EXISTENCE AND MULTIPLICITY
OF SIGN-CHANGING SOLUTIONS
FOR A SCHRÖDINGER–BOPP–PODOLSKY SYSTEM

LIXIONG WANG — HAIBO CHEN — SENLI LIU

Abstract. In this paper, we deal with the following Schrödinger–Bopp–Podolsky system:

\[
(P_{\varepsilon}) \begin{cases}
-\Delta u + u + \phi u = f(u), \\
-\Delta \phi + \varepsilon^2 \Delta^2 \phi = 4\pi u^2,
\end{cases} \quad \text{in } \mathbb{R}^3,
\]

where \(\varepsilon > 0 \) and \(f \) is a continuous, superlinear and subcritical nonlinearity. By using a perturbation approach and the method of invariant sets of descending flow incorporated with minimax arguments, we prove the existence and multiplicity of sign-changing solutions of system \((P_{\varepsilon})\). Moreover, the asymptotic behavior of sign-changing solutions is also established. Our results mainly extend the results in Liu, Wang and Zhang ([21], Ann. Mat. Pura Appl. 2016).

1. Introduction and main results

In this paper, we are concerned with sign-changing solutions to the following system:

\[
(P_{\varepsilon}) \begin{cases}
-\Delta u + u + \phi u = f(u), \\
-\Delta \phi + \varepsilon^2 \Delta^2 \phi = 4\pi u^2,
\end{cases} \quad \text{in } \mathbb{R}^3,
\]

2020 Mathematics Subject Classification. Primary: 35J20; Secondary: 35J60.

Key words and phrases. Schrödinger–Bopp–Podolsky system; Sign-changing solutions; Perturbation approach; Invariant sets of descending flow; Asymptotic behavior.

The corresponding author was funded by NSF (grant number: 12071486) and the first author is supported by Research Funds for the Central South University (No. 160171019).