HÉNON TYPE EQUATIONS
WITH ONE-SIDED EXPONENTIAL GROWTH

JOÃO MARCOS DO Ó — EUDES MENDES BARBOZA — BRUNO RIBEIRO

ABSTRACT. We deal with the following class of problems:
\[
\begin{cases}
-\Delta u = \lambda u + |x|^\alpha g(u^+) + f(x) & \text{in } B_1, \\
u = 0 & \text{on } \partial B_1,
\end{cases}
\]
where B_1 is the unit ball in \mathbb{R}^2, g is a C^1-function in $[0, +\infty)$ which is assumed to be in the subcritical or critical growth range of Trudinger–Moser type and \(f \in L^p(B_1) \) for some \(\mu > 2 \). Under suitable hypotheses on the constant \(\lambda \), we prove existence of at least two solutions to this problem using variational methods. In case of \(f \) radially symmetric, the two solutions are radially symmetric as well.

1. Introduction

In this paper we study the solvability of problems of the type
\[
\begin{cases}
-\Delta u = \lambda u + |x|^\alpha g(u^+) + f(x) & \text{in } B_1, \\
u = 0 & \text{on } \partial B_1,
\end{cases}
\]
where \(\lambda, \alpha \geq 0 \) and \(B_1 = \{ x \in \mathbb{R}^2 : |x| < 1 \} \). Here we assume that \(g \) has the maximum growth which allows us to treat problem (1.1) variationally in

Key words and phrases. Hénon type equation; Ambrosetti–Prodi problem; critical growth.

This work was partially supported by the National Institute of Science and Technology of Mathematics ICNT-Mat, CAPES and CNPq/Brazil.
suitable Sobolev spaces, due to the well-known Trudinger–Moser inequality (see [18], [28]), which, in two dimensions, is given by

\[
\sup_{u \in H^1_0(B_1), \|\nabla u\|_2 = 1} \int_{B_1} e^{\beta u^2} \, dx = \begin{cases} < +\infty & \text{if } \beta \leq 4\pi, \\ = +\infty & \text{if } \beta > 4\pi. \end{cases}
\]

Working with a Hénon type problem in \(H^1_{0,rad}(B_1) \subset H^1_0(B_1)\), we observe that the weight \(|x|^\alpha\) changes this fact. Indeed, one has

\[
\sup_{u \in H^1_{0,rad}(B_1), \|\nabla u\|_2 = 1} \int_{B_1} |x|^\alpha e^{\beta u^2} \, dx = \begin{cases} < +\infty & \text{if } \beta \leq 2\pi(2 + \alpha), \\ = +\infty & \text{if } \beta > 2\pi(2 + \alpha), \end{cases}
\]

see [3] and [8]. Motivated by (1.2)–(1.3), we say that \(g\) has subcritical growth at \(+\infty\) if

\[
\lim_{t \to +\infty} \frac{g(t)}{e^{\beta t^2}} = 0 \quad \text{for all } \beta,
\]

and \(g\) has critical growth at \(+\infty\) if there exists \(\beta_0 > 0\) such that

\[
\lim_{t \to +\infty} \frac{g(t)}{e^{\beta t^2}} = 0 \quad \text{for all } \beta > \beta_0; \quad \lim_{t \to +\infty} \frac{g(t)}{e^{\beta t^2}} = +\infty \quad \text{for all } \beta < \beta_0.
\]

1.1. Hypotheses. Before stating our main results, we shall introduce the following assumptions on the non-linearity \(g\):

\(g_0\) \(g \in C(\mathbb{R}, \mathbb{R}^+), \ g(s) = 0 \ \text{for all } s \leq 0. \)

\(g_1\) \ The exist \(s_0 > 0\) such that

\[0 < G(s) = \int_0^s g(t) \, dt \leq Mg(s) \quad \text{for all } s > s_0.\]

\(g_2\) \(|g(s)| = o(|s|) \text{ when } |s| \to 0. \)

Following the well-established notation in the present literature, we denote by \(\lambda_1 < \lambda_2 \leq \ldots \leq \lambda_j \leq \ldots\) the sequence of eigenvalues of \((-\Delta, H^1_0(B_1))\), and by \(\phi_j\) a \(j\)th eigenfunction of \((-\Delta, H^1_0(B_1))\).

We observe that, using assumption \((g_0)\), one can see that \(\psi\) is a non-positive solution to (1.1) if and only if it is a non-positive solution to the linear problem

\[
\begin{cases}
-\Delta \psi = \lambda \psi + f(x) & \text{in } B_1, \\
\psi = 0 & \text{on } \partial B_1.
\end{cases}
\]

In order to get such solutions to (1.6), let us assume that

\(f_1\) \(f(x) = h(x) + t\phi_1(x), \) where \(h \in L^\mu(B_1), \mu > 2\) and \(\int_{B_1} h \phi_1 \, dx = 0. \)

For that matter, the parameter \(t\) plays a crucial role. We shall use this hypothesis in the first theorem of this paper.