STUDY OF A LOGISTIC EQUATION
WITH LOCAL AND NON-LOCAL REACTION TERMS

MANUEL DELGADO — GIOVANY M. FIGUEIREDO
MARCOS T.O. PIMENTA — ANTONIO SUÁREZ

(Submitted by J. Mawhin)

Abstract. We examine a logistic equation with local and non-local reaction terms both for time dependent and steady-state problems. Mainly, we use bifurcation and monotonicity methods to prove the existence of positive solutions for the steady-state equation and sub-supersolution method for the long time behavior for the time dependent problem. The results depend strongly on the size and sign of the parameters on the local and non-local terms.

1. Introduction

In this paper we study the non-local parabolic problem

\[
\begin{cases}
 u_t - \Delta u = u \left(\lambda + b \int_{\Omega} u^r \, dx - u \right) & \text{in } \Omega \times (0, \infty), \\
 u = 0 & \text{on } \partial \Omega \times (0, \infty), \\
 u(x, 0) = u_0(x) \geq 0 & \text{in } \Omega,
\end{cases}
\]

2010 Mathematics Subject Classification. Primary: 35R09, 45K05; Secondary: 35J60, 35K35, 35A25.

Key words and phrases. Logistic equation; local and non-local terms; bifurcation methods.

M. Delgado and A. Suárez were supported by FEDER and Ministerio de Economía y Competitividad (Spain) under grant MTM2012-31304.

G. Figueiredo was supported by CNPQ/PQ 301242/2011-9 and 200237/2012-8.

M. Pimenta was supported by FAPESP, Brazil, 2012/20160-0 and 2014/16136-1 and CNPQ 442520/2014-0.

693
and the corresponding steady-state problem

\begin{equation}
\begin{aligned}
-\Delta u &= u(\lambda + b \int_\Omega u' dx - u) \quad \text{in } \Omega, \\
u &= 0 \quad \text{on } \partial \Omega,
\end{aligned}
\end{equation}

where \(\Omega \subset \mathbb{R}^N \) is a bounded and smooth domain, \(\lambda, b \in \mathbb{R}, \ r > 0 \) and \(u_0 \) is a regular positive function. In (1.1), \(u(x,t) \) represents the density of a species in time \(t > 0 \) and a habitat surrounded by inhospitable areas at the point \(x \in \Omega \). Here, \(\lambda \) is the growth rate of species, the term \(-u\) describes the limiting effect of crowding in the population, that is, the competition of individuals of species for resources of the environment. In (1.1) we have included a non-local term with different meanings. When \(b < 0 \) we are assuming that this limiting effect depends not only on the value of \(u \) at the point \(x \), but on the value of \(u \) in the whole domain. When \(b > 0 \) individuals cooperate globally to survive. When \(b = 0 \), (1.1) is the classical logistic equation.

Observe that when \(b > 0 \), problem (1.1) can be regarded as a superlinear indefinite problem with non-local superlinear term, similar to the classical superlinear problem

\begin{equation}
\begin{aligned}
u_t - \Delta u &= u(\lambda + ba^+ u' - a^- u') \quad \text{in } \Omega \times (0, \infty), \\
u &= 0 \quad \text{on } \partial \Omega \times (0, \infty), \\
u(x,0) &= u_0(x) \geq 0 \quad \text{in } \Omega,
\end{aligned}
\end{equation}

where \(a \in C^1(\Omega), \ a^+ := \max\{a(x), 0\}, \ a^- := \max\{-a(x), 0\} \). The latter has been studied in detail in [14], [15], [17], see also references therein. This class of local problems has been considered also with other boundary conditions, for example, non-homogeneous Dirichlet boundary conditions, see [9] and [18], where multiplicity results are shown. We do not consider the non-local counterpart in this paper.

The introduction of non-local terms in the equation and in the boundary conditions has shown to be useful for modelling a number of processes in different fields such as mathematical physics, mechanics of deformable solids, mathematical biology and many others. For examples of its application in population dynamics, see, for instance, [8], [7] and [11].

Let us summarize our main results. Denote by \(\lambda_1 \) the principal eigenvalue of the Laplacian subject to homogeneous Dirichlet boundary conditions and by \(\varphi_1 \) the positive eigenfunction associated to \(\lambda_1 \) such that \(\| \varphi_1 \|_\infty = 1 \).

Regarding parabolic problem (1.1), first we prove the existence and uniqueness of positive local in time solution. Next, we analyze the long time behaviour of the solution. In particular:

1. If \(b < 0 \) the solution of (1.1) is global in time and bounded. Moreover, the solution goes to zero as \(\lambda < \lambda_1 \).