GLOBAL EXISTENCE FOR REACTION-DIFFUSION SYSTEMS
MODELING IONS ELECTRO-MIGRATION
THROUGH BIOLOGICAL MEMBRANES
WITH MASS CONTROL
AND CRITICAL GROWTH
WITH RESPECT TO THE GRADIENT

Bassam Al-Hamzah — Naj Yerari

Abstract. This paper studies the existence of global weak solutions for
reaction-diffusion systems depending on two main assumptions: the non-
negative of solutions and the total mass of components are preserved with
time, the non-linearities have critical growth with respect to the gradient.
This work is a generalization of the work developed by Alaa and Lefraich [2]
without the presence of the gradient in the kinetic reaction terms.

1. Introduction

Some classes of models of ions migration through biological membranes are
studied by Alaa and Lefraich [2]. Such migrations take place for most living
cells and biochemical processes. As the motion of ions is due to diffusion and
the electrical field, and they undergo reactions, the ions concentrations satisfy
the Nernst–Planck equations, including kinetic reaction terms in the general form
and the potential is given by Poisson equation. The equations of that model can

2010 Mathematics Subject Classification. Primary: 54C40, 14E20; Secondary: 46E25,
20C20.

Key words and phrases. Global solutions; nonlinear parabolic; reaction-diffusion systems;
Schauders fixed point.