The Homology Index and Attractor-Repeller Decompositions

Axel JäNg

Abstract. In a previous work, the author established a nonautonomous Conley index based on the interplay between a nonautonomous evolution operator and its skew-product formulation. This index is refined to obtain a Conley index for families of nonautonomous evolution operators. Different variants such as a categorical index, a homotopy index and a homology index are obtained. Furthermore, attractor-repeller decompositions and connecting homomorphisms are introduced for the nonautonomous setting.

In [4], the author defined a nonautonomous Conley index relying on the interplay between an evolution operator \((\mathcal{A})\) and a skew-product formulation. Isolated invariant sets obtained in the skew-product setting give rise to an index for a related nonautonomous evolution operator.

An important technical detail of defining the index is the class of index pairs under consideration. In [4], index pairs are always obtained in the skew-product formulation. In this paper, it will be proved that, roughly speaking, the same index can be defined using a broader class of index pairs based on the evolution operator instead of the skew-product formulation.

2010 Mathematics Subject Classification. Primary: 37B30, 37B55; Secondary: 34C99, 35B40, 35B41, 35R99.

Key words and phrases. Nonautonomous differential equations; attractor-repeller decompositions; Morse–Conley index theory; nonautonomous Conley index; homology Conley index. (\((\mathcal{A})\) or process.