WEAK SOLUTIONS OF QUASILINEAR ELLIPTIC SYSTEMS VIA THE COHOMOLOGICAL INDEX

Anna Maria Candela - Everaldo Medeiros
Giuliana Palmieri - Kaniskha Perera

Abstract. In this paper we study a class of quasilinear elliptic systems of the type

$$
\begin{cases}-\operatorname{div}\left(a_{1}\left(x, \nabla u_{1}, \nabla u_{2}\right)\right)=f_{1}\left(x, u_{1}, u_{2}\right) & \text { in } \Omega, \\ -\operatorname{div}\left(a_{2}\left(x, \nabla u_{1}, \nabla u_{2}\right)\right)=f_{2}\left(x, u_{1}, u_{2}\right) & \text { in } \Omega, \\ u_{1}=u_{2}=0 & \text { on } \partial \Omega,\end{cases}
$$

with Ω bounded domain in \mathbb{R}^{N}. We assume that $A: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$, $F: \Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ exist such that $a=\left(a_{1}, a_{2}\right)=\nabla A$ satisfies the so called Leray-Lions conditions and $f_{1}=\partial F / \partial u_{1}, f_{2}=\partial F / \partial u_{2}$ are Carathéodory functions with subcritical growth.

The approach relies on variational methods and, in particular, on a cohomological local splitting which allows one to prove the existence of a nontrivial solution.

[^0]
1. Introduction

In this paper we investigate the existence of solutions for the quasilinear elliptic system with homogeneous Dirichlet boundary conditions

$$
\begin{cases}-\operatorname{div}\left(a_{1}\left(x, \nabla u_{1}, \nabla u_{2}\right)\right)=f_{1}\left(x, u_{1}, u_{2}\right) & \text { in } \Omega \tag{1.1}\\ -\operatorname{div}\left(a_{2}\left(x, \nabla u_{1}, \nabla u_{2}\right)\right)=f_{2}\left(x, u_{1}, u_{2}\right) & \text { in } \Omega \\ u_{1}=u_{2}=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}, N \geq 2$, is a bounded domain with smooth boundary $\partial \Omega$, $a_{1}, a_{2}: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ and $f_{1}, f_{2}: \Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ are Carathéodory functions (i.e. measurable in $x \in \Omega$ for all $\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2 N}$, respectively $u=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$, and continuous in ξ, respectively u, for almost all $\left.x \in \Omega\right)$.

We assume that $a(x, \xi)=\left(a_{1}(x, \xi), a_{2}(x, \xi)\right)$ satisfies the Leray-Lions conditions:
$\left(\mathrm{A}_{1}\right)$ (growth condition) there exist $p_{j}>1, j=1,2$, and $\alpha_{1}>0$ such that $\left|a_{1}(x, \xi)\right| \leq \alpha_{1}\left(\left|\xi_{1}\right|^{p_{1}-1}+\left|\xi_{2}\right|^{p_{2} / p_{1}^{\prime}}+1\right), \quad\left|a_{2}(x, \xi)\right| \leq \alpha_{1}\left(\left|\xi_{1}\right|^{p_{1} / p_{2}^{\prime}}+\left|\xi_{2}\right|^{p_{2}-1}+1\right)$, for almost all $x \in \Omega$ and all $\xi \in \mathbb{R}^{2 N}$, where $1 / p_{j}+1 / p_{j}^{\prime}=1, j=1,2$;
$\left(\mathrm{A}_{2}\right)$ (coercivity condition) there exists $\alpha_{2}>0$ such that

$$
a(x, \xi) \cdot \xi \geq \alpha_{2}\left(\left|\xi_{1}\right|^{p_{1}}+\left|\xi_{2}\right|^{p_{2}}\right) \quad \text { for a.a. } x \in \Omega, \text { all } \xi \in \mathbb{R}^{2 N} ;
$$

$\left(\mathrm{A}_{3}\right)$ (monotonicity condition)

$$
\left[a(x, \xi)-a\left(x, \xi^{\prime}\right)\right] \cdot\left(\xi-\xi^{\prime}\right)>0
$$

for almost all $x \in \Omega$, all $\xi, \xi^{\prime} \in \mathbb{R}^{2 N}$ such that $\xi \neq \xi^{\prime}$.
Furthermore, we suppose that there exist two Carathéodory functions $A: \Omega \times$ $\mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}, A=A\left(x, \xi_{1}, \xi_{2}\right)$, and $F: \Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, F=F\left(x, u_{1}, u_{2}\right)$, such that

$$
a_{1}\left(x, \xi_{1}, \xi_{2}\right)=\nabla_{\xi_{1}} A\left(x, \xi_{1}, \xi_{2}\right), \quad a_{2}\left(x, \xi_{1}, \xi_{2}\right)=\nabla_{\xi_{2}} A\left(x, \xi_{1}, \xi_{2}\right)
$$

hence, $a(x, \xi)=\nabla_{\xi} A(x, \xi)$, and

$$
f_{1}\left(x, u_{1}, u_{2}\right)=\frac{\partial F}{\partial u_{1}}\left(x, u_{1}, u_{2}\right), \quad f_{2}\left(x, u_{1}, u_{2}\right)=\frac{\partial F}{\partial u_{2}}\left(x, u_{1}, u_{2}\right) .
$$

Thus, note that under suitable assumptions (1.1) is the Euler-Lagrange equation of the functional $\Phi: W \rightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
\Phi\left(u_{1}, u_{2}\right)=\int_{\Omega} A\left(x, \nabla u_{1}, \nabla u_{2}\right) d x-\int_{\Omega} F\left(x, u_{1}, u_{2}\right) d x \tag{1.2}
\end{equation*}
$$

$u=\left(u_{1}, u_{2}\right) \in W$, where $W=W_{0}^{1, p_{1}}(\Omega) \times W_{0}^{1, p_{2}}(\Omega)$ is the product space of the usual Sobolev spaces. Whence, our problem reduces to the study of critical
points of Φ in W and, if problem (1.1) admits the trivial solution $u_{1} \equiv u_{2} \equiv 0$, our aim is proving the existence of at least one nontrivial weak solution.

A model function which satisfies $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{3}\right)$ is

$$
\begin{equation*}
\bar{A}(x, \xi)=\frac{1}{p_{1}}\left|\xi_{1}\right|^{p_{1}}+\frac{1}{p_{2}}\left|\xi_{2}\right|^{p_{2}}, \quad \xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2 N}, \tag{1.3}
\end{equation*}
$$

with $p_{j}>1, j=1,2$, or more generally,

$$
\begin{equation*}
\widetilde{A}(x, \xi)=M(x)\left|\xi_{1}\right|^{p_{1}}+N(x)\left|\xi_{2}\right|^{p_{2}}, \quad \xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2 N} \tag{1.4}
\end{equation*}
$$

where $M, N: \Omega \rightarrow\left[d_{1}, d_{2}\right], 0<d_{1}<d_{2}$, are measurable functions.
Considering \bar{A} as in (1.3), problem (1.1) reduces to the corresponding simpler problem

$$
\begin{cases}-\Delta_{p_{1}} u_{1}=f_{1}\left(x, u_{1}, u_{2}\right) & \text { in } \Omega \tag{1.5}\\ -\Delta_{p_{2}} u_{2}=f_{2}\left(x, u_{1}, u_{2}\right) & \text { in } \Omega, \\ u_{1}=u_{2}=0 & \text { on } \partial \Omega\end{cases}
$$

Quasilinear elliptic operators such as those in problem (1.1), that satisfy the hypotheses $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{3}\right)$, were first studied in [14] and are known in the literature as Leray-Lions operators. Since then, several existence results for problems involving such operators have been obtained via monotonicity methods and, in particular, by using a truncation technique (see [4], [5], [7] and references therein). More recently, an abstract cohomological local splitting theory has been developed in [15]-[17] and has been applied in order to obtain some existence results in the scalar case (see [9]). Here, our aim is to use a similar approach extending the known results to the quasilinear elliptic system (1.1).

On the other hand, many authors have studied problem (1.5) (see, e.g. [2], [6], [11], [12], [17], [20]), and have obtained several existence results under hypotheses of sublinear, superlinear, and resonant type on the nonlinearity F (for nonexistence results of nontrivial bounded solution see [20]). In [4], by assuming a hypothesis of monotonicity on F, a quasilinear elliptic system involving operators of Leray-Lions type similar to (1.1) was studied. Our results in this paper are motivated by theirs and use some ideas from [9], [17].

The rest of this paper is organized as follows. In Section 2, we introduce the complete set of hypotheses on A and F and their partial derivatives, then we describe the variational setting involving the functional Φ and point out some of its properties. In Section 3 we give some abstract results involving a cohomological local splitting. In Section 4 we prove that the functional Φ satisfies the Palais-Smale condition. Finally, in Section 5 we conclude the paper with the complete statements of our results and their proofs.

2. Hypotheses and variational setting

Throughout this paper, we use the following notations:

- meas(\cdot) is the Lebesgue measure in \mathbb{R}^{N};
- $|\cdot|$ is the standard norm on any Euclidean space (no ambiguity arises as the dimension of the vector is clear);
- $L^{p}(\Omega)$ is the space of Lebesgue-measurable functions $u: \Omega \rightarrow \mathbb{R}$ with finite norm $|u|_{p}=\left(\int_{\Omega}|u|^{p} d x\right)^{1 / p}$ if $p \in[1, \infty[$;
- $L^{\infty}(\Omega)$ is the space of Lebesgue-measurable and essentially bounded functions $u: \Omega \rightarrow \mathbb{R}$ with norm $|u|_{\infty}=\operatorname{ess} \sup _{\Omega}|u|$;
- $\left(W_{0}^{1, p}(\Omega),\|\cdot\|_{p}\right)$ is the classical Sobolev space with $\|u\|_{p}=|\nabla u|_{p}$ if $p \geq 1$.
From now on, assume that A and its partial derivatives a_{1}, a_{2}, satisfy the hypotheses $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{3}\right)$. Hence, taking $p_{1}, p_{2} \geq 1$ as in $\left(A_{1}\right)$, let us denote $(W,\|\cdot\|)$ the product space
$W=W_{0}^{1, p_{1}}(\Omega) \times W_{0}^{1, p_{2}}(\Omega), \quad$ with $\|u\|=\left(\left\|u_{1}\right\|_{p_{1}}^{2}+\left\|u_{2}\right\|_{p_{2}}^{2}\right)^{1 / 2}, u=\left(u_{1}, u_{2}\right) \in W$.
Since both $\left(W_{0}^{1, p_{j}}(\Omega),\|\cdot\|_{W_{0}^{1, p_{j}}(\Omega)}\right), j=1,2$, are reflexive Banach spaces, so is $(W,\|\cdot\|)$. Moreover, denote with $\left(W^{\prime},\|\cdot\|_{W^{\prime}}\right)$ its dual space.

According to classical results on this subject, let us introduce the following further conditions on A :
$\left(\mathrm{A}_{4}\right)$ there exist $0<\alpha \leq \beta$ such that

$$
\alpha\left(\frac{1}{p_{1}}\left|\xi_{1}\right|^{p_{1}}+\frac{1}{p_{2}}\left|\xi_{2}\right|^{p_{2}}\right) \leq A(x, \xi) \leq \beta\left(\frac{1}{p_{1}}\left|\xi_{1}\right|^{p_{1}}+\frac{1}{p_{2}}\left|\xi_{2}\right|^{p_{2}}\right)
$$

for almost all $x \in \Omega$, all $\xi \in \mathbb{R}^{2 N}$;
$\left(\mathrm{A}_{5}\right)$ there exist $\alpha_{3}, R, \mu>0$ such that

$$
\alpha_{3} a(x, \xi) \cdot \xi \leq \mu A(x, \xi)-a(x, \xi) \cdot \xi
$$

for almost all $x \in \Omega$ if $|\xi| \geq R$.
REMARK 2.1. If conditions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{4}\right)$ and $\left(\mathrm{A}_{5}\right)$ hold, then a constant $\alpha_{4} \geq 0$ exists such that

$$
\begin{equation*}
a(x, \xi) \cdot \xi \leq \mu A(x, \xi)+\alpha_{4} \quad \text { for a.a. } x \in \Omega, \text { all } \xi \in \mathbb{R}^{2 N} \tag{2.1}
\end{equation*}
$$

REmARK 2.2. Let us point out that hypothesis $\left(\mathrm{A}_{5}\right)$ is a kind of "coercivity condition" used in [3], [8], [9]. As we see in Section 4, this hypothesis is crucial to managing Palais-Smale sequences.

Example 2.3. Direct computations allow one to prove that \widetilde{A} as in (1.4), hence \bar{A} in (1.3), satisfies also conditions $\left(\mathrm{A}_{4}\right)$ and (A_{5}).

On the other hand, for the function F and its partial derivatives f_{1}, f_{2}, let us introduce the following conditions:
$\left(\mathrm{F}_{1}\right) f_{1}(x, 0,0) \equiv 0, f_{2}(x, 0,0) \equiv 0$ in Ω, and, for simplicity, $F(x, 0,0) \equiv 0$;
$\left(\mathrm{F}_{2}\right)$ there exist $s_{j} \in\left(1, p_{j}^{*}\right), q_{j} \in\left(1, q_{j}^{*}\right), j=1,2$, and $\sigma>0$ such that

$$
\begin{aligned}
& \left|f_{1}\left(x, u_{1}, u_{2}\right)\right| \leq \sigma\left(\left|u_{1}\right|^{s_{1}-1}+\left|u_{2}\right|^{q_{1}-1}+1\right) \\
& \left|f_{2}\left(x, u_{1}, u_{2}\right)\right| \leq \sigma\left(\left|u_{1}\right|^{q_{2}-1}+\left|u_{2}\right|^{s_{2}-1}+1\right)
\end{aligned}
$$

for almost all $x \in \Omega$ and for all $\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$, where we assume

$$
p_{j}^{*}=\left\{\begin{array}{ll}
N p_{j} /\left(N-p_{j}\right) & \text { if } p_{j}<N, \\
\text { any real number strictly greater than } 1 & \text { if } p_{j} \geq N,
\end{array} \quad j=1,2,\right.
$$

$$
\text { and } q_{1}^{*}=1+p_{2}^{*}\left(p_{1}^{*}-1\right) / p_{1}^{*}, q_{2}^{*}=1+p_{1}^{*}\left(p_{2}^{*}-1\right) / p_{2}^{*}
$$

$\left(\mathrm{F}_{3}\right)$ there exists $\theta \geq \mu$ such that $\theta>\max \left\{p_{1}, p_{2}\right\}$ and

$$
0<\theta F\left(x, u_{1}, u_{2}\right) \leq f_{1}\left(x, u_{1}, u_{2}\right) u_{1}+f_{2}\left(x, u_{1}, u_{2}\right) u_{2}
$$

for almost all $x \in \Omega$ if $\left|\left(u_{1}, u_{2}\right)\right| \geq R$, where μ and R are as in $\left(\mathrm{A}_{5}\right)$.
Remark 2.4. Without loss of generality, in $\left(\mathrm{F}_{1}\right)$ we can assume $F(x, 0,0) \equiv$ 0 almost everywhere in Ω. In fact, if $F(\cdot, 0,0) \in L^{1}(\Omega)$, then we have just to add a constant to the functional Φ and its differential does not change.

Remark 2.5. By means of the Mean Value Theorem condition (F_{2}) and direct computations imply that

$$
\begin{align*}
\left|F\left(x, u_{1}, u_{2}\right)-F(x, 0,0)\right| \leq & \sigma\left(\left|u_{1}\right|^{s_{1}}+\left|u_{2}\right|^{s_{2}}+\left|u_{1}\right|\left|u_{2}\right|^{q_{1}-1}\right. \tag{2.2}\\
& \left.+\left|u_{1}\right|^{q_{2}-1}\left|u_{2}\right|+\left|u_{1}\right|+\left|u_{2}\right|\right)
\end{align*}
$$

for almost all $x \in \Omega$ and for all $\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$.
Remark 2.6. If hypotheses $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{3}\right)$ hold, (2.2) and direct computations imply that there exists $C_{0} \geq 0$ such that

$$
\begin{equation*}
f_{1}\left(x, u_{1}, u_{2}\right) u_{1}+f_{2}\left(x, u_{1}, u_{2}\right) u_{2} \geq \theta F\left(x, u_{1}, u_{2}\right)-C_{0} \tag{2.3}
\end{equation*}
$$

for almost all $x \in \Omega$, all $\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$.
Remark 2.7. Note that hypothesis $\left(\mathrm{F}_{3}\right)$ can be weakened if we replace $\left(\mathrm{A}_{2}\right)$ with the stronger coerciveness condition $a_{j}(x, \xi) \cdot \xi_{j} \geq \alpha_{5}\left|\xi_{j}\right|^{p_{j}}, j=1$, 2 , for some $\alpha_{5}>0$.

Lemma 2.8. If $F(\cdot, 0,0) \equiv 0$ and (2.2), (F_{3}) hold, then there exist $C \geq 0$ and $h \in L^{\infty}(\Omega), h(x)>0$ for almost all $x \in \Omega$, such that

$$
\begin{equation*}
F\left(x, u_{1}, u_{2}\right) \geq h(x)\left|\left(u_{1}, u_{2}\right)\right|^{\theta}-C \quad \text { for a.a. } x \in \Omega, \text { all }\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2} \tag{2.4}
\end{equation*}
$$

Proof. Taking $\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$, two cases may occur: either $\left|\left(u_{1}, u_{2}\right)\right| \geq R$ or $\left|\left(u_{1}, u_{2}\right)\right|<R$.

If $\left|\left(u_{1}, u_{2}\right)\right| \geq R$, denote

$$
\left(\widetilde{u}_{1}, \widetilde{u}_{2}\right)=R \frac{\left(u_{1}, u_{2}\right)}{\left|\left(u_{1}, u_{2}\right)\right|} \quad \text { and } \quad \underline{t}=\left(\frac{\left|\left(u_{1}, u_{2}\right)\right|}{R}\right)^{\theta}
$$

In general, taking $t \geq 1$ condition (F_{3}) implies

$$
\begin{aligned}
& \frac{d}{d t}\left(F\left(x, t^{1 / \theta} \widetilde{u}_{1}, t^{1 / \theta} \widetilde{u}_{2}\right)\right)=\frac{1}{\theta t} f_{1}\left(x, t^{1 / \theta} \widetilde{u}_{1}, t^{1 / \theta} \widetilde{u}_{2}\right) t^{1 / \theta} \widetilde{u}_{1} \\
& \quad+\frac{1}{\theta t} f_{2}\left(x, t^{1 / \theta} \widetilde{u}_{1}, t^{1 / \theta} \widetilde{u}_{2}\right) t^{1 / \theta} \widetilde{u}_{2} \geq \frac{1}{t} F\left(x, t^{1 / \theta} \widetilde{u}_{1}, t^{1 / \theta} \widetilde{u}_{2}\right)
\end{aligned}
$$

Since $\underline{t} \geq 1$, by integrating we get $F\left(x, u_{1}, u_{2}\right) \geq \underline{t} F\left(x, \widetilde{u}_{1}, \widetilde{u}_{2}\right)$ which implies $F\left(x, u_{1}, u_{2}\right) \geq h(x)\left|\left(u_{1}, u_{2}\right)\right|^{\theta}$, with $h(x)=R^{-\theta} \min \left\{F\left(x, u_{1}, u_{2}\right)>0:\left|\left(u_{1}, u_{2}\right)\right|\right.$ $=R\}$ for almost all $x \in \Omega$, where $h \in L^{\infty}(\Omega)$ follows from (2.2).

On the other hand, from (2.2) and assuming

$$
C=2\left|\sup _{\left|\left(u_{1}, u_{2}\right)\right| \leq R} F\left(x, u_{1}, u_{2}\right)\right|_{\infty}
$$

direct computations imply

$$
F\left(x, u_{1}, u_{2}\right) \geq h(x)\left|\left(u_{1}, u_{2}\right)\right|^{\theta}-C \quad \text { for a.a. } x \in \Omega \text { if }\left|\left(u_{1}, u_{2}\right)\right|<R .
$$

Hence, the proof is complete.
Remark 2.9. If conditions $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{3}\right)$ hold, from (2.2) and (2.4) it follows

$$
\min \left\{s_{1}, s_{2}\right\} \geq \theta>\max \left\{p_{1}, p_{2}\right\}
$$

As $\left(\mathrm{A}_{4}\right)$ implies $a(x, 0,0) \equiv 0$, then from $\left(\mathrm{F}_{1}\right)$ it follows that problem (1.1) always admits the trivial solution $u_{1} \equiv u_{2} \equiv 0$. Thus, in order to obtain a nontrivial weak solution, we impose an additional condition on F involving a suitable "eigenvalue problem" (for a similar condition, see [6, pp. 312]).

More precisely, let $\mathcal{G}: \mathbb{R}^{2} \rightarrow[0, \infty)$ be a given even C^{1}-function such that

$$
\begin{array}{lll}
(2.5) & \mathcal{G}\left(t^{1 / p_{1}} u_{1}, t^{1 / p_{2}} u_{2}\right)=t \mathcal{G}\left(u_{1}, u_{2}\right) & \text { for all } t \geq 0,\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2} \tag{2.5}\\
(2.6) & \mathcal{G}\left(u_{1}, u_{2}\right) \leq \alpha_{6}\left(\left|u_{1}\right|^{p_{1}}+\left|u_{2}\right|^{p_{2}}\right) & \text { for all }\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}, \text { for some } \alpha_{6}>0
\end{array}
$$

and consider the related nonlinear "eigenvalue problem"

$$
\begin{cases}-\Delta_{p_{1}} u_{1}=\lambda \frac{\partial \mathcal{G}}{\partial u_{1}}\left(u_{1}, u_{2}\right) & \text { in } \Omega \tag{2.7}\\ -\Delta_{p_{2}} u_{2}=\lambda \frac{\partial \mathcal{G}}{\partial u_{2}}\left(u_{1}, u_{2}\right) & \text { in } \Omega \\ u_{1}=u_{2}=0 & \\ \text { on } \partial \Omega\end{cases}
$$

REmark 2.10. Examples of functions which satisfy conditions (2.5)-(2.6) are:
(a) $\mathcal{G}\left(u_{1}, u_{2}\right)=\left(c_{1} / p_{1}\right)\left|u_{1}\right|^{p_{1}}+\left(c_{2} / p_{2}\right)\left|u_{2}\right|^{p_{2}}$ for some $c_{1}, c_{2}>0$;
(b) $\mathcal{G}\left(u_{1}, u_{2}\right)=c_{3}\left|u_{1}\right|^{r_{1}}\left|u_{2}\right|^{r_{2}}$ for some $c_{3}>0$, where $r_{1} / p_{1}+r_{2} / p_{2}=1$,
and the related eigenvalue problems are

$$
\begin{aligned}
& \left\{\begin{array}{ll}
-\Delta_{p_{1}} u_{1}=\lambda c_{1}\left|u_{1}\right|^{p_{1}-2} u_{1} & \text { in } \Omega, \\
-\Delta_{p_{2}} u_{2}=\lambda c_{2}\left|u_{2}\right|^{p_{2}-2} u_{2} & \text { in } \Omega, \\
u_{1}=u_{2}=0 & \text { on } \partial \Omega,
\end{array} \quad\right. \text { in case (a), } \\
& \left\{\begin{array}{ll}
-\Delta_{p_{1}} u_{1}=\lambda c_{3} r_{1}\left|u_{1}\right|^{r_{1}-2} u_{1}\left|u_{2}\right|^{r_{2}} & \text { in } \Omega, \\
-\Delta_{p_{2}} u_{2}=\lambda c_{3} r_{2}\left|u_{1}\right|^{r_{1}}\left|u_{2}\right|^{r_{2}-2} u_{2} & \text { in } \Omega, \\
u_{1}=u_{2}=0 & \text { on } \partial \Omega,
\end{array} \quad\right. \text { in case (b). }
\end{aligned}
$$

Via the cohomological index Perera et al. [17, Theorem 4.6] prove that (2.7) admits a sequence of eigenvalues $\lambda_{k} \nearrow \infty$ with some "good" properties (see Proposition 3.3).

Thus, we can consider the following assumption:
(F_{4}) there exist $\varrho>0, k \geq 1$, and $\underline{\lambda}, \bar{\lambda} \in \mathbb{R}$ with $\lambda_{k}<\underline{\lambda} \leq \bar{\lambda}<\lambda_{k+1}$ such that

$$
\beta \underline{\lambda} \mathcal{G}\left(u_{1}, u_{2}\right) \leq F\left(x, u_{1}, u_{2}\right) \leq \alpha \bar{\lambda} \mathcal{G}\left(u_{1}, u_{2}\right),
$$

for almost all $x \in \Omega$ if $\left|\left(u_{1}, u_{2}\right)\right| \leq \varrho$.
Lemma 2.11. Assume that $\left(\mathrm{F}_{1}\right),\left(\mathrm{F}_{4}\right)$ and (2.2) hold. Then, there exists $C_{1}>0$ such that

$$
\begin{aligned}
(2.8)-C_{1}\left(\left|u_{1}\right|^{p_{1}^{*}}+\left|u_{2}\right|^{p_{2}^{*}}\right)+\underline{\lambda} \beta \mathcal{G}\left(u_{1}, u_{2}\right) & \leq F\left(x, u_{1}, u_{2}\right) \\
& \leq \bar{\lambda} \alpha \mathcal{G}\left(u_{1}, u_{2}\right)+C_{1}\left(\left|u_{1}\right|^{p_{1}^{*}}+\left|u_{2}\right|^{p_{2}^{*}}\right)
\end{aligned}
$$

for almost all $x \in \Omega$, all $\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$.
Proof. For almost all $x \in \Omega$, two cases may occur: either $\left|\left(u_{1}, u_{2}\right)\right|>\varrho$ or $\left|\left(u_{1}, u_{2}\right)\right| \leq \varrho$.

If $\left|\left(u_{1}, u_{2}\right)\right|>\varrho$, it is $\left|u_{1}\right|>\varrho / 2$ or $\left|u_{2}\right|>\varrho / 2$. Then, (2.2) and direct computations imply that

$$
\left|F\left(x, u_{1}, u_{2}\right)\right| \leq \widetilde{\sigma}\left(\left|u_{1}\right|^{p_{1}^{*}}+\left|u_{2}\right|^{p_{2}^{*}}\right)
$$

for some $\tilde{\sigma}>0$. Hence, this last estimate and (2.6) imply (2.8) is satisfied for a suitable $C_{1}>0$.

On the contrary, if $\left|\left(u_{1}, u_{2}\right)\right| \leq \varrho,(2.8)$ is a direct consequence of $\left(\mathrm{F}_{4}\right)$.
Now, let us consider the functional $\Phi: W \rightarrow \mathbb{R}$ defined as in (1.2). Classical arguments allow one to prove the following regularity result.

Lemma 2.12. The conditions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{4}\right)$ and $\left(\mathrm{F}_{2}\right)$ imply $\Phi \in C^{1}(W, \mathbb{R})$ with differential operator

$$
d \Phi\left(u_{1}, u_{2}\right)\left[\left(\varphi_{1}, \varphi_{2}\right)\right]=\sum_{j=1}^{2} \int_{\Omega}\left(a_{j}\left(x, \nabla u_{1}, \nabla u_{2}\right) \cdot \nabla \varphi_{j}-f_{j}\left(x, u_{1}, u_{2}\right) \varphi_{j}\right) d x
$$

for all $\left(u_{1}, u_{2}\right),\left(\varphi_{1}, \varphi_{2}\right) \in W$. Hence, the critical points of Φ in W are the weak solutions of (1.1).

Finally, we conclude this section establishing some geometric properties of Φ that we use later. To this aim, denoting

$$
\Phi^{a}=\left\{\left(u_{1}, u_{2}\right) \in W: \Phi\left(u_{1}, u_{2}\right) \leq a\right\} \quad \text { for any } a \in \mathbb{R}
$$

and reasoning as in [17, Lemma 10.20], the following lemma can be proved.
Lemma 2.13. Under the hypotheses $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{4}\right),\left(\mathrm{A}_{5}\right)$ and $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{3}\right)$, there is an $a_{0} \leq 0$ such that for all $a<a_{0}, \Phi^{a}$ is homotopic to the unit sphere

$$
S_{1}=\left\{u=\left(u_{1}, u_{2}\right) \in W:\left\|\left(u_{1}, u_{2}\right)\right\|=1\right\}
$$

Proof. Fix $\left(u_{1}, u_{2}\right) \in S_{1}$. Taking $t>0$, from $\left(\mathrm{A}_{4}\right)$ and Lemma 2.8 it follows that

$$
\Phi\left(t u_{1}, t u_{2}\right) \leq \beta \sum_{j=1}^{2} \frac{t^{p_{j}}}{p_{j}} \int_{\Omega}\left|\nabla u_{j}\right|^{p_{j}} d x-t^{\theta} \int_{\Omega} h(x)\left|\left(u_{1}, u_{2}\right)\right|^{\theta} d x+C \operatorname{meas}(\Omega)
$$

Since $\theta>\max \left\{p_{1}, p_{2}\right\}$ and $\int_{\Omega} h(x)\left|\left(u_{1}, u_{2}\right)\right|^{\theta} d x>0$, we have

$$
\begin{equation*}
\Phi\left(t u_{1}, t u_{2}\right) \rightarrow-\infty \quad \text { as } t \rightarrow \infty \tag{2.9}
\end{equation*}
$$

On the other hand, using (2.1) and (2.3), with $\theta \geq \mu$, if $t>0$ we obtain

$$
\begin{aligned}
\frac{d}{d t}\left(\Phi\left(t u_{1}, t u_{2}\right)\right)= & \int_{\Omega}\left(a_{1}\left(x, t \nabla u_{1}, t \nabla u_{2}\right) \cdot \nabla u_{1}+a_{2}\left(x, t \nabla u_{1}, t \nabla u_{2}\right) \cdot \nabla u_{2}\right) d x \\
& -\int_{\Omega}\left(f_{1}\left(x, t u_{1}, t u_{2}\right) u_{1}+f_{2}\left(x, t u_{1}, t u_{2}\right) u_{2}\right) d x \\
\leq & \frac{\mu}{t} \int_{\Omega}\left(A\left(x, t u_{1}, t u_{2}\right)-F\left(x, t u_{1}, t u_{2}\right)\right) d x+\frac{\alpha_{4}+C_{0}}{t} \operatorname{meas}(\Omega) \\
= & \frac{\mu}{t}\left(\Phi\left(t u_{1}, t u_{2}\right)-a_{0}\right)
\end{aligned}
$$

where $a_{0}=-\left(\alpha_{4}+C_{0}\right) \operatorname{meas}(\Omega) / \mu \leq 0$. Hence, if $\Phi\left(t u_{1}, t u_{2}\right) \leq a$ for some $a<a_{0}$, then

$$
\frac{d}{d t}\left(\Phi\left(t u_{1}, t u_{2}\right)\right)<0
$$

Thus, since $\left(\mathrm{A}_{4}\right)$ and $\left(\mathrm{F}_{1}\right)$ imply $\Phi(0,0)=0$, taking any $a<a_{0}$ from (2.9) it follows that there exists a unique $t_{a}=t_{a}\left(u_{1}, u_{2}\right)>0$ such that $\Phi\left(t_{a} u_{1}, t_{a} u_{2}\right)=a$ and

$$
\Phi\left(t u_{1}, t u_{2}\right)>a \quad \text { for all } 0 \leq t<t_{a}, \quad \Phi\left(t u_{1}, t u_{2}\right)<a \quad \text { for all } t>t_{a}
$$

Consequently, $\Phi^{a}=\left\{\left(t u_{1}, t u_{2}\right):\left(u_{1}, u_{2}\right) \in S_{1}, t \geq t_{a}\left(u_{1}, u_{2}\right)\right\}$, where, by the Implicit Function Theorem, $t_{a}:\left(u_{1}, u_{2}\right) \in S_{1} \mapsto t_{a}\left(u_{1}, u_{2}\right) \in(0,+\infty)$ is a C^{1} map.

Corollary 2.14. Assume that the hypotheses of Lemma 2.13 hold and take any $a<a_{0}$. Then, using the same notations as in the proof of Lemma 2.13, we have that Φ^{a} is a deformation retract of $W \backslash\{0\}$ via $H:[0,1] \times(W \backslash\{0\}) \rightarrow W \backslash\{0\}$ defined by

$$
\begin{aligned}
& H\left(t,\left(u_{1}, u_{2}\right)\right) \\
& \quad= \begin{cases}(1-t)\left(u_{1}, u_{2}\right)+t t_{a}\left(u_{1}, u_{2}\right)\left(u_{1}, u_{2}\right) & \text { if }\left(u_{1}, u_{2}\right) \in(W \backslash\{0\}) \backslash \Phi^{a}, \\
\left(u_{1}, u_{2}\right) & \text { if }\left(u_{1}, u_{2}\right) \in \Phi^{a} .\end{cases}
\end{aligned}
$$

3. Cohomological local splitting

Let us first recall the notion of cohomological local splitting introduced in [17, Definition 3.33] (see also [15]). In what follows i denotes the Fadell-Rabinowitz cohomological index (see [13]) and for a subset C of a Banach space W we write

$$
I C=\{t u: u \in C, t \in[0,1]\} .
$$

Definition 3.1. We say that a C^{1}-functional $\Phi: W \rightarrow \mathbb{R}$, defined on a Banach space W, has a cohomological local splitting near zero in dimension q, $1 \leq q<+\infty$, if there are
(a) a bounded symmetric subset \mathcal{M} of $W \backslash\{0\}$ that is radially homeomorphic to the unit sphere in W, and disjoint symmetric subsets $A_{0} \neq \emptyset$ and B_{0} of \mathcal{M} such that

$$
i\left(A_{0}\right)=i\left(\mathcal{M} \backslash B_{0}\right)=q ;
$$

(b) a homeomorphism h from $I \mathcal{M}$ onto a neighborhood U of zero containing no other critical points, such that $h(0)=0$ and

$$
\left.\Phi\right|_{A} \leq 0<\left.\Phi\right|_{B \backslash\{0\}}
$$

where $A=h\left(I A_{0}\right)$ and $B=h\left(I B_{0}\right) \cup\{0\}$.
On the other hand, denoting by $H^{*}(\cdot, \cdot)$ the Alexander-Spanier cohomology with \mathbb{Z}_{2}-coefficients (see [19]), the cohomological critical groups of Φ at an isolated critical point u_{0} are defined by

$$
\begin{equation*}
C^{q}\left(\Phi, u_{0}\right)=H^{q}\left(\Phi^{c} \cap U, \Phi^{c} \cap U \backslash\left\{u_{0}\right\}\right), \quad \text { if } q \geq 0 \tag{3.1}
\end{equation*}
$$

where $c=\Phi\left(u_{0}\right)$ is the corresponding critical value and U is a neighborhood of u_{0} containing no other critical point of Φ (see e.g. [10]).

The following result can be stated.

Proposition 3.2 [17, Proposition 3.34]). If Φ has a cohomological local splitting near zero in dimension k, then $C^{k}(\Phi, 0) \neq 0$.

Here, we want to apply the previous theory to our setting.
First of all, let us recall some results concerning the nonlinear eigenvalue problem (2.7) proved in [17]. To this aim, define

$$
I\left(u_{1}, u_{2}\right)=\frac{1}{p_{1}} \int_{\Omega}\left|\nabla u_{1}\right|^{p_{1}} d x+\frac{1}{p_{2}} \int_{\Omega}\left|\nabla u_{2}\right|^{p_{2}} d x, \quad\left(u_{1}, u_{2}\right) \in W
$$

Clearly, $I \in C^{1}(W, \mathbb{R})$ is such that

$$
\begin{equation*}
I\left(t^{1 / p_{1}} u_{1}, t^{1 / p_{2}} u_{2}\right)=t I\left(u_{1}, u_{2}\right) \quad \text { for all } t \geq 0,\left(u_{1}, u_{2}\right) \in W \tag{3.2}
\end{equation*}
$$

Furthermore, by [17, Lemma 10.6], the set

$$
\mathcal{M}:=\left\{u=\left(u_{1}, u_{2}\right) \in W: I\left(u_{1}, u_{2}\right)=1\right\}
$$

is radially homeomorphic to the unit sphere S_{1} in W.
Now, taking the function \mathcal{G} as in the hypothesis $\left(\mathrm{F}_{4}\right)$, define

$$
J\left(u_{1}, u_{2}\right)=\int_{\Omega} \mathcal{G}\left(u_{1}, u_{2}\right) d x \quad \text { and } \quad \Psi\left(u_{1}, u_{2}\right)=\frac{I\left(u_{1}, u_{2}\right)}{J\left(u_{1}, u_{2}\right)} \quad \text { if } J\left(u_{1}, u_{2}\right) \neq 0
$$

Conditions (2.5)-(2.6) imply that $J \in C^{1}(W, \mathbb{R})$ and

$$
\begin{equation*}
J\left(t^{1 / p_{1}} u_{1}, t^{1 / p_{2}} u_{2}\right)=t J\left(u_{1}, u_{2}\right) \quad \text { for all } t \geq 0,\left(u_{1}, u_{2}\right) \in W \tag{3.3}
\end{equation*}
$$

Moreover, the set $\mathcal{M}^{+}:=\left\{u=\left(u_{1}, u_{2}\right) \in \mathcal{M}: J\left(u_{1}, u_{2}\right)>0\right\}$ is a symmetric open submanifold of \mathcal{M} and $\widetilde{\Psi}=\left.\Psi\right|_{\mathcal{M}^{+}}$is a C^{1} function on \mathcal{M}^{+}.

For simplicity, for each $\lambda \in \mathbb{R}$ denote

$$
\begin{aligned}
\widetilde{\Psi}^{\lambda} & =\left\{u=\left(u_{1}, u_{2}\right) \in \mathcal{M}^{+}: \widetilde{\Psi}\left(u_{1}, u_{2}\right) \leq \lambda\right\}, \\
\widetilde{\Psi}_{\lambda} & =\left\{u=\left(u_{1}, u_{2}\right) \in \mathcal{M}^{+}: \widetilde{\Psi}\left(u_{1}, u_{2}\right) \geq \lambda\right\},
\end{aligned}
$$

and, if \mathcal{F} is the class of symmetric subsets of \mathcal{M}^{+}, let $\mathcal{F}_{k}=\{M \in \mathcal{F}: i(M) \geq k\}$ for each $k \in \mathbb{N}$ and

$$
\begin{equation*}
\lambda_{k}=\inf _{M \in \mathcal{F}_{k}} \sup _{u \in M} \widetilde{\Psi}\left(u_{1}, u_{2}\right) . \tag{3.4}
\end{equation*}
$$

Proposition 3.3 ([17, Theorem 10.10]). Each λ_{k} in (3.4) is an eigenvalue of (2.7). Furthermore, $\lambda_{k} \nearrow+\infty$ and, if $\lambda_{k}<\lambda<\lambda_{k+1}$, then

$$
i\left(\widetilde{\Psi}^{\lambda}\right)=k=i\left(\mathcal{M}^{+} \backslash \widetilde{\Psi}_{\lambda_{k+1}}\right)
$$

Considering $\underline{\lambda}, \bar{\lambda}$ as in $\left(F_{4}\right)$ and fixing $\underline{\lambda} \leq \lambda \leq \bar{\lambda}$, let

$$
A_{0}=\widetilde{\Psi}^{\lambda} \quad \text { and } \quad B_{0}=\widetilde{\Psi}_{\lambda_{k+1}} \cup\left(\mathcal{M} \backslash \mathcal{M}^{+}\right)
$$

Obviously, by the previous definitions we have

$$
\begin{aligned}
A_{0}= & \left\{u=\left(u_{1}, u_{2}\right) \in \mathcal{M}^{+}: I\left(u_{1}, u_{2}\right) \leq \lambda \int_{\Omega} \mathcal{G}\left(u_{1}, u_{2}\right) d x\right\} \\
B_{0}= & \left\{u=\left(u_{1}, u_{2}\right) \in \mathcal{M}^{+}: I\left(u_{1}, u_{2}\right) \geq \lambda_{k+1} \int_{\Omega} \mathcal{G}\left(u_{1}, u_{2}\right) d x\right\} \\
& \cup\left\{\left(u_{1}, u_{2}\right) \in \mathcal{M}: J\left(u_{1}, u_{2}\right)=0\right\}
\end{aligned}
$$

Moreover, for each $\rho>0$ define the map

$$
h_{\rho}\left(t u_{1}, t u_{2}\right)=\left((t \rho)^{1 / p_{1}} u_{1},(t \rho)^{1 / p_{2}} u_{2}\right), \quad t \in[0,1],\left(u_{1}, u_{2}\right) \in \mathcal{M}
$$

which is a homeomorphism between $I \mathcal{M}$ and the neighbourhood of zero

$$
U_{\rho}=\left\{\left(t^{1 / p_{1}} \bar{u}_{1}, t^{1 / p_{2}} \bar{u}_{2}\right):\left(\bar{u}_{1}, \bar{u}_{2}\right) \in \mathcal{M}, 0 \leq t \leq \rho\right\} .
$$

For simplicity, we denote $B_{\rho}=h_{\rho}\left(I B_{0}\right) \cup\{0\}$ and $A_{\rho}=h_{\rho}\left(I A_{0}\right)$ for any $\rho>0$.
In order to show that Φ has a cohomological local splitting near zero, it suffices to prove that the following statement holds.

Lemma 3.4 (Splitting geometry). If $\left(\mathrm{A}_{4}\right)$, $\left(\mathrm{F}_{1}\right)$, $\left(\mathrm{F}_{2}\right)$ and $\left(\mathrm{F}_{4}\right)$ hold, there exists $\rho^{*}>0$ such that
(a) $\Phi\left(u_{1}, u_{2}\right)>0$ if $\left(u_{1}, u_{2}\right) \in B_{\rho^{*}} \backslash\{0\}$,
(b) $\Phi\left(u_{1}, u_{2}\right) \leq 0$ if $\left(u_{1}, u_{2}\right) \in A_{\rho^{*}}$.

Proof. Taking any $\rho>0$, note that $B_{\rho}=\left\{\left(t^{1 / p_{1}} \bar{u}_{1}, t^{1 / p_{2}} \bar{u}_{2}\right):\left(\bar{u}_{1}, \bar{u}_{2}\right) \in\right.$ $\left.B_{0}, 0 \leq t \leq \rho\right\} \cup\{0\}$. Then, taking $\left(u_{1}, u_{2}\right) \in B_{\rho}$, we have $\left(u_{1}, u_{2}\right)=$ $\left(t^{1 / p_{1}} \bar{u}_{1}, t^{1 / p_{2}} \bar{u}_{2}\right)$ for some $\left(\bar{u}_{1}, \bar{u}_{2}\right) \in B_{0}$ and $0 \leq t \leq \rho$. Clearly, by definition we have $I\left(u_{1}, u_{2}\right) \leq \rho$.

Moreover, the Sobolev Imbedding Theorem and direct computations imply

$$
\begin{aligned}
& \left|u_{1}\right|_{p_{1}^{*}}^{p_{1}^{*}} \leq C_{2}\left\|u_{1}\right\|_{p_{1}}^{p_{1}^{*}} \leq C_{3}\left(I\left(u_{1}, u_{2}\right)\right)^{p_{1}^{*} / p_{1}} \\
& \left|u_{2}\right|_{p_{2}^{*}}^{p_{2}^{*}} \leq C_{2}\left\|u_{1}\right\|_{p_{2}}^{p_{2}^{*}} \leq C_{3}\left(I\left(u_{1}, u_{2}\right)\right)^{p_{2}^{*} / p_{2}}
\end{aligned}
$$

for some $C_{2}, C_{3}>0$. Together with the second inequality in (2.8), these estimates imply that

$$
\begin{align*}
\int_{\Omega} F\left(x, u_{1}, u_{2}\right) d x & \leq \bar{\lambda} \alpha \int_{\Omega} \mathcal{G}\left(u_{1}, u_{2}\right) d x+\epsilon(\rho) I\left(u_{1}, u_{2}\right) \tag{3.5}\\
& =\bar{\lambda} \alpha J\left(u_{1}, u_{2}\right)+\epsilon(\rho) I\left(u_{1}, u_{2}\right)
\end{align*}
$$

where $\epsilon(\rho)=C_{1} C_{3}\left(\rho^{p_{1}^{*} / p_{1}-1}+\rho^{p_{2}^{*} / p_{2}-1}\right) \rightarrow 0$ as $\rho \rightarrow 0$. Hence, (3.5) and $\left(\mathrm{A}_{4}\right)$ imply that

$$
\begin{equation*}
\Phi\left(u_{1}, u_{2}\right) \geq(\alpha-\epsilon(\rho)) I\left(u_{1}, u_{2}\right)-\bar{\lambda} \alpha J\left(u_{1}, u_{2}\right) \tag{3.6}
\end{equation*}
$$

Now, two cases may occur: either $\left(\bar{u}_{1}, \bar{u}_{2}\right) \in \widetilde{\Psi}_{\lambda_{k+1}}$ or $\left(\bar{u}_{1}, \bar{u}_{2}\right) \in \mathcal{M} \backslash \mathcal{M}^{+}$.

If $\left(\bar{u}_{1}, \bar{u}_{2}\right) \in \widetilde{\Psi}_{\lambda_{k+1}},(3.2)$ and (3.3) imply

$$
I\left(u_{1}, u_{2}\right) \geq \lambda_{k+1} J\left(u_{1}, u_{2}\right)
$$

thus, if $\rho>0$ is small enough, from (3.6) it follows

$$
\Phi\left(u_{1}, u_{2}\right) \geq\left(\alpha\left(1-\frac{\bar{\lambda}}{\lambda_{k+1}}\right)-\epsilon(\rho)\right) I\left(u_{1}, u_{2}\right)>0 .
$$

On the other hand, if $\left(\bar{u}_{1}, \bar{u}_{2}\right) \in \mathcal{M} \backslash \mathcal{M}^{+}$, we have $J\left(u_{1}, u_{2}\right) \leq 0$ so, if $\rho>0$ is small enough, (3.6) implies

$$
\Phi\left(u_{1}, u_{2}\right) \geq(\alpha-\epsilon(\rho)) I\left(u_{1}, u_{2}\right)>0 .
$$

Whence, (a) holds.
In order to prove (b), note that the first inequality in (2.8) gives

$$
-\int_{\Omega} F\left(x, u_{1}, u_{2}\right) d x \leq \epsilon(\rho) I\left(u_{1}, u_{2}\right)-\beta \underline{\lambda} \int_{\Omega} \mathcal{G}\left(u_{1}, u_{2}\right) d x
$$

which, together with $\left(\mathrm{A}_{4}\right)$, implies

$$
\begin{aligned}
\Phi\left(u_{1}, u_{2}\right) & \leq \beta I\left(u_{1}, u_{2}\right)-\beta \underline{\lambda} \int_{\Omega} \mathcal{G}\left(u_{1}, u_{2}\right) d x+\epsilon(\rho) I\left(u_{1}, u_{2}\right) \\
& \leq\left(\beta\left(1-\frac{\underline{\lambda}}{\lambda}\right)+\epsilon(\rho)\right) I\left(u_{1}, u_{2}\right) \leq 0
\end{aligned}
$$

if $\left(u_{1}, u_{2}\right) \in A_{\rho}$, for ρ sufficiently small. This completes the proof.
Proposition 3.5. If the hypotheses $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{4}\right),\left(\mathrm{F}_{1}\right),\left(\mathrm{F}_{2}\right)$ and $\left(\mathrm{F}_{4}\right)$ hold, then Φ has a cohomological local splitting near zero in dimension k, where k is as in $\left(\mathrm{F}_{4}\right)$. Hence, $C^{k}(\Phi, 0) \neq 0$.

Proof. By Lemma 2.12 the functional Φ is C^{1} in W. Furthermore, considering k as in $\left(\mathrm{F}_{4}\right)$ and $\mathcal{M}, A_{0}, B_{0}$ as in the first part of this section with $\lambda_{k}<\underline{\lambda} \leq \lambda \leq \bar{\lambda}<\lambda_{k+1}$, from $\mathcal{M} \backslash B_{0}=\mathcal{M}^{+} \backslash \widetilde{\Psi}_{\lambda_{k+1}}$ and Proposition 3.3 it follows

$$
i\left(A_{0}\right)=k=i\left(\mathcal{M} \backslash B_{0}\right) .
$$

Then Lemma 3.4 and Proposition 3.2 complete the proof.

4. A compactness condition

From now on, assume that $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{4}\right)$ and $\left(\mathrm{F}_{2}\right)$ hold. Thus, Φ is a C^{1} functional on W (see Lemma 2.12).

Briefly, we say that $\left(u_{n}\right)_{n} \subset W, u_{n}=\left(u_{1, n}, u_{2, n}\right)$, is a Palais-Smale sequence at level $c, c \in \mathbb{R}$, if

$$
\begin{equation*}
\Phi\left(u_{1, n}, u_{2, n}\right) \xrightarrow{n} c, \quad\left\|d \Phi\left(u_{1, n}, u_{2, n}\right)\right\|_{W^{\prime}} \xrightarrow{n} 0 . \tag{4.1}
\end{equation*}
$$

Recall that the functional Φ satisfies the Palais-Smale condition at level c in $W\left((\mathrm{PS})_{c}\right.$ for short) if every Palais-Smale sequence at level c has a subsequence that converges in the norm of W.

In order to show that Φ satisfies $(\mathrm{PS})_{c}$ for each $c \in \mathbb{R}$, some lemmas are needed.

Lemma 4.1. Assume that also the hypotheses $\left(\mathrm{A}_{2}\right),\left(\mathrm{A}_{5}\right)$, $\left(\mathrm{F}_{1}\right)$ and $\left(\mathrm{F}_{3}\right)$ hold. Then, taking any $c \in \mathbb{R}$, each $(\mathrm{PS})_{c}$ sequence is bounded.

Proof. Let $\left(u_{n}\right)_{n} \subset W, u_{n}=\left(u_{1, n}, u_{2, n}\right)$, be such that (4.1) holds. Whence, we have

$$
\begin{aligned}
\Phi\left(u_{1, n}, u_{2, n}\right) & =c+o(1), \\
d \Phi\left(u_{1, n}, u_{2, n}\right)\left[\left(u_{1, n}, 0\right)\right] & =o(1)\left\|u_{1, n}\right\|_{p_{1}}, \\
d \Phi\left(u_{1, n}, u_{2, n}\right)\left[\left(0, u_{2, n}\right)\right] & =o(1)\left\|u_{2, n}\right\|_{p_{2}},
\end{aligned}
$$

with $o(1)$ any infinitesimal sequence of real numbers.
Since $\mu \leq \theta$, by using $\left(\mathrm{A}_{2}\right)$ and $\left(\mathrm{A}_{5}\right)$ we get

$$
\theta A(x, \xi)-a(x, \xi) \cdot \xi \geq \alpha_{2} \alpha_{3}\left(\left|\xi_{1}\right|^{p_{1}}+\left|\xi_{2}\right|^{p_{2}}\right) \quad \text { for a.a. } x \in \Omega \text { if }|\xi| \geq R .
$$

Thus, from $\left(\mathrm{F}_{3}\right)$ it follows

$$
\begin{aligned}
& \theta c+o(1)+o(1)\left\|u_{n}\right\| \\
& =\theta \Phi\left(u_{1, n}, u_{2, n}\right)-d \Phi\left(u_{1, n}, u_{2, n}\right)\left[\left(u_{1, n}, 0\right)\right]-d \Phi\left(u_{1, n}, u_{2, n}\right)\left[\left(0, u_{2, n}\right)\right] \\
& =\int_{\Omega}\left(\theta A\left(x, \nabla u_{1, n}, \nabla u_{2, n}\right)-a\left(x, \nabla u_{1, n}, \nabla u_{2, n}\right) \cdot \nabla u_{n}\right) d x \\
& \quad-\int_{\Omega}\left(\theta F\left(x, u_{1, n}, u_{2, n}\right)-f_{1}\left(x, u_{1, n}, u_{2, n}\right) u_{1, n}-f_{2}\left(x, u_{1, n}, u_{2, n}\right) u_{2, n}\right) d x \\
& \geq \\
& \quad \alpha_{2} \alpha_{3}\left(\left\|u_{1, n}\right\|_{p_{1}}^{p_{1}}+\left\|u_{2, n}\right\|_{p_{2}}^{p_{2}}\right)-\alpha_{2} \alpha_{3} \int_{\Omega^{R}\left(\nabla u_{n}\right)}\left(\left|\nabla u_{1, n}\right|^{p_{1}}+\left|\nabla u_{2, n}\right|^{p_{2}}\right) d x \\
& \quad+\int_{\Omega^{R}\left(\nabla u_{n}\right)}\left(\theta A\left(x, \nabla u_{1, n}, \nabla u_{2, n}\right)-a\left(x, \nabla u_{1, n}, \nabla u_{2, n}\right) \cdot \nabla u_{n}\right) d x \\
& \quad-\int_{\Omega^{R}\left(u_{n}\right)}\left(\theta F\left(x, u_{1, n}, u_{2, n}\right)-f_{1}\left(x, u_{1, n}, u_{2, n}\right) u_{1, n}-f_{2}\left(x, u_{1, n}, u_{2, n}\right) u_{2, n}\right) d x
\end{aligned}
$$

with
(4.2) $\Omega^{R}\left(\nabla u_{n}\right)=\left\{x \in \Omega:\left|\nabla u_{n}(x)\right| \leq R\right\}, \quad \Omega^{R}\left(u_{n}\right)=\left\{x \in \Omega:\left|u_{n}(x)\right| \leq R\right\}$.

But direct computations and definitions (4.2) imply that they are bounded not only

$$
\begin{aligned}
& \left(\int_{\Omega^{R}\left(\nabla u_{n}\right)}\left(\left|\nabla u_{1, n}\right|^{p_{1}}+\left|\nabla u_{2, n}\right|^{p_{2}}\right) d x\right)_{n} \\
& \quad\left(\int_{\Omega^{R}\left(\nabla u_{n}\right)} A\left(x, \nabla u_{1, n}, \nabla u_{2, n}\right) d x\right)_{n}, \\
& \left.\left(\int_{\Omega^{R}\left(\nabla u_{n}\right)} a\left(x, \nabla u_{1, n}, \nabla u_{2, n}\right) \cdot \nabla u_{n}\right) d x\right)_{n},
\end{aligned}
$$

(by using conditions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{4}\right)$) but also

$$
\begin{gathered}
\left(\int_{\Omega^{R}\left(u_{n}\right)} F\left(x, u_{1, n}, u_{2, n}\right) d x\right)_{n} \\
\left(\int_{\Omega^{R}\left(u_{n}\right)}\left(f_{1}\left(x, u_{1, n}, u_{2, n}\right) u_{1, n}+f_{2}\left(x, u_{1, n}, u_{2, n}\right) u_{2, n}\right) d x\right)_{n},
\end{gathered}
$$

(by using conditions $\left(\mathrm{F}_{2}\right)$ and (2.2)). Thus, $\left(u_{n}\right)_{n}$ has to be bounded in W, too.

Now, we prove the following compactness result by using an argument similar to that in [1, Lemma 3.2] (see also [4]). But first, as useful in the following, let us recall a suitable version of the Young's Inequality: fixing any $\varepsilon>0$ there exists $\gamma_{\varepsilon, p_{j}}>0$, i.e. a constant $\gamma_{\varepsilon, p_{j}}$ depending only on ε and p_{j}, such that

$$
\begin{equation*}
\eta_{1} \eta_{2} \leq \varepsilon \eta_{1}^{p_{j}}+\gamma_{\varepsilon, p_{j}} \eta_{2}^{p_{j}^{\prime}} \quad \text { for all } \eta_{1}, \eta_{2} \geq 0 \tag{4.3}
\end{equation*}
$$

Lemma 4.2. Assume that $\left(\mathrm{A}_{2}\right),\left(\mathrm{A}_{3}\right)$ also hold. If $\left(u_{n}\right)_{n} \subset W, u_{n}=$ $\left(u_{1, n}, u_{2, n}\right)$, and $u=\left(u_{1}, u_{2}\right) \in W$ are such that

$$
\begin{gather*}
u_{j, n} \rightharpoonup u_{j} \quad \text { weakly in } W_{0}^{1, p_{j}}(\Omega), j=1,2, \tag{4.4}\\
\int_{\Omega}\left(a\left(x, \nabla u_{1, n}, \nabla u_{2, n}\right)-a\left(x, \nabla u_{1}, \nabla u_{2}\right)\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x \rightarrow 0, \tag{4.5}
\end{gather*}
$$

then $u_{j, n} \rightarrow u_{j}$ strongly in $W_{0}^{1, p_{j}}(\Omega), j=1,2$.
Proof. For simplicity, assume
$D_{n}(x)=\left(a\left(x, \nabla u_{1, n}(x), \nabla u_{2, n}(x)\right)-a\left(x, \nabla u_{1}(x), \nabla u_{2}(x)\right)\right) \cdot\left(\nabla u_{n}(x)-\nabla u(x)\right)$, for $x \in \Omega$. Since the imbedding $W_{0}^{1, p_{j}}(\Omega) \hookrightarrow L^{1}(\Omega)$ is compact and $D_{n} \rightarrow 0$ in $L^{1}(\Omega)$, up to a subsequence we may assume that

$$
u_{j, n}(x) \rightarrow u_{j}(x) \quad \text { a.e. in } \Omega, j=1,2, \quad \text { and } \quad D_{n}(x) \rightarrow 0 \quad \text { a.e. in } \Omega .
$$

Hence, there exists a set $N \subset \Omega$, meas $(N)=0$, such that for all $j=1,2$ it is

$$
\begin{equation*}
\left|u_{j}(x)\right|,\left|\nabla u_{j}(x)\right|<\infty, \quad u_{j, n}(x) \rightarrow u_{j}(x) \tag{4.6}
\end{equation*}
$$

and $\quad D_{n}(x) \rightarrow 0 \quad$ for all $x \in \Omega \backslash N$.

Now, fixing $x \in \Omega \backslash N$, let $\xi_{n}=\left(\xi_{1, n}, \xi_{2, n}\right)$, with $\xi_{j, n}=\nabla u_{j, n}(x)(j=1,2)$, and $\xi=\left(\xi_{1}, \xi_{2}\right)$, with $\xi_{j}=\nabla u_{j}(x)(j=1,2)$.

From one hand, using $\left(\mathrm{A}_{2}\right)$ we have

$$
\begin{equation*}
a\left(x, \xi_{n}\right) \cdot \xi_{n} \geq \alpha_{2}\left(\left|\xi_{1, n}\right|^{p_{1}}+\left|\xi_{2, n}\right|^{p_{2}}\right) \tag{4.7}
\end{equation*}
$$

On the other hand, fixing any $\varepsilon>0$, from $\left(\mathrm{A}_{1}\right)$, the Young's Inequality (4.3) and direct computations it follows

$$
\begin{aligned}
a\left(x, \xi_{n}\right) \cdot \xi= & a_{1}\left(x, \xi_{n}\right) \cdot \xi_{1}+a_{2}\left(x, \xi_{n}\right) \cdot \xi_{2} \\
\leq & \alpha_{1}\left(\left|\xi_{1, n}\right|^{p_{1}-1}+\left|\xi_{2, n}\right|^{p_{2} / p_{1}^{\prime}}+1\right)\left|\xi_{1}\right| \\
& +\alpha_{1}\left(\left|\xi_{1, n}\right|^{p_{1} / p_{2}^{\prime}}+\left|\xi_{2, n}\right|^{p_{2}-1}+1\right)\left|\xi_{2}\right| \\
\leq & 2 \alpha_{1} \varepsilon\left(\left|\xi_{1, n}\right|^{p_{1}}+\left|\xi_{2, n}\right|^{p_{2}}\right)+h^{*}(\varepsilon, \xi), \\
a(x, \xi) \cdot \xi_{n}= & a_{1}(x, \xi) \cdot \xi_{1, n}+a_{2}(x, \xi) \cdot \xi_{2, n} \\
\leq & \alpha_{1}\left(\left|\xi_{1}\right|^{p_{1}-1}+\left|\xi_{2}\right|^{p_{2} / p_{1}^{\prime}}+1\right)\left|\xi_{1, n}\right|+\alpha_{1}\left(\left|\xi_{1}\right|^{p_{1} / p_{2}^{\prime}}+\left|\xi_{2}\right|^{p_{2}-1}+1\right)\left|\xi_{2, n}\right| \\
\leq & 3 \alpha_{1} \varepsilon\left(\left|\xi_{1, n}\right|^{p_{1}}+\left|\xi_{2, n}\right|^{p_{2}}\right)+h^{* *}(\varepsilon, \xi),
\end{aligned}
$$

where both $h^{*}(\varepsilon, \xi)$ and $h^{* *}(\varepsilon, \xi)$ are suitable positive expressions depending only on ε and ξ.

Thus, these last estimates and (4.7) imply

$$
D_{n}(x) \geq\left(\alpha_{2}-5 \alpha_{1} \varepsilon\right)\left(\left|\xi_{1, n}\right|^{p_{1}}+\left|\xi_{2, n}\right|^{p_{2}}\right)+a(x, \xi) \cdot \xi-h^{*}(\varepsilon, \xi)-h^{* *}(\varepsilon, \xi)
$$

hence, choosing ε small enough, from (4.6) we have that $\left(\xi_{1, n}\right)_{n},\left(\xi_{2, n}\right)_{n}$ are bounded sequences in \mathbb{R}^{N} and so is $\left(\xi_{n}\right)_{n}$ in $\mathbb{R}^{2 N}$.

Thus, we can consider ξ^{*} as a cluster point of $\left(\xi_{n}\right)_{n}$. Obviously, we have $\left|\xi^{*}\right|<\infty$ and, by the continuity of $a(x, \cdot)$, (4.6) implies

$$
\left(a\left(x, \xi^{*}\right)-a(x, \xi)\right) \cdot\left(\xi^{*}-\xi\right)=0
$$

Whence, from $\left(A_{3}\right)$ we have $\xi^{*}=\xi$. So, for the uniqueness of the cluster point, we have $\xi_{n} \rightarrow \xi$. Hence, $\nabla u_{n}(x) \rightarrow \nabla u(x)$ for all $x \in \Omega \backslash N$, i.e. almost everywhere in Ω.

Now, in order to complete the proof, it is enough following the same arguments developed in the the last part of the proof of $[7$, Lemma 5].

Proposition 4.3. Assume that $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{5}\right)$ and $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{3}\right)$ hold. Then Φ satisfies the $(\mathrm{PS})_{c}$ condition for all $c \in \mathbb{R}$.

Proof. Fixing $c \in \mathbb{R}$, let $\left(u_{n}\right)_{n} \subset W, u_{n}=\left(u_{1, n}, u_{2, n}\right)$, be a $(\mathrm{PS})_{c}$ sequence, so (4.1) holds. Then, from Lemma 4.1 it follows that it is bounded and $u \in W$, $u=\left(u_{1}, u_{2}\right)$, exists such that, passing to a subsequence if necessary, (4.2) holds. Whence,

$$
\begin{equation*}
u_{j, n} \rightarrow u_{j} \quad \text { in } L^{r}(\Omega) \text { for all } 1 \leq r<p_{j}^{*}, j=1,2 \tag{4.8}
\end{equation*}
$$

Now, in order to complete the proof by applying Lemma 4.2, we need (4.5). So, firstly let us remark that (4.4) implies

$$
\begin{equation*}
\int_{\Omega} a\left(x, \nabla u_{1}, \nabla u_{2}\right) \cdot \nabla\left(u_{n}-u\right) d x \rightarrow 0 \tag{4.9}
\end{equation*}
$$

Furthermore, from (4.1) it follows

$$
\begin{align*}
& \int_{\Omega} a\left(x, \nabla u_{1, n}, \nabla u_{2, n}\right) \cdot \nabla\left(u_{n}-u\right) d x=o(1) \tag{4.10}\\
+ & \int_{\Omega} f_{1}\left(x, u_{1, n}, u_{2, n}\right)\left(u_{1, n}-u_{1}\right) d x+\int_{\Omega} f_{2}\left(x, u_{1, n}, u_{2, n}\right)\left(u_{2, n}-u_{2}\right) d x
\end{align*}
$$

We claim that

$$
\begin{equation*}
\int_{\Omega} f_{j}\left(x, u_{1, n}, u_{2, n}\right)\left(u_{j, n}-u_{j}\right) d x \rightarrow 0 \quad \text { for both } j=1 \text { and } j=2 \tag{4.11}
\end{equation*}
$$

In fact, from $\left(\mathrm{F}_{2}\right)$ it follows

$$
\begin{aligned}
& \left|\int_{\Omega} f_{1}\left(x, u_{1, n}, u_{2, n}\right)\left(u_{1, n}-u_{1}\right) d x\right| \\
& \quad \leq \sigma \int_{\Omega}\left(\left|u_{1, n}\right|^{s_{1}-1}\left|u_{1, n}-u_{1}\right|+\left|u_{2, n}\right|^{q_{1}-1}\left|u_{1, n}-u_{1}\right|+\left|u_{1, n}-u_{1}\right|\right) d x
\end{aligned}
$$

where the Cauchy-Schwarz inequality implies
$\int_{\Omega}\left|u_{1, n}\right|^{s_{1}-1}\left|u_{1, n}-u_{1}\right| d x \leq\left(\int_{\Omega}\left|u_{1, n}\right|^{s_{1}} d x\right)^{\left(s_{1}-1\right) / s_{1}}\left|u_{1, n}-u_{1}\right|_{s_{1}}$,
$\int_{\Omega}\left|u_{2, n}\right|^{q_{1}-1}\left|u_{1, n}-u_{1}\right| d x \leq\left(\int_{\Omega}\left|u_{1, n}\right|^{\left(q_{1}-1\right) p_{1} /\left(p_{1}-1\right)} d x\right)^{\left(p_{1}-1\right) / p_{1}}\left|u_{1, n}-u_{1}\right|_{p_{1}}$.
Thus, (4.8) implies (4.11) if $j=1$. Similar arguments allow one to obtain (4.11) also if $j=2$. So, (4.9)-(4.11) imply (4.5), so the conclusion follows from Lemma 4.2.

5. Main results

The main result of this paper can be stated as follows.
Theorem 5.1. If $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{5}\right)$ and $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{4}\right)$ hold, then problem (1.1) has a nontrivial weak solution in W.

Proof. Arguing by contradiction, suppose that the origin is the unique critical point of Φ in W. As in this case (3.1) becomes

$$
C^{q}(\Phi, 0)=H^{q}\left(\Phi^{0} \cap U, \Phi^{0} \cap U \backslash\{0\}\right), \quad q \geq 0
$$

where U is a neighborhood of $(0,0)$ containing no other critical points of Φ, we can take $U=W$ and obtain

$$
C^{q}(\Phi, 0)=H^{q}\left(\Phi^{0}, \Phi^{0} \backslash\{0\}\right), \quad q \geq 0
$$

Since Φ satisfies the $(\mathrm{PS})_{c}$ condition at each level $c \in \mathbb{R}$, by the Deformation Lemma (see [18]) Φ^{a} is a deformation retract of $\Phi^{0} \backslash\{0\}$ for any $a<\Phi(0,0)=0$ and Φ^{0} is a deformation retract of W. Thus, we conclude that

$$
C^{q}(\Phi, 0)=H^{q}\left(W, \Phi^{a}\right) \quad \text { for any } a<0
$$

On the other hand, Lemma 2.13 implies that Φ^{a} is contractible for all $a<a_{0}$. Therefore,

$$
C^{q}(\Phi, 0)=0 \quad \text { for all } q \geq 0
$$

This contradicts Proposition 3.5 and proves the theorem.
Corollary 5.2. If $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{4}\right)$ hold, then system (1.5) has a nontrivial weak solution.

References

[1] Y. Akdim, E. Azroul and A. Benkirane, Existence of solutions for quasilinear degenerate elliptic equations, Electron. J. Differential Equations (2001), 19 pp.
[2] C. O. Alves, D. C. de Morais Filho and M. A. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents, Nonlinear Anal. 42 (2000), 771-787.
[3] D. Arcoya and L. Boccardo, Critical points for multiple integrals of the calculus of variations, Arch. Rational Mech. Anal. 134 (1996), 249-274.
[4] A. Bensoussan and L. Boccardo, Nonlinear systems of elliptic equations with natural growth conditions and sign conditions, (Special issue dedicated to the memory of JacquesLouis Lions), Appl. Math. Optim. 46 (2002), 143-166.
[5] A. Bensoussan, L. Boccardo and F. Murat, On a non linear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 347-364.
[6] L. Boccardo and D. G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl. 9 (2002), 309-323.
[7] L. Boccardo, F. Murat and J.-P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl. 152 (1988), 183-196.
[8] A. M. Candela and G. Palmieri, Infinitely many solutions of some nonlinear variational equation, Calc. Var. Partial Differential Equations 34 (2009), 495-530.
[9] A. M. Candela, G. Palmieri and K. Perera, Nontrivial solutions of some quasilinear problems via a cohomological local splitting, preprint.
[10] K. C. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl., vol. 6, Birkhäuser Boston Inc., Boston, MA, 1993.
[11] F. De Thélin, Première valeur propre d'un systéme elliptique non linéaire, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 603-606.
[12] P. Drábek, M. N. Stavrakakis and N. B. Zographopoulos, Multiple nonsemitrivial solutions for quasilinear elliptic systems, Differential Integral Equations 16 (2003), 15191531.
[13] E. R. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), 139-174.
[14] J. Leray and J. L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107.
[15] K. Perera, Homological local linking, Abstr. Appl. Anal. 3 (1998), 181-189.
[16] , Nontrivial critical groups in p-Laplacian problems via the Yang index, Topol. Methods Nonlinear Anal. 21 (2003), 301-309.
[17] K. Perera, R. P. Agarwal and D. O'Regan, Morse Theoretic Aspects of p-Laplacian Type Operators, Math. Surveys Monogr., vol. 161, Amer. Math. Soc., Providence, RI, 2010.
[18] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986.
[19] E. H. Spanier, Algebraic Topology, Springer-Verlag, New York, 1994, corrected reprint of the 1966 original.
[20] J. VÉlin and F. de Thélin, Existence and nonexistence of nontrivial solutions for some nonlinear elliptic systems, Rev. Mat. Univ. Complut. Madrid 6 (1993), 153-194.

Manuscript received March 10, 2010

Anna Maria Candela and Giuliana Palmieri
Dipartimento di Matematica
Università degli Studi di Bari Aldo Moro
Via E. Orabona 4
70125 Bari, ITALY
E-mail address: candela@dm.uniba.it, palmieri@dm.uniba.it

Everaldo Medeiros

Departamento de Matemática
Universidade Federal da Paraíba 58051-900, João Pessoa - PB, BRAZIL

E-mail address: everaldo@mat.ufpb.br

Kaniskha Perera
Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, FL 32901, USA
E-mail address: kperera@fit.edu

[^0]: 2010 Mathematics Subject Classification. 35J50, 35J92, 47J10, 47J30.
 Key words and phrases. Quasilinear elliptic system, Leray-Lions conditions, subcritical growth, cohomological index, variational approach, p-Laplacian operator.

 Work of the first and the third authors partially supported by M.I.U.R. (research funds ex 40% and 60%).

 Work of the second author partially supported by CNPq Grant 620108/2008-8 and 306977/ 2009-5

