A VERSION OF KRASNOSEL’SKII’S
COMPRESSION–EXPANSION FIXED POINT THEOREM
IN CONES FOR DISCONTINUOUS OPERATORS
WITH APPLICATIONS

RUBÉN FIGUEROA — RODRIGO LÓPEZ POUSO — JORGE RODRÍGUEZ-LÓPEZ

Abstract. We introduce a new fixed point theorem of Krasnosel’skiǐ type for discontinuous operators. As an application we use it to study the existence of positive solutions of a second-order differential problem with separated boundary conditions and discontinuous nonlinearities.

1. Introduction

A classical problem [11], [12], [14] is that of the existence of positive solutions for the differential equation

\[u''(t) + g(t)f(u(t)) = 0, \quad 0 < t < 1, \]

along with suitable boundary conditions (BCs). This problem arises in the study of radial solutions in \(\mathbb{R}^n, \ n \geq 2 \), for the partial differential equation (PDE)

\[\Delta v + h(\|x\|)f(v) = 0, \quad x \in \mathbb{R}^n, \ \|x\| \in [R_1, R_2], \]

2010 Mathematics Subject Classification. Primary: 34A12, 34A36; Secondary: 34B18, 47H10.

Key words and phrases. Krasnosel’skiǐ fixed point theorem; positive solutions; discontinuous differential equations.

Rodrigo López Pouso was partially supported by Ministerio de Economía y Competitividad, Spain, and FEDER, Project MTM2016-75149-P, and Xunta de Galicia GRC2015/004. Rubén Figueroa and Jorge Rodríguez-López were partially supported by Xunta de Galicia, project EM2014/032.