MAYER–VIETORIS PROPERTY
OF THE FIXED POINT INDEX

HÉCTOR BARGE — KLAUDIUSZ WÓJCIC

ABSTRACT. We study a Mayer–Vietoris kind formula for the fixed point index
of maps of ENR triplets \(f : (X; X_1, X_2) \to (X; X_1, X_2) \) having compact
fixed point set. We prove it under some suitable conditions. For instance
when \((X; X_1, X_2) = (E^n; E^n_0, E^n_0) \).
We use these results to generalize the Poincaré–Bendixson index formula for
vector fields to continuous maps having a sectorial decomposition, to study
the fixed point index \(i(f, 0) \) of orientation preserving homeomorphisms of
\(E^2_+ \) and \((B^3; E^3_1, E^3_0) \) and the fixed point index in the invariant subspace.

1. Introduction

In this paper we will deal with triplets \((X; X_1, X_2) \) where \(X \) is an ENR
and \(X_1, X_2 \) are ENR's closed in \(X \) such that \(X_1 \cap X_2 \) is also an ENR and
\(X = X_1 \cup X_2 \). We will call such triplets \((X; X_1, X_2) \) ENR triplets and we will
denote \(X_0 := X_1 \cap X_2 \). A continuous map \(f : (X; X_1, X_2) \to (X; X_1, X_2) \) of
a triplet is a continuous map \(f : X \to X \) satisfying that
\[
f(X_i) \subset X_i, \quad i = 1, 2.
\]
Notice that \(f(X_0) \subset X_0 \).

We denote
\[
f_i := f|_{X_i} : X_i \to X_i, \quad i = 0, 1, 2.
\]

2010 Mathematics Subject Classification. Primary: 37C25; Secondary: 37B30, 55M25.

Key words and phrases. Fixed point index; Brouwer degree; sectorial decomposition;
proper pair; isolated invariant set.