EMBEDDABILITY OF JOINS AND PRODUCTS OF POLYHEDRA

SERGEY A. MELIKHOV

ABSTRACT. We present a short proof of S. Parsa’s theorem that there exists a compact \(n \)-polyhedron \(P \), \(n \geq 2 \), non-embeddable in \(\mathbb{R}^{2n} \), such that \(P \ast P \) embeds in \(\mathbb{R}^{4n+2} \). This proof can serve as a showcase for the use of geometric cohomology. We also show that a compact \(n \)-polyhedron \(X \) embeds in \(\mathbb{R}^m \), \(m \geq 3(n+1)/2 \), if either

- \(X \ast K \) embeds in \(\mathbb{R}^{m+2k} \), where \(K \) is the \((k-1)\)-skeleton of the \(2k\)-simplex; or
- \(X \ast L \) embeds in \(\mathbb{R}^{m+2k} \), where \(L \) is the join of \(k \) copies of the 3-point set; or
- \(X \) is acyclic and \(X \times (\text{triod})^k \) embeds in \(\mathbb{R}^{m+2k} \).

1. Introduction

It was shown by Flores, van Kampen and Grünbaum [9] that every \(n \)-dimensional join of \(k_i \)-skeleta of \((2k_i + 2)\)-simplexes does not embed into \(\mathbb{R}^{2n} \) (see also [11, Examples 3.3, 3.5], [12], [20]). Some other \(k_i \)-polyhedra with this property are constructed in [12].

As noted by S. Parsa [15], it is implicit in a paper by Bestvina, Kapovich and Kleiner [5] that if compact polyhedra \(P^m \) and \(Q^m \) both have non-zero mod 2 van Kampen obstruction, then \(P \ast Q \) does not embed in \(\mathbb{R}^{2(n+m+1)} \). An \(n \)-dimensional polyhedron, non-embeddable in \(\mathbb{R}^{2n} \) but with vanishing mod 2 van Kampen obstruction was constructed by the author for each \(n \geq 2 \) [11], settling

2020 Mathematics Subject Classification. Primary: 57Q35; Secondary: 57N35.

Key words and phrases. Polyhedron; embedding; join; the van Kampen obstruction.