
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 34, 2009, 353–373

THE R∞ PROPERTY FOR INFRA-NILMANIFOLDS

Karel Dekimpe — Bram De Rock — Pieter Penninckx

Abstract. In this paper, we investigate the finiteness of the Reidemeister
number R(f) of a selfmap f : M → M on an infra-nilmanifold M . We

show that the Reidemeister number of an Anosov diffeomorphism on an

infra-nilmanifold is always finite. A manifold M is said to have the R∞
property if R(f) =∞ for every homeomorphism f : M →M . We show that

every non-orientable generalised Hantzsche–Wendt manifold has the R∞
property. For an orientable Hantzsche–Wendt manifold M , we formulate
a criterion, in terms of an associated graph, for M to have the R∞ property.

1. Introduction

To a continuous map f :M → M on a closed manifold M , three numbers
are assigned that are of particular interest in fixed point theory: the Lefschetz
number L(f), the Nielsen number N(f) and the Reidemeister number R(f).
The Nielsen number N(f) holds the most information on the fixed points of f ,
but is the hardest to calculate. In order to express the Nielsen number in terms
of the Lefschetz number and the Reidemeister number, relations between these
numbers have been extensively studied.
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A closed manifold M is said to be a Jiang-type space if

(1.1) N(f) =

{
0 if L(f) = 0,

R(f) if L(f) 6= 0,
for all continuous maps f :M →M.

Note that nilmanifolds are Jiang-type spaces. Indeed, for any selfmap f :M →M

on a nilmanifold, N(f) = |L(f)| by Anosov [1] and L(f) 6= 0 implies N(f) =
R(f) by [17].

In the light of the relation (1.1), the finiteness of the Reidemeister number is
important. Indeed, if the Reidemeister number is infinite, the Nielsen number,
which is always finite, cannot equal the Reidemeister number. As a complement
to the relation (1.1), Wong defines the R∞ property:

Definition 1.1. A manifold M has the R∞ property if R(f) = ∞ for every
homeomorphism f :M →M .

Since the Reidemeister number can be defined at the level of the fundamental
group, the R∞ property can be studied at the level of the fundamental group as
well. This has been done for a large and growing number of classes of manifolds
(see for instance [20] and the references therein).

In this article, we search for classes of infra-nilmanifolds that have the R∞
property. As a first step, we give a criterion for the finiteness of the Reidemeister
number of a given selfmap on an infra-nilmanifold. We obtain that an infra-
nilmanifold that admits an Anosov diffeomorphism cannot have the R∞ property
since we show that the Reidemeister number of an Anosov diffeomorphism on
an infra-nilmanifold is always finite. For closed flat manifolds, the holonomy
representation determines the existence of an Anosov diffeomorphism ([18]). This
guides us to a condition on the holonomy representation of a closed flat manifold
M under which M has the R∞ property.

The generalised Hantzsche–Wendt manifolds (or GHW manifolds for short)
form a well described class of infra-nilmanifolds for which we obtain precise
results. We show that a non-orientable GHW manifold always has the R∞
property. The orientable Hantzsche-Wendt manifolds (or HW manifold for short)
are studied by Miatello and Rossetti in [16], where a graph is associated to an
HW manifold that is in “standard form” (see Section 2.4). Since every HW
manifold is homeomorphic to one in standard form, we can formulate, in terms
of an associated graph, a criterion for an HW manifold to have the R∞ property.
To be precise, we show that an HW manifold M does not have the R∞ property
if and only if M is homeomorphic to an HW manifold of which the associated
graph is circulant.
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2. Preliminaries

In this section, we introduce the basic notions needed for the formulation of
the results. For more information on the Lefschetz number, the Nielsen number
and the Reidemeister number, we refer to [3], [7], [10], [11]. For more information
on infra-nilmanifolds, we refer to [4].

2.1. Lefschetz number, Reidemeister number and Nielsen num-
ber. Let f :M →M be a continuous map on a closed manifoldM . The Lefschetz
number L(f) is defined by

L(f) =
∑
i

(−1)i Trace(f∗ : Hi(M,Q) → Hi(M,Q)).

This number is of interest in fixed point theory since L(f) 6= 0 implies that f
has a fixed point. Because the Lefschetz number is invariant under homotopy,
L(f) 6= 0 implies that any map homotopic to f has a fixed point.

The Reidemeister number can be defined at the level of the fundamental
group. The continuous map f :M →M induces a morphism f]:π1(M) → π1(M)
on the fundamental group π1(M) of M . We say that two elements α, β ∈ π1(M)
are f]-conjugated if there exists γ ∈ π1(M) such that β = γαf](γ)−1. The f]-
conjugacy class {γαf](γ)−1 | γ ∈ π1(M)} of α is called a Reidemeister class of f .
The number of Reidemeister classes is called the Reidemeister number R(f) of f .

Nielsen’s approach to estimate the number of fixed points of f is of a more
geometric nature. Let M̃ be the universal covering space of M and let p: M̃ →M

be the covering map. We define an equivalence relation on the set of lifts of f :
two lifts f̃a and f̃ b are equivalent if and only if there is a covering transformation
γ: M̃ → M̃ such that f̃ b = γ ◦ f̃a ◦ γ−1. The equivalence classes are called lifting
classes. The number of lifting classes equals the Reidemeister number. A lifting
class [f̃ ] containing a lift f̃ gives rise to a so called fixed point class p(Fix(f̃)).
To every fixed point class, an integer index is assigned. When this index differs
from zero, we call the fixed point class essential. The Nielsen number N(f) is
by definition the number of essential fixed point classes of f . The interest in the
Nielsen number arises from the fact that N(f) is a lower bound of the number
of fixed points of f . Because the Nielsen number is invariant under homotopy,
every map homotopic to f has at least N(f) fixed points.

2.2. Infra-nilmanifolds. Let G be a connected, simply connected, nilpo-
tent Lie group of dimension n. We denote by Endo(G) the semigroup of all
endomorphisms of G. The semigroup Endo(G) acts naturally on G and contains
Aut(G) as a subgroup. We use aff(G) to denote the semigroup G o Endo(G),
which is G×Endo(G) as a set, with multiplication defined by (d1, D1)(d2, D2) =
(d1D1(d2), D1D2). An element (d,D) of aff(G) is called an affine endomorphism
of G and it maps g ∈ G to dD(g). We can think of multiplication in aff(G) as
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composition of maps. When D is an automorphism of G (that is D ∈ Aut(G)),
an affine endomorphism (d,D) is invertible as a selfmap on G and as an ele-
ment of the semigroup aff(G). We use Aff(G) to denote the invertible affine
endomorphisms of G, it equals Go Aut(G) and is a subgroup of aff(G).

An almost-crystallographic group Γ is a subgroup of Aff(G) such that its
subgroup of pure translations Γ ∩ G is a uniform lattice of G and Γ ∩ G is of
finite index in Γ. We obtain an action of an almost-crystallographic group Γ on
G by restricting the action of Aff(G) on G to an action of Γ on G. Then the orbit
space Γ \G is compact. When Γ is torsion free, we call Γ an almost-Bieberbach
group and then the orbit space Γ \G is a closed differentiable manifold; we call
it an infra-nilmanifold. The fundamental group π1(Γ\G) of an infra-nilmanifold
Γ\G is isomorphic to the corresponding almost-Bieberbach group Γ; in fact G is
the universal covering space of Γ \G and the group of covering transformations
is exactly Γ. When an almost-Bieberbach group Γ lies in G, we call Γ \ G
a nilmanifold.

When G = Rn, we refer to almost-crystallographic and almost-Bieberbach
groups as (n-dimensional) crystallographic and Bieberbach groups, respectively.
When Γ is a Bieberbach group, Γ \ Rn is a closed flat manifold. All closed flat
manifolds can be obtained in this way.

For an almost-crystallographic group Γ, the finite quotient Γ/(Γ ∩G) is iso-
morphic to the group

F = {A ∈ Aut(G) | ∃ a ∈ G : (a,A) ∈ Γ},

which we call the holonomy group of Γ. By taking differentials, we obtain a mor-
phism ρ:F → Aut(g), where g is the Lie algebra associated to G. By fixing
a basis for g, we obtain a faithful representation

ρ:F → GLn(R),

which we call the holonomy representation of Γ. Because of the choice of a basis,
this representation is determined up to similarity.

If Γ is a crystallographic group, F is a subgroup of Aut(Γ∩Rn) and Γ∩Rn is
isomorphic to Zn. Then we will always choose a Z-module basis of Γ∩Rn as the
basis of g = Rn and then ρ:F → GLn(Z). If Γ∩Rn = Zn, we will always choose
the standard Z-module basis of Zn as the basis of g = Rn. Using this basis, we
may then identify a linear map L: Rn → Rn with the corresponding matrix.

By the holonomy group and holonomy representation of an infra-nilmanifold,
we mean the holonomy group and holonomy representation of the associated
almost-Bieberbach group. The holonomy representation holds a lot of informa-
tion about the infra-nilmanifold. For instance, the holonomy representation of
an infra-nilmanifold determines its orientability (see [2, p. 221] and [4, p. 135]):
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Proposition 2.1. Let M be an infra-nilmanifold with holonomy group F

and holonomy representation ρ:F → GLn(R). Then M is orientable if and only
if det(ρ(A)) = 1 for every A ∈ F .

2.3. Linearisation of maps on infra-nilmanifolds. Let Γ be an almost-
Bieberbach group and f :M →M a continuous map on the corresponding infra-
nilmanifold M = Γ \ G. Then G is the universal covering space of M . Let
h:G → G be a continuous map. We say that h induces f if h is a lift of f . We
say that h is a homotopy lift of f if h is the lift of a map homotopic to f . In [14],
K. B. Lee proves the following theorem:

Theorem 2.2. Every continuous map on an infra-nilmanifold has a homo-
topy lift that is an affine endomorphism.

If f is a homeomorphism, a homotopy lift (d,D) of f is an invertible affine
endomorphism: (d,D) ∈ Aff(G); moreover, (d,D) belongs to the normaliser
NAff(G)(Γ) of Γ in Aff(G).

2.4. Generalised Hantzsche–Wendt manifolds. An n-dimensional clo-
sed flat manifold M of which the holonomy group is isomorphic to Zn−1

2 is
called a generalised Hantzsche–Wendt manifold or GHW manifold for short.
For simplicity, we identify the holonomy group with Zn−1

2 . The corresponding
Bieberbach group Γ is called a GHW group. When M is orientable, we call M
a Hantzsche–Wendt manifold or an HW manifold for short. We call the corre-
sponding Bieberbach group an HW group. It is well known (see [19, p. 1056])
that HW manifolds only exist in odd dimensions.

In [19], Rossetti and Szczepański prove that all GHW groups Γ are diago-
nisable: there exists a Z-module basis of Γ ∩ Rn such that with respect to that
basis, ρ(x) is a diagonal matrix for all x ∈ Zn−1

2 , where ρ: Zn−1
2 → GLn(Z) is

the holonomy representation.
Let us now shortly recall some results from Miatello and Rossetti’s article [16].

We say that an HW group is in standard form if it is generated by Zn and
(b1, B1), . . . , (bn, Bn), where Bi is the diagonal matrix with a 1 on the i-th
place of the diagonal and −1 on the other places of the diagonal and where
bi = (bi,1, . . . , bi,n) ∈ {0, 1/2}n and bi,i = 1/2 for i = 1, . . . , n. Every HW group
is isomorphic to an HW group in standard form. To an HW group in standard
form, we associate a graph (V,E) with points V = {1, . . . , n} and arrows E,
where (i, j) ∈ E (that is: there is an arrow from i to j) if and only if bj,i 6= 0 and
j 6= i. By a graph (V,E) we mean a simple directed graph consisting of a set of
vertices or points V and a set of edges or arrows E ⊂ V ×V such that (v, v) 6∈ E
for every v ∈ V . We say that two graphs (V1, E1) and (V2, E2) are isomorphic
or equivalent when there exists a bijection f :V1 → V2 such that for all v, w ∈ V1
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we have that (f(v), f(w)) ∈ E2 if and only if (v, w) ∈ E1. Miatello and Rossetti
prove the following theorems:

Theorem 2.3. Let n be an odd natural number. A graph (V,E) with vertices
V = {1, . . . , n} is the graph associated to an HW group in standard form if and
only if both of the following statements hold.

(a) The number of arrows starting from each point is odd.
(b) For every odd order proper subset V of V , there exists v ∈ V such that

the number of arrows from v to points in V is even.

Theorem 2.4. Let Γ1, respectively Γ2, be HW groups in standard form with
associated graphs (V1, E1), respectively (V2, E2). Then Γ1 and Γ2 are isomorphic
if and only if (V1, E1) is equivalent to the complement of (V2, E2) relative to
a subset V of V2.

Recall that the complement (V,E′) of a graph (V,E) relative to a set V ⊂ V

is defined by

E′ = {(v, w) ∈ V × V | v 6= w and (v, w) 6∈ E if and only if v ∈ V}.

3. The finiteness of the Reidemeister number
of a continuous selfmap on an infra-nilmanifold

In this section, we give a criterion for the finiteness of the Reidemeister
number R(f) of a given continuous selfmap f on an infra-nilmanifold. In order
to prove this criterion, we need the following two lemmas.

Lemma 3.1. Let M be an infra-nilmanifold with associated almost-Bieber-
bach group Γ. Let f :M → M be a continuous map. Suppose that f̃ = (d,D) ∈
aff(G) is a lift of f . Then there exists a finite index subgroup Λ of Γ such that
Λ \G is a nilmanifold N and we have covering maps p:N →M and p′:G→ N

and a continuous map f :N → N such that the diagram

(3.1)

G
ef=(d,D)

//

p′

  
BB

BB
BB

BB

p

��

G
p′
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}}

p
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N
f
//

p
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}}
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N
p

  
BB

BB
BB
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M
f

// M

commutes, where p:G → M is the natural covering map. Additionally, for any
covering transformation α:G → G of the covering p:G → M (that is, for every



The R∞ Property for Infra-Nilmanifolds 359

α ∈ Γ), there exists a covering transformation ϕ(α):N → N such that the
diagram

G
α ef

//

p′

  
BB

BB
BB

BB

p

��

G
p′

~~}}
}}

}}
}}

p

��

N
ϕ(α)f

//

p

~~}}
}}

}}
}}

N
p

  
BB

BB
BB

BB

M
f

// M

commutes. Moreover, for all α = (a,A) ∈ Γ, we have that

L(ϕ(α)f) = det(1− (AD)∗),

where 1 denotes the identity matrix and (AD)∗ is the Lie algebra morphism
induced by AD.

Proof. Most of this lemma follows from the proof of [13, Lemma 3.2]. For
the readers convenience, we recall the main steps.

Let Λ be the subgroup of Γ generated by {αk | α ∈ Γ}, where k is the order of
the holonomy group. Then by [13, Lemma 3.1], Λ is a finite index fully invariant
subgroup of Γ, the quotient space N = Λ\G is a nilmanifold and we have natural
covering maps p:N →M and p′:G→ N and a continuous map f :N → N such
that the diagram (3.1) commutes.

The second statement follows by defining ϕ(α):N → N : Λ · x 7→ Λ · α(x) for
any covering transformation α:G→ G of the covering p:G→M .

Let α = (a,A) ∈ Γ be a covering transformation. Then ϕ(α)f :N → N

induces a morphism (ϕ(α)f)]:π1(N) → π1(N) on the fundamental group. Iden-
tifying π1(N) with Λ, one can prove that

(ϕ(α)f)] = (µ(aA(d)) ◦AD)|Λ,

where by µ(aA(d)):G → G:x 7→ aA(d)x(aA(d))−1 we denote conjugation by
aA(d). It follows that ϕ(α)f is homotopic to the map ψ:N → N induced by
µ(aA(d)) ◦AD:G→ G. By Anosov’s article [1],

L(ϕ(α)f) = det(1− (µ(aA(d)) ◦AD)∗).

By [13, Lemma 3.2], det(1 − (µ(aA(d)) ◦ AD)∗) = det(1 − (AD)∗). Hence
L(ϕ(α)f) = det(1− (AD)∗). �

Lemma 3.2. Let M be an infra-nilmanifold with holonomy representation
ρ:F → GLn(R). Let f :M → M be a continuous map with homotopy lift f̃ =
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(d,D) ∈ aff(G). Then there exists a non-essential fixed point class of f (i.e.
N(f) 6= R(f)) if and only if there exists A ∈ F such that det(1− (AD)∗) = 0.

Proof. Without loss of generality, we may assume that f is induced by the
homotopy lift f̃ = (d,D). Let Λ, N , f and ϕ be as in the previous lemma and
let Γ be the almost-Bieberbach group associated to M .

Suppose det(1 − (AD)∗) = 0 for an element A of the holonomy group F .
Choose α = (a,A) ∈ Γ. Then

N(ϕ(α)f) = ±L(ϕ(α)f) = ±det(1− (AD)∗) = 0.

Hence p′(Fix(αf̃)) is a non-essential fixed point class of ϕ(α)f . By [12, Re-
mark 2.7], p(Fix(αf̃)) is a non-essential fixed point class of f .

Conversely suppose det(1 − (AD)∗) 6= 0 for all A ∈ F . Choose a fixed
point class F of f . Then F = p(Fix(αf̃)) for an α = (a,A) ∈ Γ. Because N is
a Jiang-type space and L(ϕ(α)f) = det(1− (AD)∗) 6= 0, we have that

N(ϕ(α)f) = R(ϕ(α)f)

and every fixed point class of ϕ(α)f is essential. Hence also p′(Fix(αf̃)) is an
essential fixed point class of ϕ(α)f . By [12, Remark 2.7], the fixed point class
F = p(Fix(αf̃)) is essential. �

These two lemmas allow us to prove the following theorem.

Theorem 3.3. Let M be an infra-nilmanifold with holonomy representation
ρ:F → GLn(R). Let f :M → M be a continuous map with homotopy lift f̃ =
(d,D). Then the following statements are equivalent:

(a) R(f) = ∞.
(b) There exists A ∈ F such that det(1− (AD)∗) = 0.

Proof. We may assume that f is induced by the homotopy lift f̃ = (d,D).
Let Λ, N , f and ϕ be as in Lemma 3.1 and let Γ be the almost-Bieberbach group
associated to M .

Suppose that R(f) = ∞. Because N(f) < ∞, we have that R(f) 6= N(f).
By the previous lemma, there exists A ∈ F such that det(1− (AD)∗) = 0.

Conversely suppose there exists A ∈ F such that det(1−(AD)∗) = 0. Choose
α = (a,A) ∈ Γ. Then L(ϕ(α)f) = det(1 − (AD)∗) = 0. By [8, Lemma 1], we
have that R(ϕ(α)f) = ∞. Now the map

ψ: {lifting classes of ϕ(α)f} → {lifting classes of f}: [λαf̃ ]Λ 7→ [λαf̃ ]Γ

is well defined, where [λαf̃ ]Λ is the lifting class of ϕ(α)f that contains λαf̃
(where λ ∈ Λ) and where [λαf̃ ]Γ is the lifting class of f containing λαf̃ . To
show that R(f) = ∞, it suffices to prove that any lifting class [λαf̃ ]Γ of f has at
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most [Γ: Λ] preimages under ψ. Choose λ ∈ Λ and suppose for a contradiction
that

ψ([λ1αf̃ ]Λ) = . . . = ψ([λ[Γ:Λ]αf̃ ]Λ) = ψ([λ[Γ:Λ]+1αf̃ ]Λ) = [λαf̃ ]Γ

for mutual distinct lifting classes [λ1αf̃ ]Λ, . . . , [λ[Γ:Λ]+1αf̃ ]Λ of ϕ(α)f , where
λ1, . . . , λ[Γ:Λ]+1 ∈ Λ. For i = 1, . . . , [Γ : Λ] + 1, because the lifting classes
[λiαf̃ ]Γ and [λαf̃ ]Γ equal, there exists αi ∈ Γ such that λiαf̃ = αiλαf̃α

−1
i . By

the pigeonhole principle, there exist i, j such that i 6= j but αi = µαj for some
µ ∈ Λ. Then

λiαf̃ = αiλαf̃αi
−1 = µαjλαf̃αj

−1µ−1 = µλjαf̃µ
−1,

a contradiction with the fact that [λiαf̃ ]Λ and [λjαf̃ ]Λ are different lifting classes
of ϕ(α)f . We see that [λαf̃ ]Γ has at most [Γ : Λ] preimages. �

Remark 3.4. The implication (a) ⇒ (b) is also stated for coincidences in
[9, Theorem 2.4] in terms of the Lefschetz coincidence numbers of lifts to a nil-
covering.

4. Relation with Anosov diffeomorphisms

In this section we prove that the Reidemeister number of an Anosov diffeo-
morphism on an infra-nilmanifold is always finite. Porteous [18] proves that the
existence of an Anosov diffeomorphism on a closed flat manifold M is deter-
mined by the holonomy representation of M . Let us first recall the definition of
an Anosov diffeomorphism and a useful result.

Definition 4.1. A C1 diffeomorphism f :M →M on a closed differentiable
manifold M is an Anosov diffeomorphism if and only if there exists a continuous
df -invariant splitting TM = Es ⊕ Eu of the tangent bundle TM of M such
that for any Riemannian metric ‖ · ‖ on M , there exist real constants c > 0 and
λ ∈ (0, 1) such that for all positive integers n we have that

‖dfn(v)‖ ≤ cλn‖v‖ for all v ∈ Es and

‖dfn(v)‖ ≥ cλ−n‖v‖ for all v ∈ Eu.

Lemma 4.2 ([15], [6, Lemma 2.1]). Let f :M →M be an Anosov diffeomor-
phism on an infra-nilmanifold M . Then f has a homotopy lift (d,D), where D∗
has no eigenvalue of modulus 1.

Proposition 4.3. Let M be an infra-nilmanifold and suppose there exists
a homeomorphism f :M → M with homotopy lift (d,D) such that D∗ has no
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eigenvalue that is a root of unity. Then R(f) <∞ and M does not have the R∞
property.

Proof. Let Γ be the almost-Bieberbach group associated to M . We may
assume that f is induced by the homotopy lift (d,D).

Suppose for a contradiction that R(f) = ∞. Then by Theorem 3.3, there
exists A in the holonomy group F such that (AD)∗ has eigenvalue 1. Because f
is a homeomorphism, (d,D) belongs to the normaliser NAff(G)(Γ) of Γ in Aff(G).
Hence D ∈ NAut(G)(F ). Now the centraliser CAut(G)(F ) is a normal subgroup
of the normaliser NAut(G)(F ) and the quotient is isomorphic to a subgroup of
Aut(F ). Because Aut(F ) is finite, there exists k ∈ N \ {0} such that Dk ∈
CAut(G)(F ). There exists A′ ∈ F such that (AD)k = A′Dk. Now pick P ∈
GLn(C) such that PA′∗P

−1 and PDk
∗P

−1 are upper triangular matrices. Because
((AD)∗)k = A′∗D

k
∗ has eigenvalue 1, there exists an eigenvalue λ of A′∗ and an

eigenvalue µ of Dk
∗ such that λµ = 1. Because A′∗ is a torsion element in GLn(R),

λ is a root of unity and hence also µ is a root of unity. We see that Dk
∗ and

hence also D∗ has an eigenvalue that is a root of unity, a contradiction. �

Corollary 4.4. Let M be an infra-nilmanifold and suppose there exists an
Anosov diffeomorphism f :M → M . Then R(f) < ∞ and M does not have the
R∞ property.

This corollary suggests studying the R∞ property for a closed flat manifold
at the level of the holonomy representation. Indeed, Porteous [18] proves the
following theorem.

Theorem 4.5. Let M be a closed flat manifold with holonomy representation
ρ:F → GLn(Z). Then the following statements are equivalent:

(a) There exists an Anosov diffeomorphism on M .
(b) Each Q-irreducible component of ρ that occurs with multiplicity one is

reducible over R.

If a closed flat manifoldM has the R∞ property, the holonomy representation
must have a Q-irreducible component that is irreducible over R and occurs with
multiplicity one. The converse does not need to hold, as is illustrated in the
following example.

Example 4.6. Let M be the closed flat manifold of which the corresponding
Bieberbach group is generated by Z4 and


0
0

1/3
0

 ,


0 1 0 0
−1 −1 0 0
0 0 1 0
0 0 0 1


 .
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Then the invertible affine endomorphism


0
0
0
0

 ,


1 1 0 0
−1 0 0 0
0 0 13 21
0 0 21 34


 ∈ Aff(R4)

induces a homeomorphism f :M → M of which the Reidemeister number R(f)
is finite.

Nevertheless, we have the following theorem.

Theorem 4.7. Let M be a closed flat manifold with holonomy representation
ρ:F → GLn(Z). Let ρ′:F → GLn′(Z) be a Q-irreducible Z-subrepresentation of
ρ such that ρ′(F ) is not Q-conjugated to ρ̃(F ) for any other Q-subrepresentation
ρ̃ of ρ. Suppose moreover, that for every D′ ∈ NGLn′ (Z)(ρ′(F )), there exists
A ∈ F such that ρ′(A)D′ has eigenvalue 1. Then M has the R∞ property.

By a Z-subrepresentation ρ′ of ρ, we mean a representation ρ′:F → GLn′(Z)
such that there exist P ∈ GLn(Z) and a representation ρ′′:F → GLn−n′(Z) such
that for each x ∈ F , the matrix Pρ(x)P−1 has the form of a blockmatrix

Pρ(x)P−1 =
(
ρ′(x) ∗

0 ρ′′(x)

)
.

The necessity of the condition that for each D′ ∈ NGLn′ (Z)(ρ′(F )), there exists
A ∈ F such that det(1−ρ′(A)D′) = 0 is illustrated in Example 4.6. The necessity
of the uniqueness condition on the image of the subrepresentation ρ′ will be
illustrated in Example 5.10, where we prove that the classical Hantzsche–Wendt
manifold does not have the R∞ property. Remark that every Q-irreducible
component of the holonomy representation of the classical Hantzsche–Wendt
manifold is irreducible over R and occurs with multiplicity 1.

Proof of Theorem 4.7. Let Γ be the Bieberbach group associated to M .
Without loss of generality, we may assume that Γ∩Rn = Zn. Let f :M →M be
a homeomorphism. We want to prove that R(f) = ∞. Without loss of generality,
we may assume that f is induced by a homotopy lift (d,D) ∈ Aff(Rn). Identifying
D∗ withD, we have that D ∈ NGLn(R)(ρ(F )). Because (d,D)(z,1)(d,D)−1 ∈ Zn

and (d,D)−1(z,1)(d,D) ∈ Zn for all z ∈ Zn, we have that D ∈ GLn(Z). Hence
D ∈ NGLn(Z)(ρ(F )). Now there exist Q-irreducible representations ρi:F →
GLni

(Q) such that ρ is similar to ρ1 ⊕ . . . ⊕ ρt. We may assume that ρ1 = ρ′.
Write n̂ = n − n′. Now there exists P1 ∈ GLn(Z) such that for all A ∈ F , the
matrix P1ρ(A)P−1

1 is an upper triangular blockmatrix

P1ρ(A)P−1
1 =

(
ρ′(A) ∗

0 ρ̂(A)

)
,
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where ρ̂:F → GL
bn(Z) is similar (over Q) to ρ2 ⊕ . . .⊕ ρt: there exists a matrix

P̂ ∈ GL
bn(Q) such that

P̂ ρ̂(A)P̂−1 = (ρ2 ⊕ . . .⊕ ρt)(A),

for all A ∈ F . Let P2 ∈ GLn(Q) be the blockmatrix

P2 =
(
1n′ 0
0 P̂

)
.

Then for all A ∈ F , the matrix P2P1ρ(A)P−1
1 P−1

2 has the form

P2P1ρ(A)P−1
1 P−1

2 =


ρ1(A) ∗ . . . ∗

. . . . . .
...

. . . ∗
ρt(A)

 .

Now it is well known that we can find a blockmatrix

P3 =


1n1 ∗ . . . ∗

. . . . . .
...

. . . ∗
1nt

 ∈ GLn(Q)

such that, for all A ∈ F ,

P3


ρ1(A) ∗ . . . ∗

. . . . . .
...

. . . ∗
ρt(A)

P−1
3 = (ρ1 ⊕ . . .⊕ ρt)(A).

Put P = P3P2P1. Write PDP−1 as a blockmatrix

PDP−1 =

D1,1 . . . D1,t

...
...

Dt,1 . . . Dt,t

 with Di,j ∈ Qni×nj .

For every A ∈ F , there exists φ(A) ∈ F such that ρ(φ(A))D = Dρ(A). Now
the map φ:F → F is an automorphism. Choose i ∈ {2, . . . , t}. Remark that
ρi(φ(A))Di,1 = Di,1ρ

′(A) for all A ∈ F . Hence Ker(Di,1) is invariant under ρ′

and because φ is an automorphism, Im(Di,1) is invariant under ρi.
We want to prove that Di,1 = 0. We consider three cases, according to

whether ni < n′, ni = n′ or ni > n′.
Suppose ni < n′. In this case, because Di,1 ∈ Qni×n′ , we must have that

Ker(Di,1) 6= {0}. Because Ker(Di,1) is invariant under ρ′, this implies that
Di,1 = 0.

Now consider the case ni = n′. Suppose for a contradiction that Di,1 6= 0.
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Because Ker(Di,1) is invariant under ρ′, this implies that Ker(Di,1) = {0}. Be-
cause Di,1 is a square matrix, ρ′(A) = D−1

i,1 ρi(φ(A))Di,1 for all A ∈ F . This is
a contradiction with the assumption that ρ′(F ) is not conjugated to ρi(F ). We
see that Di,1 = 0 when ni = n′.

In the case ni > n′, we have that Im(Di,1) 6= Qni because Di,1 ∈ Qni×n′ .
Because Im(Di,1) is invariant under ρi, we have that Di,1 = 0.

We conclude that in each of the three cases, Di,1 = 0. Thus P1DP
−1
1 =

P−1
2 P−1

3 PDP−1P3P2 has the form

P1DP
−1
1 =

(
D′ ∗
0 D̂

)
∈ GLn(Z),

where D′ ∈ GLn′(Z) and D̂ ∈ GL
bn(Z). Moreover, D′ ∈ NGLn′ (Z)(ρ′(F )). Hence

there exists A ∈ F such that ρ′(A)D′ has eigenvalue 1. Then also ρ(A)D has
eigenvalue 1. By Theorem 3.3, R(f) = ∞. �

We finish this section by formulating a conjecture:

Conjecture 4.8. Let ρ:F → GLn(Z) be a faithful R-irreducible represen-
tation of a non-trivial finite group F . Suppose that n is odd. Then for every
D ∈ NGLn(Z)(ρ(F )), there exists A ∈ F such that ρ(A)D has eigenvalue 1.

We have checked this conjecture by computer for n = 1, 3, 5. The following
example illustrates the necessity of the condition that n is odd, even if we require
that ρ is irreducible over C.

Example 4.9. Let F be the finite subgroup of GL4(Z) generated by( 0 0 −1 0

1 1 1 −2

−1 0 0 0

0 0 0 −1

)
,

( 1 0 0 0

0 −1 0 0

0 0 1 0

1 0 1 −1

)
,

( 1 0 0 0

0 −1 0 0

0 0 −1 0

0 −1 −1 1

)
,

(−1 −1 −1 2

0 0 1 0

0 −1 0 0

−1 −1 0 1

)
and let ρ:F → GL4(Z) be the inclusion representation. Then ρ is irreducible
over C. Put

D =


−1 −1 −1 1
−1 0 0 1
0 0 −1 1
−1 −1 −1 2

 .

Then D ∈ NGL4(Z)(ρ(F )), but there exists no A ∈ F such that ρ(A)D has
eigenvalue 1.

5. The R∞ property for GHW manifolds

In this section, we prove that a non-orientable GHW manifold has the R∞
property and that an HW manifold does not have the R∞ property if and only if
it is homeomorphic to an HW manifold in standard form of which the associated
graph is circulant. Recall that a graph is circulant if and only if it has an
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automorphism which is, considered as a permutation of the vertices, a cycle of
full length.

In order to prove this result, we first need to prove a series of technical
lemmas.

Definition 5.1. Let σ ∈ Sn be a permutation. Then define Pσ as the
matrix with eσ(i) as the i-th column, where eσ(i) ∈ Zn is the vector having 1 on
the σ(i)-th place and 0 elsewhere.

Remark 5.2. Let σ ∈ Sn be a permutation and v = t(v1, . . . , vn) ∈ Rn.
Then

Pσv = t(vσ−1(1), . . . , vσ−1(n)).

Definition 5.3. Let σ ∈ Sn be a permutation and a1, . . . , an ∈ R. Then
define

Mσ(a1, . . . , an) = Pσdiag(a1, . . . , an).

Remark 5.4. Let σ ∈ Sn be a permutation and a1, . . . , an ∈ R. Then

Pσdiag(a1, . . . , an) = diag(aσ−1(1), . . . , aσ−1(n))Pσ.

The characteristic polynomial of Mσ(a1, . . . , an) has a special form when σ

is the permutation (1 . . . n).

Lemma 5.5. Let σ ∈ Sn be the permutation (1 . . . n). Let a1, . . . , an ∈ R.
Then for all λ ∈ C,

det(λ1n −Mσ(a1, . . . , an)) = λn − a1 . . . an.

This lemma is easy to prove since the first row of λ1n −Mσ(a1, . . . , an) has
at most two non-zero entries.

The following proposition is a generalisation of [5, Proposition 3.3(2.)].

Proposition 5.6. Let M be a GHW manifold with associated GHW group
Γ and holonomy representation ρ: Zn−1

2 → GLn(Z). Suppose that Γ ∩ Rn = Zn

and that ρ(x) is a diagonal matrix for all x ∈ Zn−1
2 . Let f :M →M be a home-

omorphism and suppose that f has a lift (d,D) ∈ Aff(Rn). Then there exists
a permutation σ ∈ Sn and ε1, . . . , εn ∈ {−1, 1} such that D = Mσ(ε1, . . . , εn).

Proof. Write ρ = ρ1⊕ . . .⊕ ρn, with ρi: Zn−1
2 → GL1(Z). Suppose ρi = ρj ,

but i 6= j. Then ρ1⊕ . . .⊕ρj−1⊕ρj+1⊕ . . .⊕ρn: Zn−1
2 → GLn−1(Z) is a faithful

representation. Hence the image has order 2n−1 and contains −1. Then also
ρ(Zn−1

2 ) contains −1 and Γ contains a torsion element (a,−1), a contradiction.
We conclude that ρi 6= ρj when i 6= j. For every x ∈ Zn−1

2 , there exists φ(x) ∈
Zn−1

2 such that ρ(φ(x))D = Dρ(x). Write D = (di,j)i,j , then

ρi(φ(x))di,j = di,jρj(x) for all x ∈ Zn−1
2 .
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Because det(D) 6= 0, for each i there exists a j such that di,j 6= 0.
We now prove that for each i, exactly one j exists such that di,j 6= 0. Pick i ∈

{1, . . . , n} and suppose that di,j1 6= 0 and di,j2 6= 0 for some j1, j2 ∈ {1, . . . , n}.
Because

ρi(φ(x))di,j1 = di,j1ρj1(x) and ρi(φ(x))di,j2 = di,j2ρj2(x)

for all x ∈ Zn−1
2 , we have that ρj1(x) = ρj2(x) for all x ∈ Zn−1

2 , and hence
j1 = j2.

We see that for each i, there exists exactly one ψ(i) such that di,ψ(i) 6= 0.
Then ψ: {1, . . . , n} → {1, . . . , n}: i 7→ ψ(i) is a function. Because det(D) 6= 0,
for each j, there exists i such that di,j 6= 0. Hence ψ is a bijection. Put σ = ψ−1.
Define ε1, . . . , εn by εj = dσ(j),j , then D = Mσ(ε1, . . . , εn).

Because (d,D)(z,1)(d,D)−1 ∈ Zn and (d,D)−1(z,1)(d,D) ∈ Zn for each
z ∈ Zn, we have that D ∈ GLn(Z), such that εi ∈ Z. Because ±1 = det(D) =
sign(σ)ε1 . . . εn, we have that εi ∈ {−1, 1} for i = 1, . . . , n. �

If f is a self-homeomorphism on an HW manifold M in standard form, the
previous proposition tells us that the linear part D of a homotopy lift (d,D)
of f must have the form Mσ(ε1, . . . , εn) for a permutation σ. The following
proposition helps to determine the possibilities for this permutation σ.

Proposition 5.7. Let Γ be an HW group in standard form. Let ε1, . . . , εn ∈
{−1, 1} and let σ ∈ Sn be a permutation such that σ(i) 6= i for all i ∈ {1, . . . , n}.
Then there exists d ∈ Rn such that (d,Mσ(ε1, . . . , εn)) ∈ NAff(Rn)(Γ) if and only
if there exists a ∈ Rn such that (a,1)Γ(−a,1) is an HW group in standard form
for which σ is an automorphism of the graph associated to (a,1)Γ(−a,1).

Proof. Suppose there exists a ∈ Rn such that (a,1)Γ(−a,1) is an HW
group in standard form for which σ is an automorphism of the graph associated
to (a,1)Γ(−a,1). Then for i = 1, . . . , n, there exist bi = (bi,1, . . . , bi,n) ∈
{0, 1/2}n with bi,i = 1/2 such that (a,1)Γ(−a,1) is generated by Zn and
(b1, B1), . . . , (bn, Bn), where Bi is the diagonal matrix with 1 on the i-th place
of the diagonal and −1 on the other places of the diagonal. Without loss of
generality, we may assume that σ is an automorphism of the graph associated
to Γ. Indeed, when (d,Mσ(ε1, . . . , εn)) ∈ NAff(Rn)((a,1)Γ(−a,1)), we have that
(−a,1)(d,Mσ(ε1, . . . , εn))(a,1) ∈ NAff(Rn)(Γ).

Suppose that σ is an automorphism of the graph associated to Γ. Put d =
0 ∈ Rn. Define (b′1, B

′
1), . . . , (b

′
n, B

′
n) by

(b′σ(i), B
′
σ(i)) = (d,Mσ(ε1, . . . , εn))(bi, Bi)(d,Mσ(ε1, . . . , εn))

−1

for i = 1, . . . , n. Then it suffices to show that (b′σ(i), B
′
σ(i)) ∈ Γ for i = 1, . . . , n.
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Choose an arbitrary i ∈ {1, . . . , n}. Then

(b′σ(i), B
′
σ(i)) = (0,Mσ(ε1, . . . , εn))(bi, Bi)(0,Mσ(ε1, . . . , εn))

−1

= (Mσ(ε1, . . . , εn)bi,Mσ(ε1, . . . , εn)Bi)(0,Mσ(ε1, . . . , εn)
−1)

= (Mσ(ε1, . . . , εn)bi,Mσ(ε1, . . . , εn)BiMσ(ε1, . . . , εn)
−1)

= (Mσ(ε1, . . . , εn)bi, Bσ(i)),

such that B′σ(i) = Bσ(i). Because σ is an automorphism of the graph associated
to Γ, we have that bi,σ−1(j) = bσ(i),j for j = 1, . . . , n. Hence

b′σ(i) = Mσ(ε1, . . . , εn)bi

= Pσdiag(ε1, . . . , εn)t(bi,1, . . . , bi,n) = Pσ
t(ε1bi,1, . . . , εnbi,n)

= t(εσ−1(1)bi,σ−1(1), . . . , εσ−1(n)bi,σ−1(n))

= t(εσ−1(1)bσ(i),1, . . . , εσ−1(n)bσ(i),n).

Define zi,1, . . . , zi,n by

zi,j =

{
1 if εσ−1(j)bσ(i),j = −1/2,

0 otherwise,
for j = 1, . . . , n.

Put zi = (zi,1, . . . , zi,n), then b′σ(i) = bσ(i) − zi. Hence (b′σ(i), B
′
σ(i)) = (bσ(i) −

zi, Bσ(i)) ∈ Γ.
Conversely, suppose there exists a vector d = (d1, . . . , dn) ∈ Rn such that

(d,Mσ(ε1, . . . , εn)) ∈ NAff(Rn)(Γ). Because Γ is in standard form, for i =
1, . . . , n, there exist bi = (bi,1, . . . , bi,n) ∈ {0, 1/2}n with bi,i = 1/2 such that Γ is
generated by Zn and (b1, B1), . . . , (bn, Bn), where Bi is the diagonal matrix with
1 on the i-th place of the diagonal and −1 on the other places of the diagonal.

Choose an arbitrary i ∈ {1, . . . , n}. Define

(b′σ(i), B
′
σ(i)) = (d,Mσ(ε1, . . . , εn))(bi, Bi)(d,Mσ(ε1, . . . , εn))

−1 ∈ Γ,

then

(b′σ(i) +B′σ(i)d,B
′
σ(i)Mσ(ε1, . . . , εn)) = (b′σ(i), B

′
σ(i))(d,Mσ(ε1, . . . , εn))

= (d,Mσ(ε1, . . . , εn))(bi, Bi) = (d+Mσ(ε1, . . . , εn)bi,Mσ(ε1, . . . , εn)Bi).

Hence B′σ(i) = Mσ(ε1, . . . , εn)BiMσ(ε1, . . . , εn)
−1 = Bσ(i).

Because (b′σ(i), Bσ(i)) ∈ Γ and (bσ(i), Bσ(i)) ∈ Γ, there exists zi ∈ Zn such
that b′σ(i) = bσ(i) +zi. Thus bσ(i) +zi+Bσ(i)d = d+Mσ(ε1, . . . , εn)bi, and hence

bσ(i) −Mσ(ε1, . . . , εn)bi + (Bσ(i) − 1)d = −zi ∈ Zn.

Choose j ∈ {1, . . . , n} \ {σ(i)}. Then

bσ(i),j − εσ−1(j)bi,σ−1(j) − 2dj ∈ Z.
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If 2dj ∈ Z, then bσ(i),j = bi,σ−1(j). If 2dj 6∈ Z then bσ(i),j 6= bi,σ−1(j). We
conclude that

(5.1) bσ(i),j = bi,σ−1(j) ⇔ 2dj ∈ Z for all i, j where j 6= σ(i).

We now use induction on #{j | bσ(j),j = 0} to prove there exists a ∈ Rn

such that (a,1)Γ(−a,1) is an HW group in standard form such that σ is an
automorphism of the graph associated to (a,1)Γ(−a,1).

Let us first prove the induction basis. Suppose that #{j | bσ(j),j = 0} = 0.
Because of the assumption that bi,j ∈ {0, 1/2} for all i, j, we have that bσ(j),j =
1/2 for all j ∈ {1, . . . , n}. For every j ∈ {1, . . . , n} we have that j 6= σ(j) and
bσ(j),j = 1/2 = bj,σ−1(j), such that by (5.1) we conclude that 2dj ∈ Z. Hence
also 2dσ(j) ∈ Z for any j. By (5.1), we have that bσ(i),σ(j) = bi,j for all i 6= j.
Because also bσ(j),σ(j) = 1/2 = bj,j , we have that bσ(i),σ(j) = bi,j for all i, j. We
see that σ is an automorphism of the graph associated to Γ. Hence we may put
a = 0 ∈ Rn.

Let us now prove the induction step. Suppose that #{j | bσ(j),j = 0} > 0.
Pick j1 such that bσ(j1),j1 = 0. Let a′ ∈ Rn be the vector with 1/4 on the

j1-th place and zero elsewhere.
Define Γ̃ = (a′,1)Γ(−a′,1). Define (̂b1, B̂1), . . . , (̂bn, B̂n) by

(̂bi, B̂i) = (a′,1)(bi, Bi)(−a′,1) for i = 1, . . . , n,

then

(̂bi, B̂i) = (a′ + bi −Bia
′, Bi) for i = 1, . . . , n.

We see that B̂1 = B1, . . . , B̂n = Bn. Additionally, b̂j1 = bj1 and b̂j = bj + 2a′

when j 6= j1.
Choose an arbitrary i ∈ {1, . . . , n}. Write b̂i = (̂bi,1, . . . , b̂i,n), then b̂i,j ∈ 1

2Z
for all j. Now choose zi ∈ Zn such that b̂i + zi ∈ {0, 1/2}n. Put b̃i = b̂i + zi and
write b̃i = (̃bi,1, . . . , b̃i,n). Then Γ̃ is generated by Zn and (̃b1, B1), . . . , (̃bn, Bn),
where b̃i ∈ {0, 1/2}n.

We see that Γ̃ is an HW group in standard form. Now for all j 6= j1,
the vector a′ has a 0 on the j-th place and hence b̂σ(j),j = bσ(j),j + 0 such
that b̃σ(j),j = bσ(j),j . Because b̂σ(j1),j1 = bσ(j1),j1 + 1/2 = 1/2, we have that
b̃σ(j1),j1 = 1/2. Hence #{j | b̃σ(j),j = 0} = #{j | bσ(j),j = 0} − 1. Put

(d̃,Mσ(ε1, . . . , εn)) = (a′,1)(d,Mσ(ε1, . . . , εn))(−a′,1),

then (d̃,Mσ(ε1, . . . , εn)) ∈ NAff(Rn)(Γ̃). Because #{j | b̃σ(j),j = 0} = #{j |
bσ(j),j = 0} − 1, we may apply the induction hypothesis and conclude there
exists ã ∈ Rn such that (ã,1)Γ̃(−ã,1) is an HW group in standard form for
which σ is an automorphism of the graph associated to (ã,1)Γ̃(−ã,1).
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Put a = a′ + ã, then σ is an automorphism of the graph associated to
(a,1)Γ(−a,1). �

In Proposition 5.7, the condition that σ(j) 6= j for all j ∈ {1, . . . , n} cannot
be dropped, as is illustrated in the following example.

Example 5.8. Let M be the classical Hantzsche–Wendt manifold. The
associated Bieberbach group Γ is in standard form and is generated by Z3 and 1/2

0
0

 ,

 1 0 0
0 −1 0
0 0 −1

 and

 0
1/2
1/2

 ,

−1 0 0
0 1 0
0 0 −1

 .

The affine endomorphism  1/4
0
0

 ,

 1 0 0
0 0 1
0 1 0


induces a homeomorphism f :M →M , but one can check that the permutation
(2 3) is no automorphism of any of the graphs ({1, 2, 3}, E) that satisfy the
conditions in Theorem 2.3.

Let us now state the main theorem of this section:

Theorem 5.9. A non-orientable GHW manifold has the R∞ property. An
HW manifold does not have the R∞ property if and only if it is homeomorphic
to an HW manifold in standard form of which the associated graph is circulant.

Proof. Let M be a GHW manifold with associated Bieberbach group Γ.
Suppose M is not orientable or not homeomorphic to an HW manifold in stan-
dard form of which the associated graph is circulant. We want to prove that
M has the R∞ property. In the case M is orientable, we may suppose that Γ
is in standard form. In the case M is not orientable, we may suppose that
Γ ∩ Rn = Zn and that ρ(x) is a diagonal matrix for all x ∈ Zn−1

2 . Let
f :M → M be a homeomorphism with homotopy lift (d,D). We want to
prove that R(f) = ∞. By Proposition 5.6 we know that D = Mσ(ε1, . . . , εn)
for a permutation σ ∈ Sn and ε1, . . . , εn ∈ {−1, 1}. By permuting the ele-
ments of the standard basis of Γ ∩ Rn = Zn, if necessary, we may assume that
σ = (1 . . . n1)(n1 + 1 . . . n2) . . . (nt−1 + 1 . . . nt) where 0 = n0 < n1 < n2 <

. . . < nt = n. Then ρ(x) is still a diagonal matrix for all x ∈ Zn−1
2 and Γ remains

in standard form if it was. We can write D as a blockmatrix

D =

D1 0
. . .

0 Dt
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with Di = Mσi
(εi,1, . . . , εi,ni−ni−1), where εi,j = εni−1+j and σi = (1 . . . ni −

ni−1). Additionally, ρ can be written as ρ = ρ1 ⊕ . . . ⊕ ρt where ρi: Zn−1
2 →

GLni−ni−1(Z) is a representation such that ρi(x) is a diagonal matrix with ±1
on the diagonal. Then for all x ∈ Zn−1

2 , we have that

det(1− ρ(x)D) =
t∏
i=1

det(1− ρi(x)Di)

=
t∏
i=1

det(1− ρi(x)Mσi(εi,1, . . . , εi,ni−ni−1))

=
t∏
i=1

(
1− det(ρi(x))εi,1 . . . εi,ni−ni−1

)
.

We now consider two cases. Suppose M is not orientable. Then there exist
x− ∈ Zn−1

2 and i ∈ {1, . . . , t} such that det(ρi(x−)) = −1. If εi,1 . . . εi,ni−ni−1 =
1, we have that det(1 − ρ(0)D) = 0. If εi,1 . . . εi,ni−ni−1 = −1, we have that
det(1−ρ(x−)D) = 0. We conclude that there exists x ∈ Zn−1

2 such that det(1−
ρ(x)D) = 0. By Theorem 3.3, R(f) = ∞.

Suppose that M is orientable, but that it is not homeomorphic to an HW
manifold in standard form of which the associated graph is circulant. Then by
Proposition 5.7 we have that σ 6= (1 . . . n), and hence t > 1. Because n is
odd, there exists i ∈ {1, . . . , t} such that ni − ni−1 is odd. Pick j 6∈ {ni−1 +
1, . . . , ni}, we can do so because t > 1. Pick x− ∈ Zn−1

2 such that ρ(x−) = Bj .
Because the matrixDi = Mσi(εi,1, . . . , εi,ni−ni−1) has odd dimension it has a real
eigenvalue. By Lemma 5.5, all eigenvalues of Di have modulus 1, and hence Di

has eigenvalue −1 or 1. If Di has eigenvalue 1, we have that det(1−ρi(0)Di) = 0,
and hence det(1 − ρ(0)D) = 0. If Di has eigenvalue −1, then ρi(x−)Di = −Di

has eigenvalue 1, and hence det(1 − ρ(x−)D) = 0. So we always find x ∈ Zn−1
2

such that det(1− ρ(x)D) = 0. By Theorem 3.3, R(f) = ∞.
Conversely suppose that Γ is isomorphic to an HW group Γ′ in standard

form for which σ = (1 . . . n) is an automorphism of the graph associated to Γ′.
Without loss of generality, we may assume that Γ is in standard form and that
σ is an automorphism of the graph associated to Γ. By Proposition 5.7 there
exists d ∈ Rn such that (d,Mσ(−1, 1, . . . , 1)) ∈ NAff(Rn)(Γ). Hence there exists
f :M → M with homotopy lift (d,Mσ(−1, 1, . . . , 1)). Now for all x ∈ Zn−1

2 , we
have that

det(1− ρ(x)Mσ(−1, 1, . . . , 1)) = 1− (−1) · 1 · . . . · 1 = 1− (−1) = 2 6= 0,

and hence R(f) 6= ∞. �

Example 5.10. The classical Hantzsche–Wendt manifold does not have
the R∞ property. Indeed, if we take the complement of its graph relative to
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the set {2}, we get a circulant graph:

1

2 3

��
11

1

11
1

oo

// −→

1

2 3

��
11

1

11
1

oo

FF



More generally, Miatello and Rossetti show in [16, Theorem 2.1] that for each
odd dimension n > 1, there exists an HW group of which the associated graph
is the circulant graph (V,E), where V = {1, . . . , n} and (i, j) ∈ E if and only if
j − i ≡ 1 mod n.

We conjecture that these are the only examples of HW manifolds that do not
have the R∞ property.

Conjecture 5.11. In every odd dimension n > 1, there is (up to home-
omorphism) only one HW manifold that does not have the R∞ property. It is
homeomorphic to the HW manifold in standard form of which the associated
graph is (V,E), where V = {1, . . . , n} and (i, j) ∈ E if and only if j − i ≡
1 mod n.

By a computer check, we can show this conjecture holds for all odd n ≤ 21.
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