BLOWUP VERSUS GLOBAL
IN TIME EXISTENCE OF SOLUTIONS
FOR NONLINEAR HEAT EQUATIONS

PIOTR BILER

In memory of Marek Bursztyn

ABSTRACT. This note is devoted to a simple proof of blowup of solutions for a nonlinear heat equation. The criterion for a blowup is expressed in terms of a Morrey space norm and is in a sense complementary to conditions guaranteeing the global in time existence of solutions. The method goes back to H. Fujita and extends to other nonlinear parabolic equations.

1. Introduction

In this paper we consider the Cauchy problem for the simplest example of a semilinear parabolic equation in \mathbb{R}^d, $d \geq 1$, $p > 1$,

\begin{align}
(1.1) & \quad u_t = \Delta u + |u|^{p-1}u, \quad x \in \mathbb{R}^d, \quad t > 0, \\
(1.2) & \quad u(x, 0) = u_0(x).
\end{align}

This problem has been thoroughly studied beginning with [18], [20], [21], and many fine properties of its solutions are known. For the reference, see the extensive monograph [32] and a recent paper [33].

2010 Mathematics Subject Classification. 35B44, 35K55.

Key words and phrases. Nonlinear heat equation; blowup of solutions; global existence of solutions.

The author, partially supported by the NCN grants 2013/09/B/ST1/04412, 2016/23/B/ST1/00434, thanks Ignacio Guerra for interesting conversations leading to revisiting Fujita’s method, Philippe Souplet, Mikołaj Sierżega and the referees for many pertinent remarks.