GLOBAL STRUCTURE OF POSITIVE SOLUTIONS
FOR SUPERLINEAR SECOND ORDER
m-POINT BOUNDARY VALUE PROBLEMS

RUYUN MA — YULIAN AN

Abstract. In this paper, we consider the nonlinear eigenvalue problems

\[u'' + \lambda h(t)f(u) = 0, \quad 0 < t < 1, \]
\[u(0) = 0, \quad u(1) = \sum_{i=1}^{m-2} \alpha_i u(\eta_i), \]

where \(m \geq 3, \eta_i \in (0, 1) \) and \(\alpha_i > 0 \) for \(i = 1, \ldots, m-2 \), with \(\sum_{i=1}^{m-2} \alpha_i \eta_i < 1 \); \(h \in C([0,1]; [0, \infty)) \) and \(h(t) \geq 0 \) for \(t \in [0,1] \) and \(h(t_0) > 0 \) for \(t_0 \in [0,1] \); \(f \in C([0,\infty); [0, \infty)) \) and \(f(s) > 0 \) for \(s > 0 \), and \(f_0 = \lim_{s \to 0^+} f(s)/s \). We investigate the global structure of positive solutions by using the nonlinear Krein–Rutman Theorem.

1. Introduction

The existence and multiplicity of positive solutions of nonlinear multi-point boundary value problems have been extensively studied, see Webb [8], Kwong and Wong [4], Ma [5] and references therein. Recently, the global structure of positive solutions of nonlinear multi-point boundary value problems has also been

\[\text{2000 Mathematics Subject Classification}. \quad 34B10, 34G20. \]
\[\text{Key words and phrases}. \quad \text{Multiplicity results, multi-point boundary value problem, eigenvalues, bifurcation methods, positive solutions.} \]

The first named author supported by the NSFC(No.10671158), the NSF of Gansu Province (No. 3ZS051-A25-016), NWNU-KJCXGC-03-18, the Spring-sun program (No. Z2004-1-62033), SRFDP (No. 20060736001), and the SRF for ROCS, SEM(2006[311]).
extensively investigated by several authors, see for example, Rynne [7], Ma and O’Regan [6]. However, these papers only dealt with the case that \(f_0 \in (0, \infty) \), and relatively little is known about the global structure of solutions in the case that \(f_0 = \infty \). Especially, very few global results were found in the available literature when \(f_0 = \infty = f_\infty \). The likely reason is that the global bifurcation techniques can not be used directly in the case.

In this paper, we consider the nonlinear second order \(m \)-point boundary value problem of the form

\[
\begin{align*}
&u'' + \lambda h(t)f(u) = 0, \quad t \in (0, 1), \\
&u(0) = 0, \quad u(1) = \sum_{i=1}^{m-2} \alpha_i u(\eta_i),
\end{align*}
\]

where \(m \geq 3 \), \(\eta_i \in (0, 1) \) and \(\alpha_i > 0 \) for \(i = 1, \ldots, m-2 \) with \(\sum_{i=1}^{m-2} \alpha_i \eta_i < 1 \); \(\lambda \) is a positive parameter; \(h \in C([0, 1], [0, \infty]) \) and \(h(t_0) > 0 \) for some \(t_0 \in [0, 1] \) and \(f \in C([0, \infty), [0, \infty)) \). We obtain a complete description of the global structure of positive solutions of (1.1)–(1.2) under the assumptions:

(A1) \(h: [0, 1] \to [0, \infty) \) is continuous and \(h(t_0) > 0 \) for some \(t_0 \in [0, 1] \);
(A2) \(f \in C([0, \infty), [0, \infty)) \) and \(f(s) > 0 \) for \(s > 0 \);
(A3) \(f_0 = \infty \), where \(f_0 = \lim_{s \to 0^+} f(s)/s \);
(A4) \(f_\infty \in [0, \infty] \), where \(f_\infty = \lim_{s \to \infty} f(s)/s \).

We will develop a bifurcation approach to treat the case \(f_0 = \infty \). Crucial to this approach is to construct a sequence of functions \(\{f^{[n]}\} \) which is asymptotic linear at 0 and satisfies

\[f^{[n]} \to f, \quad (f^{[n]})_0 \to \infty. \]

By means of the corresponding auxiliary equations, we obtain a sequence of unbounded components \(\{C^{[n]}_+\} \) via nonlinear Krein–Rutman bifurcation theorem [4], and this enable us to find an unbounded components \(C \) satisfying

\[(0, 0) \in C \subset \limsup C^{[n]}_+. \]

The rest of the paper is arranged as follows: In Section 2, we prove some properties of superior limit of certain infinity collection of connected sets. Section 3 is devoted to the existence of the principal eigenvalue of linear eigenvalue problem

\[
\begin{align*}
&u'' + \lambda h(t)u = 0, \quad t \in (0, 1), \\
&u(0) = 0, \quad u(1) = \sum_{i=1}^{m-2} \alpha_i u(\eta_i).
\end{align*}
\]
The approach of this section is based upon the well-known Krein–Rutman theorem and the order topology of a subspace of $C[0,1]$. Finally, in Section 4, we state and prove our main results.

2. Superior limit and component

Definition 2.1 (9). Let X be a Banach space and $\{C_n \mid n = 1, 2, \ldots\}$ be a family of subsets of X. Then the superior limit D of $\{C_n\}$ is defined by

$$D := \limsup_{n \to \infty} C_n = \{x \in X \mid \exists \{n_i\} \subset \mathbb{N} \text{ and } x_{n_i} \in C_{n_i}, \text{ such that } x_{n_i} \to x\}.$$

Definition 2.2 (9). A component of a set M is meant a maximal connected subset of M.

Lemma 2.3 (9). Suppose that Y is a compact metric space, A and B are non-intersecting closed subsets of Y, and no component of Y intersects both A and B. Then there exist two disjoint compact subsets X_A and X_B, such that $Y = X_A \cup X_B$, $A \subset X_A$, $B \subset X_B$.

Lemma 2.4. Let X be a Banach space, and let $\{C_n\}$ be a family of connected subsets of X. Assume that

(a) there exist $z_n \in C_n$, $n = 1, 2, \ldots$, and $z^* \in X$, such that $z_n \to z^*$;
(b) $\lim_{n \to \infty} r_n = \infty$, where $r_n = \sup\{|x| \mid x \in C_n\}$;
(c) for every $R > 0$, $(\bigcup_{n=1}^{\infty} C_n) \cap B_R$ is a relatively compact set of X, where

$$B_R = \{x \in X \mid |x| \leq R\}.$$

Then there exists an unbounded component C in D and $z^* \in C$.

Proof. By the definition of D, $z^* \in D$. Suppose on the contrary that the component C in D, which contains z^*, is bounded. Note that D is closed in X. It follows that C is closed subset of D, and subsequently C is closed subset of X. It is easy to see that C is a compact set of X by (c). Take $\delta > 0$, and let U_1 be δ-neighbourhood of C in X.

We discuss in two cases.

Case 1. $\partial U_1 \cap D \neq \emptyset$.

In this case, we have from (c) that $\overline{U}_1 \cap D$ is a compact metric space. Obviously, C and $\partial U_1 \cap D$ are two disjoint closed subsets of X. Because of the maximal connectedness of C, there does not exist a component C^* of $D \cap \overline{U}_1$ such that $C^* \cap C \neq \emptyset$, $C^* \cap (\partial U_1 \cap D) \neq \emptyset$. By Lemma 2.3, there exist two disjoint compact sets X_A and X_B of $D \cap \overline{U}_1$, such that $D \cap \overline{U}_1 = X_A \cup X_B$, $C \subset X_A$, $\partial U_1 \cap D \subset X_B$. Evidently, $d(X_A, X_B) > 0$.
Let $\delta_1 = (1/3)d(X_A, X_B)$, and let U_2 be the $(\delta_1/3)$-neighbourhood of X_A. Set $U = U_1 \cap U_2$, then

\begin{equation}
C \subset U, \quad \partial U \cap D = \emptyset.
\end{equation}

Case 2. $\partial U_1 \cap D = \emptyset$.

In this case, we take $U = U_1$. It is obvious that (2.1) holds.

Since $z_n \to z^*$, we may assume that $\{z_n\} \subset U$. By (b) and the connectedness of C_n, there exists $n_0 > 0$, such that for all $n \geq n_0$, $C_n \cap \partial U \neq \emptyset$. Take $y_n \in C_n \cap \partial U$, then $\{y_n \mid n \geq n_0\}$ is a relative compact subset of X, so there exists $y^* \in \partial U$ and a subsequence $\{y_{n_k}\}$ of $\{y_n \mid n \geq n_0\}$ such that $y_{n_k} \to y^*$. Obviously, $y^* \in D$. Therefore, $y^* \in \partial U \cap D$. However, this contradicts (2.1). □

3. Eigenvalue with a positive eigenfunction

Let Y be the Banach space $C[0,1]$ with the norm $||u||_0 = \max\{|u(t)| \mid t \in [0,1]\}$. Let $K = \{u \in Y \mid u(t) \geq 0 \text{ for } t \in [0,1]\}$. Then K is normal. Let E denote the Banach space defined by

$$E = \left\{ u \in C^1[0,1] \mid u(0) = 0, \ u(1) = \sum_{i=1}^{m-2} \alpha_i u(\eta_i) \right\}$$

equipped with the norm $||u|| = \max\{|u(0)|, ||u'||_0\}$.

Denote $e(t) = t$, $t \in [0,1]$, and let

$$Y_e = \bigcup_{\rho > 0} \rho [-e, e] \text{ and } |x|_e = \inf\{\rho \mid \rho > 0, \ x \in \rho [-e, e]\} \text{ for } x \in Y_e.$$

Set

\begin{equation}
K_e = Y_e \cap K = \{ x \in K \mid x \leq \rho e \text{ for some } \rho > 0 \}.
\end{equation}

Then we have from [9, Proposition 19.9] that

(a) K_e is a normal cone of Y_e with nonempty interior;

(b) $(Y_e, | \cdot |_e)$ is a Banach space and continuously imbedding in $(Y, || \cdot ||_0)$.

Notice also that an $x \in Y_e$ is in $\text{int} K_e$, the interior of K_e in Y_e if and only if $x \geq \rho e$ for some $\rho > 0$.

Let us consider an operator $T: K \to Y$ defined by

\begin{equation}
Tu(t) = \int_0^1 H(t,s)h(s)u(s) \, ds, \quad t \in [0,1],
\end{equation}

where

$$H(t,s) = G(t,s) + \sum_{i=1}^{m-2} \frac{\alpha_i G(\eta_i, s)}{1 - \sum_{i=1}^{m-2} \alpha_i \eta_i} t,$$
and

\begin{equation}
G(t, s) = \begin{cases}
(1 - t)s & \text{if } 0 \leq s \leq t \leq 1, \\
t(1 - s) & \text{if } 0 \leq t \leq s \leq 1.
\end{cases}
\end{equation}

Set

\[
\beta := \frac{||h||_0}{2} + \frac{\sum_{i=1}^{m-2} \alpha_i \eta_i (1 - \eta_i)}{1 - \sum_{i=1}^{m-2} \alpha_i \eta_i} ||h||_0.
\]

Then

\[
\int_0^1 H(t, s)h(s) \, ds = \frac{1}{2} t(1 - t)||h||_0 + \left[\frac{\sum_{i=1}^{m-2} \alpha_i \int_0^1 G(\eta_i, s)h(s) \, ds}{1 - \sum_{i=1}^{m-2} \alpha_i \eta_i} \right] t \leq \left[\frac{1}{2} ||h||_0 + \frac{\sum_{i=1}^{m-2} \alpha_i \eta_i (1 - \eta_i)||h||_0}{1 - \sum_{i=1}^{m-2} \alpha_i \eta_i} \right] t = \beta t.
\]

This together with (3.2) imply that

\[-\beta ||x||_0 e(t) \leq (Tx)(t) \leq \beta ||x||_0 e(t), \quad x \in Y,
\]

and accordingly \(T(Y) \subseteq Y_c\). Combining the facts \((E, || \cdot ||) \hookrightarrow (Y_c, || \cdot ||_e)\) is closed and \(T: (Y, || \cdot ||_0) \rightarrow E\) is compact, we conclude that \(T: (Y, || \cdot ||_0) \rightarrow (Y_c, || \cdot ||_e)\) is compact. Since \(Y_c\) sits continuously in \(Y\), we also have \(T: (Y_c, || \cdot ||_e) \rightarrow (Y_c, || \cdot ||_e)\) is compact.

We claim that \(T: (K_c, || \cdot ||_e) \rightarrow (K_c, || \cdot ||_e)\) is strongly positive.

In fact, for \(x \in K_c\), denote \(y(t) = \int_0^1 H(t, s)h(s)x(s) \, ds, \ t \in [0, 1]\). Then \(y(t) \geq 0, \ y'(t) = -h(t)x(t) \leq 0\) in \((0, 1)\), and

\begin{equation}
y(0) = 0, \quad y(1) = \sum_{i=1}^{m-2} \alpha_i y(\eta_i).
\end{equation}

These imply that we cannot have \(y(t_0) = y'(t_0) = 0\) for any \(t_0 \in (0, 1)\), and therefore \(y(t) > 0\) in \((0, 1)\) and \(y'(0) > 0\). By the second relation in (3.4) and the fact \(y(t) > 0\) in \((0, 1)\), we have that \(y(1) > 0\). Thus, there exists \(\rho > 0\) such that \(y(t) \geq \rho t\) on \([0, 1]\).

Now [2, Theorem 19.3] is applicable to \(T\) in \(Y_c\) with \(K_c\). We get

Lemma 3.1. Let (A1) hold, and let \(r(T)\) be the spectral radius of \(T\). Then \(r(T) > 0\), and \(r(T)\) is a simple eigenvalue with an eigenfunction \(\varphi \in \text{int} K_c\) and there is no other eigenvalue with a positive eigenfunction.

Corollary 3.2. Let (A1) hold, and let \(r(T)\) be the spectral radius of \(T\). Then \(\lambda_1 := 1/r(T)\) is a simple eigenvalue with an eigenfunction \(\varphi \in \text{int} K_c\) and there is the unique eigenvalue with an eigenfunction \(\varphi \in \text{int} K_c\) and there is no other eigenvalue with a positive eigenfunction.
Remark 3.3. In [6] and [7], spectral theory was developed for linear second order multi-point eigenvalue problems (1.3)–(1.4) with the stronger assumption $h(t) \equiv 1$ in $[0,1]$.

Let σ be a constant with $0 < \sigma < \min\{t_0, 1 - t_0\}$. Denote the cone P in Y by

$$P = \{ u \in Y \mid u(t) \geq 0 \text{ on } (0,1), \text{ and } \min_{\sigma \leq t \leq 1 - \sigma} u(t) \geq \sigma ||u||_0 \},$$

and for $r > 0$, let $\Omega_r = \{ u \in K \mid ||u||_0 < r \}$.

Define an operator $T_{\lambda}: P \to Y$ by

$$T_{\lambda}u(t) = \lambda \int_0^1 H(t, s)h(s)f(u(s)) \, ds, \quad t \in [0,1].$$

It is easy to show the following

Lemma 3.4. Assume that (A1)–(A2) hold. Then $T_{\lambda}: P \to P$ is completely continuous.

Lemma 3.5. Let (A1)–(A2) hold. If $u \in \partial \Omega_r$, $r > 0$, then

$$||T_{\lambda}u||_0 \leq \lambda \overline{M}_r \left(1 + \sum_{i=1}^{m-2} \frac{\alpha_i}{1 - \sum_{i=1}^{m-2} \alpha_i \eta_i} \right) \int_0^1 G(s, s)h(s) \, ds,$$

where $\overline{M}_r = 1 + \max_{0 \leq s \leq r} \{ f(s) \}$.

Proof. Since $f(u(t)) \leq \overline{M}_r$ for $t \in [0,1]$, it follows that

$$||T_{\lambda}u||_0 \leq \lambda \int_0^1 G(s, s)h(s)f(u(s)) \, ds$$

$$+ \frac{\lambda}{1 - \sum_{i=1}^{m-2} \alpha_i \eta_i} \sum_{i=1}^{m-2} \alpha_i \int_0^1 G(s, s)h(s)f(u(s)) \, ds$$

$$\leq \lambda \overline{M}_r \left(1 + \sum_{i=1}^{m-2} \frac{\alpha_i}{1 - \sum_{i=1}^{m-2} \alpha_i \eta_i} \right) \int_0^1 G(s, s)h(s) \, ds.$$

\[\square \]

Lemma 3.6. Let (A1)–(A2) hold. Assume that $\{(\mu_k, y_k)\} \subset (0,\infty) \times K$ is a sequence of positive solutions of (1.1)–(1.2). Assume that $|\mu_k| \leq C_0$ for some constant $C_0 > 0$, and $\lim_{k \to \infty} ||y_k|| = \infty$. Then $\lim_{k \to \infty} ||y_k||_0 = \infty$.

Proof. From the relation

$$y_k(t) = \mu_k \int_0^1 H(t, s)h(s)f(y_k(s)) \, ds$$
and the fact that the graph of \(y_k \) is concave down on \([0, 1]\), we conclude that
\[
\|y'_k\|_0 = \max\{y'_k(0), -y'_k(1)\}
\leq C_0 \max \left\{ \int_0^1 (1 - s)h(s)f(y_k(s))\,ds \left(-\int_0^1 sh(s)f(y_k(s))\,ds \right) \right\}
+ C_0 \sum_{i=1}^{m-2} \alpha_i \int_0^1 G(\eta_i, s)h(s)f(y_k(s))\,ds
\leq \frac{C_0}{1 - \sum_{i=1}^{m-2} \alpha_i \eta_i}
\]
which implies that \{\|y'_k\|_0\} is bounded whenever \{\|y_k\|_0\} is bounded. \(\square\)

4. The main results

Let \(\Sigma \) be the closure of the set of positive solutions for (1.1)–(1.2) in \(E \). The main results of the paper are the following

Theorem 4.1. Let (A1)–(A3) hold.
(a) If \(f_\infty = 0 \), then there exists a sub-continuum \(\zeta \) of \(\Sigma \) with \((0, 0) \in \zeta \) and \(\mathrm{Proj}_R \zeta = [0, \infty) \).
(b) If \(f_\infty \in (0, \infty) \), then there exists a sub-continuum \(\zeta \) of \(\Sigma \) with \((0, 0) \in \zeta, \, \mathrm{Proj}_R \zeta \subseteq [0, \lambda_1 / f_\infty) \).
(c) If \(f_\infty = 0 \), then there exists a component \(\zeta \) of \(\Sigma \) with \((0, 0) \in \zeta \), \(\mathrm{Proj}_R \zeta \) is a bounded closed interval, and \(\zeta \) approaches \((0, \infty) \) as \(\|u\| \to \infty \).

Theorem 4.2. Let (A1)–(A3) hold.
(a) If \(f_\infty = 0 \), then (1.1)–(1.2) has at least one positive solution for \(\lambda \in (0, \infty) \).
(b) If \(f_\infty \in (0, \infty) \), then (1.1)–(1.2) has at least one positive solution for \(\lambda \in (0, \lambda_1 / f_\infty) \).
(c) If \(f_\infty = 0 \), then there exists \(\lambda_* > 0 \) such that (1.1)–(1.2) has at least two positive solutions for \(\lambda \in (0, \lambda_*) \).

To prove above theorems, we define \(f^{[n]}(s) : [0, \infty) \to [0, \infty) \) by
\[
f^{[n]}(s) = \begin{cases}
 f(s) & \text{if } s > (1/n, \infty), \\
 nf(1/n) s & \text{if } s \in [0, 1/n].
\end{cases}
\]
Then \(f^{[n]} \in C([0, \infty), [0, \infty)) \) with
\[
f^{[n]}(s) > 0 \quad \text{for all } s \in (0, \infty) \quad \text{and} \quad (f^{[n]})_0 = nf(1/n) > 0.
\]
By (A3), it follows that \(\lim_{n \to \infty} (f^{[n]})_0 = \infty. \)
To apply the nonlinear Krein–Rutman Theorem [4], we extend f to an odd function $g: \mathbb{R} \to \mathbb{R}$ by

$$g(s) = \begin{cases} f(s) & \text{if } s \geq 0, \\ -f(-s) & \text{if } s < 0. \end{cases}$$

Similarly we may extend $f^{[n]}$ to an odd function $g^{[n]}: \mathbb{R} \to \mathbb{R}$ for each $n \in \mathbb{N}$.

Now let us consider the auxiliary family of the equations

$$u'' + \lambda h(t)g^{[n]}(u) = 0, \quad t \in (0, 1),$$

$$u(0) = 0, \quad u(1) = m - 2 \sum_{i=1}^{m-2} \alpha_i u(\eta_i).$$

Let $\zeta \in C(R)$ be such that

$$g^{[n]}(u) = (g^{[n]})_0 u + \zeta^{[n]}(u) = nf(1/n)u + \zeta^{[n]}(u).$$

Note that

$$\lim_{|s| \to 0} \frac{\zeta^{[n]}(s)}{s} = 0.$$

Let us consider

$$(4.1) \quad Lu - \lambda h(t)(g^{[n]})_0 u = \lambda h(t)\zeta^{[n]}(u)$$

as a bifurcation problem from the trivial solution $u \equiv 0$.

Equation (4.1) can be converted to the equivalent equation

$$u(t) = \int_0^1 H(t, s)[\lambda h(s)(g^{[n]})_0 u(s) + \lambda h(s)\zeta^{[n]}(u(s))] ds$$

$$:= (\lambda L^{-1}[h(\cdot)(g^{[n]})_0 u(\cdot)]](t) + \lambda L^{-1}[h(\cdot)\zeta^{[n]}(u(\cdot)))](t).$$

Further we note that $||L^{-1}[h(\cdot)\zeta^{[n]}(u(\cdot))]] = o(||u||)$ for u near 0 in E.

By Lemma 3.1 and the fact $(g^{[n]})_0 > 0$, the results of nonlinear Krein–Rutman Theorem (see Dancer [1] and Zeidler [10, Corollary 15.12]) for (4.1) can be stated as follows: there exists a continuum $C_+^{[n]}$ of positive solutions of (4.1) joining $(\lambda_1/(g^{[n]})_0, 0)$ to infinity in K. Moreover, $C_+^{[n]} \setminus \{(\lambda_1/(g^{[n]})_0, 0)\} \subset \text{int} K$ and $(\lambda_1/(g^{[n]})_0, 0)$ is the only positive bifurcation point of (4.1) lying on trivial solutions line $u \equiv 0$.

Proof of Theorem 4.1. Let us verify that $\{C_+^{[n]}\}$ satisfies all of the conditions of Lemma 2.4. Since

$$\lim_{n \to \infty} \frac{\lambda_1}{(g^{[n]})_0} = \lim_{n \to \infty} \frac{\lambda_1}{nf(1/n)} = 0,$$

Condition (a) in Lemma 2.4 is satisfied with $z^* = (0, 0)$. Obviously

$$r_n = \sup \{|\lambda| + ||y||_0 | (\lambda, y) \in C_+^{[n]}\} = \infty.$$
and accordingly, (b) holds. (c) can be deduced directly from the Arzela–Ascoli Theorem and the definition of $g^{[n]}$. Therefore, the superior limit of $\{C^{[n]}\}$, i.e. D, contains an unbounded connected component C with $(0, 0) \in C$.

(a) $f_\infty = 0$. In this case, we show that $\text{Proj}_R C = [0, \infty)$.

Assume on the contrary that $\sup \{ \lambda \mid (\lambda, y) \in C \} < \infty$, then there exists a sequence $\{(\mu_k, y_k)\} \subset C$ such that

$$\lim_{k \to \infty} ||y_k|| = \infty, \quad |\mu_k| \leq C_0,$$

for some positive constant C_0 depending not on k. From Lemma 3.4, we have that $\lim_{k \to \infty} ||y_k||_0 = \infty$. This together with the fact

$$\min_{\sigma \leq t \leq 1 - \sigma} y_k(t) \geq \sigma ||y_k||, \quad \text{for all } 0 < \sigma \leq \min \{t_0, 1 - t_0\}$$

implies that

$$\lim_{k \to \infty} y_k(t) = \infty, \quad \text{uniformly for } t \in [\sigma, 1 - \sigma].$$

Since $(\mu_k, y_k) \in C$, we have that

$$y_k''(t) + \mu_k h(t) g(y_k(t)) = 0, \quad t \in (0, 1),$$

$$y_k(0) = 0, \quad y_k(1) = \sum_{i=1}^{m-2} \alpha_i y_k(\eta_i).$$

Set $v_k(t) = y_k(t)/||y_k||_0$. Then $||v_k||_0 = 1$.

Now, choosing a subsequence and relabelling if necessary, it follows that there exists $(\mu_*, v_*) \in [0, C_0] \times E$ with

$$||v_*||_0 = 1,$$

such that

$$\lim_{k \to \infty} (\mu_k, v_k) = (\mu_*, v_*), \quad \text{in } R \times E$$

Moreover, using (4.2)–(4.4) and the assumption $f_\infty = 0$, it follows that

$$v_*''(t) + \mu_* h(t) \cdot 0 = 0, \quad t \in (0, 1),$$

$$v_*(0) = 0, \quad v_*(1) = \sum_{i=1}^{m-2} \alpha_i v_*(\eta_i),$$

and subsequently, $v_*(t) \equiv 0$ for $t \in [0, 1]$. This contradicts (4.5). Therefore

$$\sup \{ \lambda \mid (\lambda, y) \in C \} = \infty.$$

(b) $f_\infty \in (0, \infty)$. In this case, we show that $\text{Proj}_R C \subseteq [0, 1/f_\infty)$.

Let us rewrite (1.1)–(1.2) to the form

\[u'' + \lambda h(t)g_{\infty}u + \lambda h(t)\xi(u(t)) = 0, \quad t \in (0, 1), \]

\[u(0) = 0, \quad u(1) = \sum_{i=1}^{m-2} \alpha_i u(\eta_i), \]

where \(\xi(s) = g(s) - g_{\infty}s. \) Obviously \(\lim_{|s| \to \infty} \xi(s)/s = 0. \) Now by the same method used to prove [6, Theorem 5.1], we may prove that \(C \) joins \((0, 0) \) with \((\lambda_1/f_{\infty}, \infty). \)

(c) \(f_{\infty} = \infty. \) In this case, we show that \(C \) joins \((0, 0) \) with \((0, \infty). \)

Let \(\{(\mu_k, y_k)\} \subset C \) be such that \(|\mu_k| + ||y_k|| \to \infty \) as \(k \to \infty. \) Then

\[y_k''(t) + \mu_k h(t)g(y_k(t)) = 0, \quad t \in (0, 1), \]

\[y_k(0) = 0, \quad y_k(1) = \sum_{i=1}^{m-2} \alpha_i y_k(\eta_i). \]

If \(\{||y_k||\} \) is bounded, say, \(||y_k|| \leq M_1, \) for some \(M_1 \) depending not on \(k, \) then we may assume that

\[\lim_{k \to \infty} \mu_k = \infty. \tag{4.6} \]

Note that

\[\frac{g(y_k(t))}{y_k(t)} \geq \inf \left\{ \frac{g(s)}{s} \mid 0 < s \leq M_1 \right\} > 0. \]

By condition (A1), there exist some \(0 < \alpha < \beta < 1 \) such that \(h(t) > 0 \) for \(t \in [\alpha, \beta]. \) So, there exists a constant \(M_2 > 0, \) such that

\[h(t)\frac{g(y_k(t))}{y_k(t)} > M_2 > 0, \quad t \in [\alpha, \beta]. \tag{4.7} \]

Combining (4.6) and (4.7) with the relation

\[y_k''(t) + \mu_k h(t)g(y_k(t)) \frac{g(y_k(t))}{y_k(t)} y_k(t) = 0, \quad t \in (0, 1), \tag{4.8} \]

From [3, Theorem 6.1], we deduce that \(y_k \) must change its sign on \([\alpha, \beta] \) if \(k \) is large enough. This is a contradiction. Hence \(\{||y_k||\} \) is unbounded.

Now, taking \(\{(\mu_k, y_k)\} \subset C \) be such that

\[||y_k|| \to \infty \quad \text{as} \quad k \to \infty. \tag{4.9} \]

We show that \(\lim_{k \to \infty} \mu_k = 0. \)

Suppose on the contrary that, choosing a subsequence and relabelling if necessary, \(\mu_k \geq b_0 \) for some constant \(b_0 > 0. \) Then we have from (4.9) \(||y_k|| \to \infty, \)
as \(k \to \infty \). This together with (4.2) and condition (A1) imply that there exist constants \(\alpha_1, \beta_1 \) with \(\sigma < \alpha_1 < \beta_1 < 1 - \sigma \), such that
\[
h(t) > 0, \quad \lim_{k \to \infty} \mu_k \frac{g(y_k(t))}{y_k(t)} = \infty, \quad \text{for all } t \in [\alpha_1, \beta_1]
\]
for every fixed constant \(0 < \sigma < \min\{t_0, 1 - t_0\} \). Thus, we have from (4.8) and [3, Theorem 6.1] that \(y_k \) must change its sign on \([\alpha_1, \beta_1]\) if \(k \) is large enough. This is a contradiction. Therefore \(\lim_{k \to \infty} \mu_k = 0. \)

Proof of Theorem 4.2. (a) and (b) are immediate consequences of Theorem 4.1(a) and (b), respectively.

To prove (c), we rewrite (1.1)–(1.2) to
\[
u = \lambda \int_0^1 H(t, s)h(s)f(u(s)) \, ds =: T_{\lambda}u(t).
\]
By Lemma 3.3, for every \(r > 0 \) and \(u \in \partial \Omega_r \),
\[
||T_{\lambda}u||_0 \leq \lambda \tilde{M}_r \left(1 + \frac{\sum_{i=1}^{m-2} \alpha_i}{1 - \sum_{i=1}^{m-2} \alpha_i \eta_i} \right) \int_0^1 G(s, s)h(s) \, ds,
\]
where \(\tilde{M}_r = 1 + \max_{0 \leq s \leq r} \{ f(s) \} \).

Let \(\lambda_r > 0 \) be such that
\[
\lambda_r \tilde{M}_r \left(1 + \frac{\sum_{i=1}^{m-2} \alpha_i}{1 - \sum_{i=1}^{m-2} \alpha_i \eta_i} \right) \int_0^1 G(s, s)h(s) \, ds = r.
\]
Then for \(\lambda \in (0, \lambda_r) \) and \(u \in \partial \Omega_r \), \(||T_{\lambda}u||_0 < ||u||_0 \). This means that
\[
(4.10) \quad \Sigma \cap \{(\lambda, u) \in (0, \infty) \times K \mid 0 < \lambda < \lambda_r, \ u \in K : ||u||_0 = r\} = \emptyset.
\]
By Lemma 3.4 and Theorem 4.1, it follows that \(\mathcal{C} \) is also an unbounded component joining \((0, 0)\) and \((0, \infty)\) in \([0, \infty) \times Y \). Thus, (4.10) implies that for \(\lambda \in (0, \lambda_r) \), (1.1)–(1.2) has at least two positive solutions. \(\Box \)

Acknowledgements. The authors are very grateful to the anonymous referees for their valuable suggestions.

References

R. Ma and D. O'Regan, Nodal solutions for second-order m-point boundary value problems with nonlinearities across several eigenvalues, Nonlinear Anal. 64 (2006), 1562–1577.

Manuscript received August 30, 2008

RUYUN MA
Department of Mathematics
Northwest Normal University
Lanzhou 730070, P.R. CHINA

E-mail address: mary@nwnu.edu.cn

YULIAN AN
Department of Mathematics
Northwest Normal University
Lanzhou 730070, P.R. CHINA

Department of Mathematics
Lanzhou Jiaotong University
Lanzhou 730070, P.R. CHINA

E-mail address: an_yulian@tom.com