NONLINEAR DELAY REACTION-DIFFUSION SYSTEMS
WITH NONLOCAL INITIAL CONDITIONS
HAVING AFFINE GROWTH

MONICA-DANA BURLICA — DANIELA ROSU

(Submitted by W. Kryszewski)

ABSTRACT. We consider a class of abstract evolution reaction-diffusion systems with delay and nonlocal initial data of the form

\[
\begin{cases}
 u'(t) \in Au(t) + F(t, u_t, u_{\tau_1}) & \text{for } t \in \mathbb{R}_+,
 \\
 v'(t) \in Bv(t) + G(t, u_t, u_{\tau_2}) & \text{for } t \in \mathbb{R}_+,
 \\
 u(t) = p(u, v)(t) & \text{for } t \in [-\tau_1, 0],
 \\
 v(t) = q(u, v)(t) & \text{for } t \in [-\tau_2, 0],
\end{cases}
\]

where \(\tau_i > 0, i = 1, 2 \), \(A \) and \(B \) are two m-dissipative operators acting in two Banach spaces, the perturbations \(F \) and \(G \) are continuous, while the history functions \(p \) and \(q \) are nonexpansive functions with affine growth. We prove an existence result of \(C^0 \)-solutions for the above problem and we give an example to illustrate the effectiveness of our abstract theory.

1. Introduction

Let \(X, Y \) be Banach spaces, \(\tau_1, \tau_2 \geq 0 \), and let \(A: D(A) \subseteq X \rightharpoonup X \) and \(B: D(B) \subseteq Y \rightharpoonup Y \) be m-dissipative operators. Our paper is devoted to provide

2010 Mathematics Subject Classification. Primary: 34G25, 34K30; Secondary: 35K55, 35K57, 47H06.

Key words and phrases. Differential delay evolution systems; nonlocal delay initial condition; metric fixed point arguments; nonlinear reaction-diffusion systems.

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0052.

371
an existence result for C^0-solutions to the next reaction-diffusion system with delay and nonlocal initial conditions:

\[
\begin{aligned}
 u'(t) &\in Au(t) + F(t, u_t, u_t) \quad \text{for } t \in \mathbb{R}_+,
 \\
v'(t) &\in Bu(t) + G(t, u_t, u_t) \quad \text{for } t \in \mathbb{R}_+,
 \\
u(t) & = p(u, v)(t) \quad \text{for } t \in [-\tau_1, 0],
 \\
v(t) & = q(u, v)(t) \quad \text{for } t \in [-\tau_2, 0],
\end{aligned}
\]

(1.1)

where the perturbations $F: \mathbb{R}_+ \times C([-\tau_1, 0]; \overline{D(A)}) \times C([-\tau_2, 0]; \overline{D(B)}) \to X$ and $G: \mathbb{R}_+ \times C([-\tau_1, 0]; \overline{D(A)}) \times C([-\tau_2, 0]; \overline{D(B)}) \to Y$ are continuous and the initial data $p: C_b([0, +\infty); \overline{D(A)}) \times C_b([0, +\infty); \overline{D(B)}) \to C([0, 0]; X)$ and $q: C_b([0, +\infty); \overline{D(A)}) \times C_b([0, +\infty); \overline{D(B)}) \to C([0, 0]; Y)$ are non-expansive functions with affine growth.

Partial differential equations with nonlocal initial conditions arise in many areas of applied mathematics and represent mathematical models of various phenomena. See Deng [18] and McKibben [25]. The study for nonlocal Cauchy problems without delay was initiated by Byszewski [15] (in the semilinear case), and subsequently it has been developed by many authors. We mention here some significant contributions to the field: Aizicovici and Lee [1], Aizicovici and McKibben [2], García-Falset [21], García-Falset and Reich [22], Cardinali, Precup and Rubbiioni [16] in the single-valued case, Aizicovici and Staicu [3], Paicu and Vrabie [32], Zhu and Li [43] in the multi-valued case. Nica [31] proved the existence of the solutions for nonlinear first order differential systems with nonlocal conditions. These results were extended by Bolotan-Nica, Infante and Precup [7] to differential systems with nonlinear and nonlocal boundary conditions. For delay evolution equations with local initial conditions see Mitidieri and Vrabie [26], [27], Necula and Popescu [28], and the references therein. As far as nonlocal initial conditions are concerned, we mention the papers Burlică and Roşu [11], Burlică, Roşu and Vrabie [13], Necula, Popescu and Vrabie [29], Vrabie [37]-[41], Wang and Zhu [42]. For parabolic systems with nonlinear, nonlocal initial conditions we mention the paper of Infante and Maciøjewski [24]. Concerning the reaction-diffusion systems without delay see: Burlică [8], Burlică and Roşu [9], [10], Díaz and Vrabie [19], Necula and Vrabie [30], Roşu [33], [34]. Existence results for reaction-diffusion systems with delay and nonlocal initial conditions were obtained in Burlică, Roşu and Vrabie [14] for the single-valued case and by Burlică and Roşu [12] for the multi-valued case. The present work complements Burlică, Roşu and Vrabie [14] by allowing the nonlocal initial constraint function p to have affine instead of linear growth with respect to the first argument and q to obey the same property with respect to its second variable. Moreover, we allow the unknown functions to have different delays, τ_1 and τ_2. Our general assumptions include reaction-diffusion systems in which one or both