POSITIVE LEAST ENERGY SOLUTIONS
FOR COUPLED NONLINEAR CHOQUARD EQUATIONS
WITH HARDY–LITTLEWOOD–SOBOLEV CRITICAL EXPONENT

SONG YOU — QINGXUAN WANG — PEIHAO ZHAO

Abstract. In this paper, we study the existence and nonexistence of positive least energy solutions of the following coupled nonlinear Schrödinger equations with Choquard type nonlinearities:

\begin{align*}
-\Delta u + \nu_1 u &= \mu_1 \left(\frac{1}{|x|^k} \ast u^2 \right) u + \beta \left(\frac{1}{|x|^k} \ast v^2 \right) u, \quad x \in \Omega, \\
-\Delta v + \nu_2 v &= \mu_2 \left(\frac{1}{|x|^k} \ast u^2 \right) v + \beta \left(\frac{1}{|x|^k} \ast u^2 \right) v, \quad x \in \Omega, \\
u, v &\geq 0 \quad \text{in } \Omega, \\
u = v = 0 \quad \text{on } \partial \Omega.
\end{align*}

Here \(\Omega \subset \mathbb{R}^N \) is a smooth bounded domain, \(-\lambda_1(\Omega) < \nu_1, \nu_2 < 0, \lambda_1(\Omega)\) is the first eigenvalue of \((-\Delta, H^k_0(\Omega))\), \(\mu_1, \mu_2 > 0\) and \(\beta \neq 0\) is a coupling constant. We show that the critical nonlocal elliptic system has a positive least energy solution under appropriate conditions on parameters via variational methods. For the case in which \(\nu_1 = \nu_2\), we obtain the classification of the positive least energy solutions. Moreover, the asymptotic behaviors of the positive least energy solutions as \(\beta \to 0\) are studied.

2010 Mathematics Subject Classification. 35J57, 35J30.

Key words and phrases. Coupled Choquard equations; least energy solutions; Hardy–Littlewood–Sobolev critical exponent.

Research supported by the National Natural Science Foundation of China (NSFC 11471147).

623