REALIZATION OF A GRAPH AS THE REEB GRAPH
OF A MORSE FUNCTION ON A MANIFOLD

ŁUKASZ PATRYK MICHALAK

ABSTRACT. We investigate the problem of the realization of a given graph as the Reeb graph $R(f)$ of a smooth function $f: M \to \mathbb{R}$ with finitely many critical points, where M is a closed manifold. We show that for any $n \geq 2$ and any graph $Γ$ admitting the so-called good orientation there exist an n-manifold M and a Morse function $f: M \to \mathbb{R}$ such that its Reeb graph $R(f)$ is isomorphic to $Γ$, extending previous results of Sharko and Masumoto-Saeki. We prove that Reeb graphs of simple Morse functions maximize the number of cycles. Furthermore, we provide a complete characterization of graphs which can arise as Reeb graphs of surfaces.

1. Introduction

The Reeb graph, denoted by $R(f)$, has been introduced by Reeb [11]. It is defined for a closed manifold M and a smooth function $f: M \to \mathbb{R}$ with finitely many critical points by contracting the connected components of level sets of f. Reeb graphs are widely applied in computer graphics and shape analysis (see [1]).

Sharko [12] and Masumoto–Saeki [8] proved that every graph which admits a good orientation (see Definition 2.2) can be realized as the Reeb graph of a function with finitely many critical points on a surface. This leads to a natural problem:

2010 Mathematics Subject Classification. Primary: 58K05; Secondary: 57M15, 58K65.
Key words and phrases. Reeb graph; critical point; Morse function.
The author was supported by the Polish Research Grant NCN 2015/19/B/ST1/01458.