$,
$$b_1|q|^2 \leq K(q) \leq b_2|q|^2,$$
\((H_3) \) $(q, \nabla K(q)) \leq 2K(q)$ for all $q \in \mathbb{R}^n$,
\((H_4) \) $2K(q) - (q, \nabla K(q)) = o(|q|^2)$, as $|q| \to 0$,
\((H_5) \) ∇K is Lipschitzian in a neighbourhood of $0 \in \mathbb{R}^n$,
\((H_6) \) $\nabla W(q) = o(|q|)$, as $|q| \to 0$,
\((H_7) \) there is a constant $\mu > 2$ such that for every $q \in \mathbb{R}^n \setminus \{0\}$,
$$0 < \mu W(q) \leq (q, \nabla W(q)).$$

Here and subsequently, $(\cdot, \cdot) : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ denotes the standard inner product in \mathbb{R}^n and $|\cdot| : \mathbb{R}^n \to [0, \infty)$ is the induced norm.

Note that if $K : \mathbb{R}^n \to \mathbb{R}$ is a C^2-map satisfying (H2), then (H4) takes place. Let us also remark that (H6) and (H7) imply
\begin{equation}
(1.2) \quad W(q) = o(|q|^2), \quad \text{as } |q| \to 0.
\end{equation}

Moreover, from (H7) it follows that for $q \neq 0$ a map given by
$$W(q) = W(|q|^\mu) \zeta \quad (0, \infty) \ni \zeta \mapsto W(q) \zeta^{\mu}$$
is nonincreasing. Hence the following inequalities hold
\begin{equation}
(1.3) \quad W(q) \leq W\left(\frac{q}{|q|}\right)|q|^{\mu} \quad \text{if } 0 < |q| \leq 1,
\end{equation}
\begin{equation}
(1.4) \quad W(q) \geq W\left(\frac{q}{|q|}\right)|q|^{\mu} \quad \text{if } |q| \geq 1.
\end{equation}

By (H2) and (1.4) we get that a potential V grows at a superquadratic rate, as $|q| \to \infty$, i.e.
$$\frac{V(q)}{|q|^2} \to \infty, \quad \text{as } |q| \to \infty.$$

Many mathematicians have written about Hamiltonian systems with a superquadratic potential, for example: V. Coti Zelati, I. Ekeland and E. Séré in [4], H. Hofer and K. Wysocki in [7], V. Coti Zelati and P. Rabinowitz in [5], P. Rabinowitz and K. Tanaka in [14], W. Omana and M. Willem in [11]. Our assumptions on the potential V are natural, since one can immediately produce a lot of examples.

It is easily seen that $q \equiv 0$ is a solution of (1.1). In this work we are interested in the existence of nontrivial homoclinic solutions of (1.1) that emanate from 0 and terminate at 0, i.e. $\lim_{t \to \pm \infty} q(t) = q(\pm \infty) = 0$.

The existence of homoclinic orbits for first and second order Hamiltonian systems has been studied by many authors and the literature on this subject is vast (see [1], [2], [6], [8], [9], [12], [15]), but many questions are still open (see
the survey [13] by P. Rabinowitz). Finding homoclinic solutions in Hamiltonian systems can be quite difficult. In the last 20 years, a great progress was made by applying variational methods (see the survey [3] by T. Bartsch and A. Szulkin). For instance, the authors of [4] studied a class of first order Hamiltonian systems using a dual variational transformation and the Mountain Pass Theorem to prove the existence of two distinct homoclinic solutions. P. Rabinowitz in [12] examined a family of second order Hamiltonian systems applying the Mountain Pass Theorem to get a sequence of subharmonic solutions and suitable estimates to pass to a nontrivial limit which occurred to be a nontrivial homoclinic solution (see also [2], [8], [9]).

The theorem which we shall prove is as follows.

Theorem 1.1. If the assumptions \((H_1) - (H_7) \) are satisfied then the Hamiltonian system \((1.1) \) possesses a nontrivial homoclinic solution \(q_0 \in W^{1,2}(\mathbb{R}, \mathbb{R}^n) \) such that \(\dot{q}_0(\pm \infty) = 0 \).

This result is proved in Section 2 by studying the corresponding to \((1.1) \) action functional \(I: W^{1,2}(\mathbb{R}, \mathbb{R}^n) \to \mathbb{R} \). Similarly to [14], by a general minimax principle (see Theorem 2.3) we obtain a sequence of almost critical points. However, its weak limit has not to be nontrivial. In order to get a nontrivial homoclinic orbit before passing to a weak limit with a sequence of almost critical points each element of this sequence has to be appropriately shifted.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 will be divided into a sequence of lemmas. Let \(E \) be the Sobolev space \(W^{1,2}(\mathbb{R}, \mathbb{R}^n) \) with the standard norm

\[
\| q \|_E := \left(\int_{-\infty}^{\infty} (|q(t)|^2 + |\dot{q}(t)|^2) \, dt \right)^{1/2}.
\]

We first recall two elementary inequalities concerning functions in \(E \).

Fact 2.1. If \(q: \mathbb{R} \to \mathbb{R}^n \) is a continuous mapping such that \(\dot{q} \in L^2_{\text{loc}}(\mathbb{R}, \mathbb{R}^n) \), then for every \(t \in \mathbb{R} \),

\[
|q(t)| \leq \sqrt{2} \left(\int_{t-1/2}^{t+1/2} (|q(s)|^2 + |\dot{q}(s)|^2) \, ds \right)^{1/2}.
\]

The proof of Fact 2.1 can be found in [8]. (See Fact 2.8, p. 385.)

Fact 2.2. For each \(q \in E \),

\[
\| q \|_{L^\infty(\mathbb{R}, \mathbb{R}^n)} \leq \sqrt{2} \| q \|_E.
\]

Fact 2.2 is a direct consequence of the inequality (2.1).
Let $I: E \to \mathbb{R}$ be given by

$$I(q) := \int_{-\infty}^{\infty} \left[\frac{1}{2} |\dot{q}(t)|^2 - V(q(t)) \right] dt.$$

By (H$_5$)-(H$_6$) it is obvious that $I \in C^1(E, \mathbb{R})$. Moreover,

$$I'(q)w = \int_{-\infty}^{\infty} \left[(\dot{q}(t), \dot{w}(t)) - (\nabla V(q(t)), w(t)) \right] dt$$

for all $q, w \in E$ and any critical point of I on E is a classical solution of (1.1) with $q(\pm \infty) = 0$, as is easy to verify. In order to prove Theorem 1.1, we apply a general minimax principle. Let us remind it.

Theorem 2.3 (see Theorem 4.3 in [10]). Let K be a compact metric space, $K_0 \subset K$ a closed subset, X a Banach space and $\chi \in C(K_0, X)$. Let \mathcal{M} be a complete metric space given by

$$\mathcal{M} := \{ g \in C(K, X) : g(s) = \chi(s) \text{ if } s \in K_0 \}$$

with the usual distance. Let $\varphi \in C^1(X, \mathbb{R})$ and let us define

$$c = \inf_{g \in \mathcal{M}} \max_{s \in K} \varphi(g(s)), \quad c_1 = \max_{s \in K_0} \varphi.$$

If $c > c_1$ then for each $\varepsilon > 0$ and for each $h \in \mathcal{M}$ such that $\max_{s \in K} \varphi(h(s)) \leq c + \varepsilon$ there exists $v \in X$ such that $c - \varepsilon \leq \varphi(v) \leq \max_{s \in K} \varphi(h(s))$, $\text{dist}(v, h(K)) \leq \varepsilon^{1/2}$, $\|\varphi'(v)\|_{X^*} \leq \varepsilon^{1/2}$.

Set $\bar{b}_1 := \min\{1, 2b_1\}$, $\bar{b}_2 := \max\{1, 2b_2\}$, where b_1, b_2 are the constants of the pinching condition (H$_2$). By definition, $\bar{b}_1 \leq 1 \leq \bar{b}_2$. From (H$_2$) we have

$$I(q) \geq \frac{1}{2} \bar{b}_1 \|q\|_E^2 - \int_{-\infty}^{\infty} W(q(t)) dt$$

for every $q \in E$. By (1.2), (2.2) and (2.3), we conclude that there are constants $\alpha, \varrho > 0$ such that

$$I(q) \geq \alpha, \quad \text{if } \|q\|_E = \varrho.$$

Take $\nu \in C_0^\infty(\mathbb{R}, \mathbb{R}^n)$ such that $|\nu(t)| = 1$ for $|t| \leq 1$ and $\nu(t) = 0$ for $|t| \geq 2$. Set

$$m := \inf\{W(q) : |q| = 1\}.$$

From (1.4), for every $\xi \in \mathbb{R}$ such that $|\xi| \geq 1$, we have

$$\int_{-\infty}^{\infty} W(\xi \nu(t)) dt \geq \int_{-1}^{1} W(\xi \nu(t)) dt \geq \int_{-1}^{1} W\left(\frac{\xi \nu(t)}{|\xi \nu(t)|} \right) |\xi \nu(t)|^\mu dt \geq 2m|\xi|^\mu.$$
Combining this with (H2) we obtain
\[I(\xi \nu) \leq \frac{1}{2} \bar{b}_2 \xi^2 \| \nu \|_E^2 - 2m|\xi|^{\mu}. \]
Since \(m > 0 \) and \(\mu > 2 \), for \(|\xi|\) sufficiently large, \(I(\xi \nu) < 0 \). Consequently, there exists \(Q \in E \) such that
\[I(\xi \nu) \leq 1 \]
and \(I(Q) < 0 = I(0) \).
From now on, let
\[M := \{ g \in C([0,1], E) : g(0) = 0 \text{ and } g(1) = Q \} \]
and
\[c := \inf_{g \in M, s \in [0,1]} \max I(g(s)). \]
By (2.4)-(2.7), we get \(c \geq \alpha > 0 \).
Applying Theorem 2.3 we conclude that the following lemma holds.

Lemma 2.4. There exists a sequence \(\{q_k\}_{k \in \mathbb{N}} \) in \(E \) such that
\[I(q_k) \to c \quad \text{and} \quad I'(q_k) \to 0, \quad \text{as } k \to \infty. \]

Proof. By (2.8), for large \(k \),
\[\|I'(q_k)\|_E^* < 2 \quad \text{and} \quad |I(q_k) - c| < 1. \]
Applying (H3) and (H7) we obtain
\[I(q_k) - \frac{1}{2} I'(q_k)q_k \geq \left(\frac{\mu}{2} - 1 \right) \int_{-\infty}^{\infty} W(q_k(t)) \, dt \]
for \(k \in \mathbb{N} \). Combining (2.10) with (2.9) we receive
\[c + 1 + \|q_k\|_E \geq \left(\frac{\mu}{2} - 1 \right) \int_{-\infty}^{\infty} W(q_k(t)) \, dt \]
for large \(k \), and hence
\[\int_{-\infty}^{\infty} W(q_k(t)) \, dt \leq \frac{2}{\mu - 2}(c + 1 + \|q_k\|_E). \]
By the use of (H2), (H3) and (H7), we get
\[I'(q_k)q_k \leq \bar{b}_2 \|q_k\|_E^2 - \mu \int_{-\infty}^{\infty} W(q_k(t)) \, dt \]
for \(k \in \mathbb{N} \). From (2.3) and (2.12) it follows that
\[\frac{1}{b_1} I(q_k) - \frac{1}{\mu \bar{b}_2} I'(q_k)q_k \geq \left(\frac{1}{2} - \frac{1}{\mu} \right) \|q_k\|_E^2 - \left(\frac{1}{b_1} - \frac{1}{\bar{b}_2} \right) \int_{-\infty}^{\infty} W(q_k(t)) \, dt \]
for \(k \in \mathbb{N} \). By (2.9) and (2.13), for large \(k \),

\[
\frac{1}{b_1}(c + 1) + \|q_k\|_E \geq \left(\frac{1}{2} - \frac{1}{\mu} \right) \|q_k\|_E^2 - \left(\frac{1}{b_1} - \frac{1}{b_2} \right) \int_{-\infty}^{\infty} W(q_k(t)) \, dt.
\]

Finally, from (2.11) and (2.14), for large \(k \),

\[
\left(\frac{1}{2} - \frac{1}{\mu} \right) \|q_k\|_E^2 \leq \frac{1}{b_1}(c + 1) + \|q_k\|_E + \frac{2}{\mu - 2} \left(\frac{1}{b_1} - \frac{1}{b_2} \right) (c + 1 + \|q_k\|_E).
\]

Since \(\mu > 2 \), (2.15) shows that \(\{q_k\}_{k \in \mathbb{N}} \) is bounded in \(E \).

For each \(k \in \mathbb{N} \) there is \(\tau_k \in \mathbb{R} \) such that a map \(q_{\tau_k} : \mathbb{R} \to \mathbb{R}^n \) given by

\[q_{\tau_k}(t) := q_k(t + \tau_k), \]

where \(t \in \mathbb{R} \), achieves a maximum at \(0 \in \mathbb{R} \), i.e.

\[
\max\{\|q_{\tau_k}(t)\| : t \in \mathbb{R}\} = |q_{\tau_k}(0)|.
\]

Then \(q_{\tau_k} \in E \) and it is easy to check that \(\|q_{\tau_k}\|_E = \|q_k\|_E, I(q_{\tau_k}) = I(q_k) \) and \(\|I'(q_{\tau_k})\|_{E^*} = \|I'(q_k)\|_{E^*} \). In consequence, by Lemma 2.4,

\[
I(q_{\tau_k}) \to c \quad \text{and} \quad I'(q_{\tau_k}) \to 0,
\]

as \(k \to \infty \), and by Lemma 2.5, the sequence \(\{q_{\tau_k}\}_{k \in \mathbb{N}} \) is bounded in \(E \). Since \(E \) is a reflexive Banach space, \(\{q_{\tau_k}\}_{k \in \mathbb{N}} \) possesses a weakly convergent subsequence in \(E \).

Let \(q_0 \) denote a weak limit of a weakly convergent subsequence of \(\{q_{\tau_k}\}_{k \in \mathbb{N}} \). Without loss of generality, we will write

\[
q_{\tau_k} \rightharpoonup q_0 \quad \text{in} \quad E,
\]

as \(k \to \infty \), which implies \(q_{\tau_k} \to q_0 \) in \(L^\infty_{\text{loc}}(\mathbb{R}, \mathbb{R}^n) \), as \(k \to \infty \).

Lemma 2.6. \(q_0 \) given by (2.18) is a homoclinic solution of (1.1).

Proof. Since \(q_0 \in E \), we see that \(q_0(t) \to 0 \), as \(t \to \pm \infty \), by Fact 2.1. Therefore, it is sufficient to show that \(I'(q_0) = 0 \). Fix \(w \in C^\infty_0(\mathbb{R}, \mathbb{R}^n) \) and assume that for some \(A > 0 \), \(\text{supp}(w) \subset [-A, A] \). We have

\[
I'(q_{\tau_k})w = \int_{-A}^{A} ([\dot{q}_{\tau_k}(t), \dot{w}(t)] - (\nabla V(q_{\tau_k}(t)), w(t))] \, dt
\]

for each \(k \in \mathbb{N} \). From (2.17) it follows that \(I'(q_{\tau_k})w \to 0 \), as \(k \to \infty \). On the other hand,

\[
\int_{-A}^{A} (\dot{q}_{\tau_k}(t), \dot{w}(t)) \, dt \to \int_{-A}^{A} (\dot{q}_0(t), \dot{w}(t)) \, dt,
\]

as \(k \to \infty \), by (2.18), and

\[
\int_{-A}^{A} (\nabla V(q_{\tau_k}(t)), w(t)) \, dt \to \int_{-A}^{A} (\nabla V(q_0(t)), w(t)) \, dt,
\]
as \(k \to \infty \), because \(q_{\tau_k} \to q_0 \) uniformly on \([-A, A]\). Thus \(I'(q_{\tau_k}) w \to I'(q_0) w \), as \(k \to \infty \), and, in consequence, \(I'(q_0) w = 0 \). Since \(C_0^\infty(\mathbb{R}, \mathbb{R}^n) \) is dense in \(E \), we get \(I'(q_0) = 0 \).

Lemma 2.7. Let \(q_0 \) be given by (2.18). Then \(\dot{q}_0(t) \to 0 \), as \(t \to \pm \infty \).

Proof. From Fact 2.1, we obtain

\[
|\dot{q}_0(t)|^2 \leq 2 \int_{t-1/2}^{t+1/2} |\ddot{q}_0(s)|^2 \, ds + 2 \int_{t-1/2}^{t+1/2} (|q_0(s)|^2 + |\dot{q}_0(s)|^2) \, ds.
\]

For this reason, it suffices to notice that

\[
\int_r^{r+1} |\ddot{q}_0(s)|^2 \, ds \to 0,
\]

as \(r \to \pm \infty \). Since \(q_0 \) satisfies (1.1), we have

\[
\int_r^{r+1} |\ddot{q}_0(s)|^2 \, ds = \int_r^{r+1} |\nabla V(q_0(s))|^2 \, ds.
\]

Take \(\varepsilon > 0 \). By (H2) and (H0), there is \(\eta > 0 \) such that for \(|q| < \eta \), \(|\nabla V(q)| < \varepsilon \).

Moreover, there is \(\delta > 0 \) such that, if \(|s| > \delta \), then \(|q_0(s)| < \eta \). Hence, if \(|r| > \delta + 1 \), then

\[
\int_r^{r+1} |\nabla V(q_0(s))|^2 \, ds < \varepsilon^2,
\]

which completes the proof. \(\square \)

To finish the proof of Theorem 1.1, we have to show that \(q_0 \neq 0 \).

On the contrary, suppose that \(q_0 \equiv 0 \). Consequently, we have \(q_{\tau_k}(0) \to 0 \), as \(k \to \infty \). From (2.16) it follows that \(q_{\tau_k} \to 0 \) uniformly on \(\mathbb{R} \), as \(k \to \infty \). By (2.17) and the boundedness of \(\{q_{\tau_k}\}_{k \in \mathbb{N}} \) in \(E \), we get \(2I(q_{\tau_k}) - I'(q_{\tau_k}) q_{\tau_k} \to 2\varepsilon > 0 \), as \(k \to \infty \). On the other hand, by (H4), (H6) and (1.2),

\[
2I(q_{\tau_k}) - I'(q_{\tau_k}) q_{\tau_k} = \int_{-\infty}^\infty [((\nabla V(q_{\tau_k}(t)), q_{\tau_k}(t)) - 2V(q_{\tau_k}(t))] \, dt
\]

\[
= \int_{-\infty}^\infty [2K(q_{\tau_k}(t)) - (\nabla K(q_{\tau_k}(t)), q_{\tau_k}(t))] \, dt
\]

\[
+ \int_{-\infty}^\infty [(\nabla W(q_{\tau_k}(t)), q_{\tau_k}(t)) - 2W(q_{\tau_k}(t))] \, dt \to 0,
\]

as \(k \to \infty \). Indeed. Take \(\varepsilon > 0 \). From (H4), (H6) and (1.2), we deduce that there is \(\delta > 0 \) such that if \(|q| < \delta \), then \(2K(q) - (\nabla K(q), q) \leq \varepsilon |q|^2 \), \(|\nabla W(q)| \leq \varepsilon |q| \) and \(|W(q)| \leq \varepsilon |q|^2 \). Since \(q_{\tau_k} \to 0 \) uniformly on \(\mathbb{R} \), there is \(k_0 \in \mathbb{N} \) such that for \(k > k_0 \) and for \(t \in \mathbb{R} \), \(|q_{\tau_k}(t)| < \delta \). Hence \(|2I(q_{\tau_k}) - I'(q_{\tau_k}) q_{\tau_k}| \leq 4\varepsilon \|q_{\tau_k}\|^2_E \) for \(k > k_0 \), which contradicts (2.17).
References

Manuscript received March 13, 2009

Joanna Janczewska
Faculty of Technical Physics and Applied Mathematics
Gdańsk University of Technology
ul. Narutowicza 11/12
80-233 Gdańsk, POLAND
and
Institute of Mathematics
Polish Academy of Sciences
ul. Śniadeckich 8
00-956 Warsaw, POLAND
E-mail address: jancaewska@mifgate.pg.gda.pl, j.janczewska@impan.pl

TMNA : Volume 36 – 2010 – N° 1