FINITE-TIME BLOW-UP
IN A QUASILINEAR CHEMOTAXIS SYSTEM
WITH AN EXTERNAL SIGNAL CONSUMPTION

PAN ZHENG — CHUNLAI MU — XUEGANG HU — LIANGCHEN WANG

ABSTRACT. This paper deals with a quasilinear chemotaxis system with an external signal consumption

\[\begin{cases}
 u_t = \nabla \cdot (\varphi(u) \nabla u) - \nabla \cdot (u \nabla v), & (x, t) \in \Omega \times (0, \infty), \\
 \theta = \Delta v + u - g(x), & (x, t) \in \Omega \times (0, \infty),
\end{cases} \]

under homogeneous Neumann boundary conditions in a ball \(\Omega \subset \mathbb{R}^n \), where \(\varphi(u) \) is a nonlinear diffusion function and \(g(x) \) is an external signal consumption. Under suitable assumptions on the functions \(\varphi \) and \(g \), it is proved that there exists initial data such that the solution of the above system blows up in finite time.

2010 Mathematics Subject Classification. 35K40, 35K55, 35B35, 35B40, 92C17.

Key words and phrases. Finite-time blow-up; chemotaxis; external signal consumption.

The first author is partially supported by National Natural Science Foundation of China (Grant Nos: 11601053, 11526042), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No: KJ1500403), the Basic and Advanced Research Project of CQCSTC (Grant No: cstc2015jcyjA00008), and the Doctor Start-up Funding and the Natural Science Foundation of Chongqing University of Posts and Telecommunications (Grant Nos: A2014-25 and A2014-106).

The second author is partially supported by National Natural Science Foundation of China (Grant Nos: 11771062, 11571062), the Basic and Advanced Research Project of CQCSTC (Grant No: cstc2015jcyjBX0007) and the Fundamental Research Funds for the Central Universities (Grant No: 10611CDJXZ238826).

The third author is partially supported by the Basic and Advanced Research Project of CQCSTC (Grant No: cstc2017jcyjBX0037). The fourth author is partially supported by National Natural Science Foundation of China (Grant Nos: 11601052).