GLOBAL STRUCTURE OF POSITIVE SOLUTIONS FOR SUPERLINEAR SECOND ORDER m-POINT BOUNDARY VALUE PROBLEMS

Ruyun Ma - Yulian An

Abstract. In this paper, we consider the nonlinear eigenvalue problems

$$
\begin{aligned}
& u^{\prime \prime}+\lambda h(t) f(u)=0, \quad 0<t<1 \\
& u(0)=0, \quad u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right)
\end{aligned}
$$

where $m \geq 3, \eta_{i} \in(0,1)$ and $\alpha_{i}>0$ for $i=1, \ldots, m-2$, with $\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}<$ $1 ; h \in C([0,1],[0, \infty))$ and $h(t) \geq 0$ for $t \in[0,1]$ and $h\left(t_{0}\right)>0$ for $t_{0} \in[0,1]$; $f \in C\left([0, \infty),[0, \infty)\right.$) and $f(s)>0$ for $s>0$, and $f_{0}=\infty$, where $f_{0}=$ $\lim _{s \rightarrow 0^{+}} f(s) / s$. We investigate the global structure of positive solutions by using the nonlinear Krein-Rutman Theorem.

1. Introduction

The existence and multiplicity of positive solutions of nonlinear multi-point boundary value problems have been extensively studied, see Webb [8], Kwong and Wong [4], Ma [5] and references therein. Recently, the global structure of positive solutions of nonlinear multi-point boundary value problems has also been

[^0]extensively investigated by several authors, see for example, Rynne [7], Ma and O'Regan [6]. However, these papers only dealt with the case that $f_{0} \in(0, \infty)$, and relatively little is known about the global structure of solutions in the case that $f_{0}=\infty$. Especially, very few global results were found in the available literature when $f_{0}=\infty=f_{\infty}$. The likely reason is that the global bifurcation techniques can not be used directly in the case.

In this paper, we consider the nonlinear second order m-point boundary value problem of the form

$$
\begin{align*}
& u^{\prime \prime}+\lambda h(t) f(u)=0, \quad t \in(0,1), \tag{1.1}\\
& u(0)=0, \quad u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right) \tag{1.2}
\end{align*}
$$

where $m \geq 3, \eta_{i} \in(0,1)$ and $\alpha_{i}>0$ for $i=1, \ldots, m-2$ with $\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}<1 ; \lambda$ is a positive parameter; $h \in C([0,1],[0, \infty))$ and $h\left(t_{0}\right)>0$ for some $t_{0} \in[0,1]$ and $f \in C([0, \infty),[0, \infty))$. We obtain a complete description of the global structure of positive solutions of (1.1)-(1.2) under the assumptions:
(A1) $h:[0,1] \rightarrow[0, \infty)$ is continuous and $h\left(t_{0}\right)>0$ for some $t_{0} \in[0,1]$;
(A2) $f \in C([0, \infty),[0, \infty))$ and $f(s)>0$ for $s>0$;
(A3) $f_{0}=\infty$, where $f_{0}=\lim _{s \rightarrow 0^{+}} f(s) / s$;
(A4) $f_{\infty} \in[0, \infty]$, where $f_{\infty}=\lim _{s \rightarrow \infty} f(s) / s$.
We will develop a bifurcation approach to treat the case $f_{0}=\infty$. Crucial to this approach is to construct a sequence of functions $\left\{f^{[n]}\right\}$ which is asymptotic linear at 0 and satisfies

$$
f^{[n]} \rightarrow f, \quad\left(f^{[n]}\right)_{0} \rightarrow \infty
$$

By means of the corresponding auxiliary equations, we obtain a sequence of unbounded components $\left\{C_{+}^{[n]}\right\}$ via nonlinear Krein-Rutman bifurcation theorem [4], and this enable us to find an unbounded components \mathcal{C} satisfying

$$
(0,0) \in \mathcal{C} \subset \limsup C_{+}^{[n]}
$$

The rest of the paper is arranged as follows: In Section 2, we prove some properties of superior limit of certain infinity collection of connected sets. Section 3 is devoted to the existence of the principal eigenvalue of linear eigenvalue problem

$$
\begin{gather*}
u^{\prime \prime}+\lambda h(t) u=0, \quad t \in(0,1) \tag{1.3}\\
u(0)=0, \quad u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right) \tag{1.4}
\end{gather*}
$$

The approach of this section is based upon the well-known Krein-Rutman theorem and the order topology of a subspace of $C[0,1]$. Finally, in Section 4, we state and prove our main results.

2. Superior limit and component

Definition 2.1 ([9]). Let X be a Banach space and $\left\{C_{n} \mid n=1,2, \ldots\right\}$ be a family of subsets of X. Then the the superior limit \mathcal{D} of $\left\{C_{n}\right\}$ is defined by

$$
\mathcal{D}:=\limsup _{n \rightarrow \infty} C_{n}=\left\{x \in X \mid \exists\left\{n_{i}\right\} \subset \mathbb{N} \text { and } x_{n_{i}} \in C_{n_{i}}, \text { such that } x_{n_{i}} \rightarrow x\right\}
$$

Definition 2.2 ([9]). A component of a set M is meant a maximal connected subset of M.

Lemma 2.3 ([9]). Suppose that Y is a compact metric space, A and B are non-intersecting closed subsets of Y, and no component of Y intersects both A and B. Then there exist two disjoint compact subsets X_{A} and X_{B}, such that $Y=X_{A} \cup X_{B}, A \subset X_{A}, B \subset X_{B}$.

Lemma 2.4. Let X be a Banach space, and let $\left\{C_{n}\right\}$ be a family of connected subsets of X. Assume that
(a) there exist $z_{n} \in C_{n}, n=1,2, \ldots$, and $z^{*} \in X$, such that $z_{n} \rightarrow z^{*}$;
(b) $\lim _{n \rightarrow \infty} r_{n}=\infty$, where $r_{n}=\sup \left\{\|x\| \mid x \in C_{n}\right\}$;
(c) for every $R>0,\left(\bigcup_{n=1}^{\infty} C_{n}\right) \cap B_{R}$ is a relatively compact set of X, where

$$
B_{R}=\{x \in X \mid\|x\| \leq R\}
$$

Then there exists an unbounded component \mathcal{C} in \mathcal{D} and $z^{*} \in \mathcal{C}$.
Proof. By the definition of $\mathcal{D}, z^{*} \in \mathcal{D}$. Suppose on the contrary that the component \mathcal{C} in \mathcal{D}, which contains z^{*}, is bounded. Note that \mathcal{D} is closed in X. It follows that \mathcal{C} is closed subset of \mathcal{D}, and subsequently \mathcal{C} is closed subset of X. It is easy to see that \mathcal{C} is a compact set of X by (c). Take $\delta>0$, and let U_{1} be δ-neighbourhood of \mathcal{C} in X.

We discuss in two cases.
Case 1. $\partial U_{1} \cap \mathcal{D} \neq \emptyset$.
In this case, we have from (c) that $\bar{U}_{1} \cap \mathcal{D}$ is a compact metric space. Obviously, C and $\partial U_{1} \cap \mathcal{D}$ are two disjoint closed subsets of X. Because of the maximal connectedness of \mathcal{C}, there does not exist a component \mathcal{C}^{*} of $\mathcal{D} \cap \bar{U}_{1}$ such that $\mathcal{C}^{*} \cap \mathcal{C} \neq \emptyset, \mathcal{C}^{*} \cap\left(\partial U_{1} \cap \mathcal{D}\right) \neq \emptyset$. By Lemma 2.3, there exist two disjoint compact sets X_{A} and X_{B} of $D \cap \bar{U}_{1}$, such that $D \cap \bar{U}_{1}=X_{A} \cup X_{B}, \mathcal{C} \subset X_{A}$, $\partial U_{1} \cap \mathcal{D} \subset X_{B}$. Evidently, $d\left(X_{A}, X_{B}\right)>0$.

Let $\delta_{1}=(1 / 3) d\left(X_{A}, X_{B}\right)$, and let U_{2} be the ($\left.\delta_{1} / 3\right)$-neighbourhood of X_{A}. Set $U=U_{1} \cap U_{2}$, then

$$
\begin{equation*}
\mathcal{C} \subset U, \quad \partial U \cap \mathcal{D}=\emptyset \tag{2.1}
\end{equation*}
$$

Case 2. $\partial U_{1} \cap \mathcal{D}=\emptyset$.
In this case, we take $U=U_{1}$. It is obvious that (2.1) holds.
Since $z_{n} \rightarrow z^{*}$, we may assume that $\left\{z_{n}\right\} \subset U$. By (b) and the connectedness of C_{n}, there exists $n_{0}>0$, such that for all $n \geq n_{0}, C_{n} \cap \partial U \neq \emptyset$. Take $y_{n} \in C_{n} \cap \partial U$, then $\left\{y_{n} \mid n \geq n_{0}\right\}$ is a relative compact subset of X, so there exists $y^{*} \in \partial U$ and a subsequence $\left\{y_{n_{k}}\right\}$ of $\left\{y_{n} \mid n \geq n_{0}\right\}$ such that $y_{n_{k}} \rightarrow y^{*}$. Obviously, $y^{*} \in \mathcal{D}$. Therefore, $y^{*} \in \partial U \cap \mathcal{D}$. However, this contradicts (2.1).

3. Eigenvalue with a positive eigenfunction

Let Y be the Banach space $C[0,1]$ with the norm $\|u\|_{0}=\max \{|u(t)| \mid t \in$ $[0,1]\}$. Let $K=\{u \in Y \mid u(t) \geq 0$ for $t \in[0,1]\}$. Then K is normal. Let E denote the Banach space defined by

$$
E=\left\{u \in C^{1}[0,1] \mid u(0)=0, u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right)\right\}
$$

equipped with the norm $\|u\|=\max \left\{\|u\|_{0},\left\|u^{\prime}\right\|_{0}\right\}$.
Denote $e(t)=t, t \in[0,1]$, and let

$$
Y_{e}=\bigcup_{\rho>0} \rho[-e, e] \text { and }|x|_{e}=\inf \{\rho \mid \rho>0, x \in \rho[-e, e]\} \quad \text { for } x \in Y_{e}
$$

Set

$$
\begin{equation*}
K_{e}=Y_{e} \cap K=\{x \in K \mid x \leq \rho e \text { for some } \rho>0\} \tag{3.1}
\end{equation*}
$$

Then we have from [9, Proposition 19.9] that
(a) K_{e} is a normal cone of Y_{e} with nonempty interior;
(b) $\left(Y_{e},|\cdot|_{e}\right)$ is a Banach space and continuously imbedding in $\left(Y,\|\cdot\|_{0}\right)$.

Notice also that an $x \in Y_{e}$ is in int K_{e}, the interior of K_{e} in Y_{e} if and only if $x \geq \rho e$ for some $\rho>0$.

Let us consider an operator $T: K \rightarrow Y$ defined by

$$
\begin{equation*}
T u(t)=\int_{0}^{1} H(t, s) h(s) u(s) d s, \quad t \in[0,1] \tag{3.2}
\end{equation*}
$$

where

$$
H(t, s)=G(t, s)+\frac{\sum_{i=1}^{m-2} \alpha_{i} G\left(\eta_{i}, s\right)}{1-\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}} t
$$

and

$$
G(t, s)= \begin{cases}(1-t) s & \text { if } 0 \leq s \leq t \leq 1 \tag{3.3}\\ t(1-s) & \text { if } 0 \leq t \leq s \leq 1\end{cases}
$$

Set

$$
\beta:=\frac{\|h\|_{0}}{2}+\frac{\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}\left(1-\eta_{i}\right)}{1-\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}}\|h\|_{0} .
$$

Then

$$
\begin{aligned}
\int_{0}^{1} H(t, s) h(s) d s & =\frac{1}{2} t(1-t)\|h\|_{0}+\left[\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{1} G\left(\eta_{i}, s\right) h(s) d s}{1-\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}}\right] t \\
& \leq\left[\frac{1}{2}\|h\|_{0}+\frac{\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}\left(1-\eta_{i}\right)\|h\|_{0}}{1-\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}}\right] t=\beta t
\end{aligned}
$$

This together with (3.2) imply that

$$
-\beta\|x\|_{0} e(t) \leq(T x)(t) \leq \beta\|x\|_{0} e(t), \quad x \in Y
$$

and accordingly $T(Y) \subset Y_{e}$. Combining the facts $(E,\|\cdot\|) \hookrightarrow\left(Y_{e},|\cdot|_{e}\right)$ is closed and $T:\left(Y,\|\cdot\|_{0}\right) \rightarrow E$ is compact, we conclude that $T:\left(Y,\|\cdot\|_{0}\right) \rightarrow\left(Y_{e},|\cdot|_{e}\right)$ is compact. Since Y_{e} sits continuously in Y, we also have $T:\left(Y_{e},|\cdot|_{e}\right) \rightarrow\left(Y_{e},|\cdot|_{e}\right)$ is compact.

We claim that $T:\left(K_{e},|\cdot|_{e}\right) \rightarrow\left(K_{e},|\cdot|_{e}\right)$ is strongly positive.
In fact, for $x \in K_{e}$, denote $y(t)=\int_{0}^{1} H(t, s) h(s) x(s) d s, t \in[0,1]$. Then $y(t) \geq 0, y^{\prime \prime}(t)=-h(t) x(t) \leq 0$ in $(0,1)$, and

$$
\begin{equation*}
y(0)=0, \quad y(1)=\sum_{i=1}^{m-2} \alpha_{i} y\left(\eta_{i}\right) \tag{3.4}
\end{equation*}
$$

These imply that we cannot have $y\left(t_{0}\right)=y^{\prime}\left(t_{0}\right)=0$ for any $t_{0} \in(0,1)$, and therefore $y(t)>0$ in $(0,1)$ and $y^{\prime}(0)>0$. By the second relation in (3.4) and the fact $y(t)>0$ in $(0,1)$, we have that $y(1)>0$. Thus, there exists $\rho>0$ such that $y(t) \geq \rho t$ on $[0,1]$.

Now [2, Theorem 19.3] is applicable to T in Y_{e} with K_{e}. We get
Lemma 3.1. Let (A1) hold, and let $r(T)$ be the spectral radius of T. Then $r(T)>0$, and $r(T)$ is a simple eigenvalue with an eigenfunction $\varphi \in \operatorname{int} K_{e}$ and there is no other eigenvalue with a positive eigenfunction.

Corollary 3.2. Let (A1) hold, and let $r(T)$ be the spectral radius of T. Then $\lambda_{1}:=1 / r(T)$ is a simple eigenvalue with an eigenfunction $\varphi \in \operatorname{int} K_{e}$ and there is the unique eigenvalue with an eigenfunction $\varphi \in \operatorname{int} K_{e}$ and there is no other eigenvalue with a positive eigenfunction.

Remark 3.3. In [6] and [7], spectral theory was developed for linear second order multi-point eigenvalue problems (1.3)-(1.4) with the stronger assumption $h(t) \equiv 1$ in $[0,1]$.

Let σ be a constant with $0<\sigma<\min \left\{t_{0}, 1-t_{0}\right\}$. Denote the cone P in Y by

$$
P=\left\{u \in Y \mid u(t) \geq 0 \text { on }(0,1), \text { and } \min _{\sigma \leq t \leq 1-\sigma} u(t) \geq \sigma\|u\|_{0}\right\}
$$

and for $r>0$, let $\Omega_{r}=\left\{u \in K \mid\|u\|_{0}<r\right\}$.
Define an operator $T_{\lambda}: P \rightarrow Y$ by

$$
T_{\lambda} u(t)=\lambda \int_{0}^{1} H(t, s) h(s) f(u(s)) d s, \quad t \in[0,1]
$$

It is easy to show the following
Lemma 3.4. Assume that (A1)-(A2) hold. Then $T_{\lambda}: P \rightarrow P$ is completely continuous.

Lemma 3.5. Let (A1)-(A2) hold. If $u \in \partial \Omega_{r}, r>0$, then

$$
\left\|T_{\lambda} u\right\|_{0} \leq \lambda \widehat{M}_{r}\left(1+\frac{\sum_{i=1}^{m-2} \alpha_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}}\right) \int_{0}^{1} G(s, s) h(s) d s
$$

where $\widehat{M}_{r}=1+\max _{0 \leq s \leq r}\{f(s)\}$.
Proof. Since $f(u(t)) \leq \widehat{M}_{r}$ for $t \in[0,1]$, it follows that

$$
\begin{aligned}
\left\|T_{\lambda} u\right\|_{0} \leq & \lambda \int_{0}^{1} G(s, s) h(s) f(u(s)) d s \\
& +\frac{\lambda}{1-\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}} \sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{1} G(s, s) h(s) f(u(s)) d s \\
\leq & \lambda \widehat{M}_{r}\left(1+\frac{\sum_{i=1}^{m-2} \alpha_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}}\right) \int_{0}^{1} G(s, s) h(s) d s
\end{aligned}
$$

Lemma 3.6. Let (A1)-(A2) hold. Assume that $\left\{\left(\mu_{k}, y_{k}\right)\right\} \subset(0, \infty) \times K$ is a sequence of positive solutions of (1.1)-(1.2). Assume that $\left|\mu_{k}\right| \leq C_{0}$ for some constant $C_{0}>0$, and $\lim _{k \rightarrow \infty}\left\|y_{k}\right\|=\infty$. Then $\lim _{k \rightarrow \infty}\left\|y_{k}\right\|_{0}=\infty$.

Proof. From the relation

$$
y_{k}(t)=\mu_{k} \int_{0}^{1} H(t, s) h(s) f\left(y_{k}(s)\right) d s
$$

and the fact that the graph of y_{k} is concave down on $[0,1]$, we conclude that

$$
\begin{aligned}
\left\|y_{k}^{\prime}\right\|_{0}= & \max \left\{y_{k}^{\prime}(0),-y_{k}^{\prime}(1)\right\} \\
\leq & C_{0} \max \left\{\int_{0}^{1}(1-s) h(s) f\left(y_{k}(s)\right) d s\left(-\int_{0}^{1} s h(s) f\left(y_{k}(s)\right) d s\right)\right\} \\
& +C_{0} \frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{1} G\left(\eta_{i}, s\right) h(s) f\left(y_{k}(s)\right) d s}{1-\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}}
\end{aligned}
$$

which implies that $\left\{\left\|y_{k}^{\prime}\right\|_{0}\right\}$ is bounded whenever $\left\{\left\|y_{k}\right\|_{0}\right\}$ is bounded.

4. The main results

Let Σ be the closure of the set of positive solutions for (1.1)-(1.2) in E. The main results of the paper are the following

Theorem 4.1. Let (A1)-(A3) hold.
(a) If $f_{\infty}=0$, then there exists a sub-continuum ζ of Σ with $(0,0) \in \zeta$ and

$$
\operatorname{Proj}_{\mathbb{R}} \zeta=[0, \infty)
$$

(b) If $f_{\infty} \in(0, \infty)$, then there exists a sub-continuum ζ of Σ with

$$
(0,0) \in \zeta, \quad \operatorname{Proj}_{\mathbb{R}} \zeta \subseteq\left[0, \lambda_{1} / f_{\infty}\right)
$$

(c) If $f_{\infty}=0$, then there exists a component ζ of Σ with $(0,0) \in \zeta$, Proj $_{\mathbb{R}} \zeta$ is a bounded closed interval, and ζ approaches $(0, \infty)$ as $\|u\| \rightarrow \infty$.

Theorem 4.2. Let (A1)-(A3) hold.
(a) If $f_{\infty}=0$, then (1.1)-(1.2) has at least one positive solution for $\lambda \in$ $(0, \infty)$
(b) If $f_{\infty} \in(0, \infty)$, then (1.1)-(1.2) has at least one positive solution for $\lambda \in\left(0, \lambda_{1} / f_{\infty}\right)$.
(c) If $f_{\infty}=0$, then there exists $\lambda_{*}>0$ such that (1.1)-(1.2) has at least two positive solutions for $\lambda \in\left(0, \lambda_{*}\right)$.

To prove above theorems, we define $f^{[n]}(s):[0, \infty) \rightarrow[0, \infty)$ by

$$
f^{[n]}(s)= \begin{cases}f(s) & \text { if } s>(1 / n, \infty) \\ n f(1 / n) s & \text { if } s \in[0,1 / n]\end{cases}
$$

Then $f^{[n]} \in C([0, \infty),[0, \infty))$ with

$$
f^{[n]}(s)>0 \quad \text { for all } s \in(0, \infty) \quad \text { and } \quad\left(f^{[n]}\right)_{0}=n f(1 / n)>0
$$

By (A3), it follows that $\lim _{n \rightarrow \infty}\left(f^{[n]}\right)_{0}=\infty$.

To apply the nonlinear Krein-Rutman Theorem [4], we extend f to an odd function $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(s)= \begin{cases}f(s) & \text { if } s \geq 0 \\ -f(-s) & \text { if } s<0\end{cases}
$$

Similarly we may extend $f^{[n]}$ to an odd function $g^{[n]}: \mathbb{R} \rightarrow \mathbb{R}$ for each $n \in \mathbb{N}$.
Now let us consider the auxiliary family of the equations

$$
\begin{aligned}
u^{\prime \prime}+\lambda h(t) g^{[n]}(u) & =0, \quad t \in(0,1) \\
u(0)=0, \quad u(1) & =\sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right)
\end{aligned}
$$

Let $\zeta \in C(R)$ be such that

$$
g^{[n]}(u)=\left(g^{[n]}\right)_{0} u+\zeta^{[n]}(u)=n f(1 / n) u+\zeta^{[n]}(u)
$$

Note that

$$
\lim _{|s| \rightarrow 0} \frac{\zeta^{[n]}(s)}{s}=0
$$

Let us consider

$$
\begin{equation*}
L u-\lambda h(t)\left(g^{[n]}\right)_{0} u=\lambda h(t) \zeta^{[n]}(u) \tag{4.1}
\end{equation*}
$$

as a bifurcation problem from the trivial solution $u \equiv 0$.
Equation (4.1) can be converted to the equivalent equation

$$
\begin{aligned}
u(t) & =\int_{0}^{1} H(t, s)\left[\lambda h(s)\left(g^{[n]}\right)_{0} u(s)+\lambda h(s) \zeta^{[n]}(u(s))\right] d s \\
& :=\left(\lambda L^{-1}\left[h(\cdot)\left(g^{[n]}\right)_{0} u(\cdot)\right](t)+\lambda L^{-1}\left[h(\cdot) \zeta^{[n]}(u(\cdot))\right]\right)(t)
\end{aligned}
$$

Further we note that $\| L^{-1}\left[h(\cdot) \zeta^{[n]}(u(\cdot)] \|=o(\|u\|)\right.$ for u near 0 in E.
By Lemma 3.1 and the fact $\left(g^{[n]}\right)_{0}>0$, the results of nonlinear KreinRutman Theorem (see Dancer [1] and Zeidler [10, Corollary 15.12]) for (4.1) can be stated as follows: there exists a continuum $C_{+}^{[n]}$ of positive solutions of (4.1) joining $\left(\lambda_{1} /\left(g^{[n]}\right)_{0}, 0\right)$ to infinity in K. Moreover, $C_{+}^{[n]} \backslash\left\{\left(\lambda_{1} /\left(g^{[n]}\right)_{0}, 0\right)\right\} \subset \operatorname{int} K$ and $\left(\lambda_{1} /\left(g^{[n]}\right)_{0}, 0\right)$ is the only positive bifurcation point of (4.1) lying on trivial solutions line $u \equiv 0$.

Proof of Theorem 4.1. Let us verify that $\left\{C_{+}^{[n]}\right\}$ satisfies all of the conditions of Lemma 2.4. Since

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{1}}{\left(g^{[n]}\right)_{0}}=\lim _{n \rightarrow \infty} \frac{\lambda_{1}}{n f(1 / n)}=0
$$

Condition (a) in Lemma 2.4 is satisfied with $z^{*}=(0,0)$. Obviously

$$
r_{n}=\sup \left\{|\lambda|+\|y\|_{0} \mid(\lambda, y) \in C_{+}^{[n]}\right\}=\infty
$$

and accordingly, (b) holds. (c) can be deduced directly from the Arzela-Ascoli Theorem and the definition of $g^{[n]}$. Therefore, the superior limit of $\left\{C_{+}^{[n]}\right\}$, i.e. \mathcal{D}, contains an unbounded connected component \mathcal{C} with $(0,0) \in \mathcal{C}$.
(a) $f_{\infty}=0$. In this case, we show that $\operatorname{Proj}_{\mathbb{R}} \mathcal{C}=[0, \infty)$.

Assume on the contrary that $\sup \{\lambda \mid(\lambda, y) \in \mathcal{C}\}<\infty$, then there exists a sequence $\left\{\left(\mu_{k}, y_{k}\right)\right\} \subset \mathcal{C}$ such that

$$
\lim _{k \rightarrow \infty}\left\|y_{k}\right\|=\infty, \quad\left|\mu_{k}\right| \leq C_{0}
$$

for some positive constant C_{0} depending not on k. From Lemma 3.4, we have that $\lim _{k \rightarrow \infty}\left\|y_{k}\right\|_{0}=\infty$. This together with the fact

$$
\min _{\sigma \leq t \leq 1-\sigma} y_{k}(t) \geq \sigma\left\|y_{k}\right\|_{0}, \quad \text { for all } 0<\sigma<\min \left\{t_{0}, 1-t_{0}\right\}
$$

implies that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} y_{k}(t)=\infty, \quad \text { uniformly for } t \in[\sigma, 1-\sigma] \tag{4.2}
\end{equation*}
$$

Since $\left(\mu_{k}, y_{k}\right) \in \mathcal{C}$, we have that

$$
\begin{gather*}
y_{k}^{\prime \prime}(t)+\mu_{k} h(t) g\left(y_{k}(t)\right)=0, \quad t \in(0,1), \tag{4.3}\\
y_{k}(0)=0, \quad y_{k}(1)=\sum_{i=1}^{m-2} \alpha_{i} y_{k}\left(\eta_{i}\right) . \tag{4.4}
\end{gather*}
$$

Set $v_{k}(t)=y_{k}(t) /\left\|y_{k}\right\|_{0}$. Then $\left\|v_{k}\right\|_{0}=1$.
Now, choosing a subsequence and relabelling if necessary, it follows that there exists $\left(\mu_{*}, v_{*}\right) \in\left[0, C_{0}\right] \times E$ with

$$
\begin{equation*}
\left\|v_{*}\right\|_{0}=1 \tag{4.5}
\end{equation*}
$$

such that

$$
\lim _{k \rightarrow \infty}\left(\mu_{k}, v_{k}\right)=\left(\mu_{*}, v_{*}\right), \quad \text { in } \mathbb{R} \times E
$$

Moreover, using (4.2)-(4.4) and the assumption $f_{\infty}=0$, it follows that

$$
\begin{aligned}
& v_{*}^{\prime \prime}(t)+\mu_{*} h(t) \cdot 0=0, \quad t \in(0,1), \\
& v_{*}(0)=0, \quad v_{*}(1)=\sum_{i=1}^{m-2} \alpha_{i} v_{*}\left(\eta_{i}\right),
\end{aligned}
$$

and subsequently, $v_{*}(t) \equiv 0$ for $t \in[0,1]$. This contradicts (4.5). Therefore

$$
\sup \{\lambda \mid(\lambda, y) \in \mathcal{C}\}=\infty
$$

(b) $f_{\infty} \in(0, \infty)$. In this case, we show that $\operatorname{Proj}_{\mathbb{R}} \mathcal{C} \subseteq\left[0, \lambda_{1} / f_{\infty}\right)$.

Let us rewrite (1.1)-(1.2) to the form

$$
\begin{gathered}
u^{\prime \prime}+\lambda h(t) g_{\infty} u+\lambda h(t) \xi(u(t))=0, \quad t \in(0,1), \\
u(0)=0, \quad u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right)
\end{gathered}
$$

where $\xi(s)=g(s)-g_{\infty} s$. Obviously $\lim _{|s| \rightarrow \infty} \xi(s) / s=0$. Now by the same method used to prove [6, Theorem 5.1], we may prove that \mathcal{C} joins $(0,0)$ with $\left(\lambda_{1} / f_{\infty}, \infty\right)$.
(c) $f_{\infty}=\infty$. In this case, we show that \mathcal{C} joins $(0,0)$ with $(0, \infty)$.

Let $\left\{\left(\mu_{k}, y_{k}\right)\right\} \subset \mathcal{C}$ be such that $\left|\mu_{k}\right|+\left\|y_{k}\right\| \rightarrow \infty$ as $k \rightarrow \infty$. Then

$$
\begin{gathered}
y_{k}^{\prime \prime}(t)+\mu_{k} h(t) g\left(y_{k}(t)\right)=0, \quad t \in(0,1) \\
y_{k}(0)=0, \quad y_{k}(1)=\sum_{i=1}^{m-2} \alpha_{i} y_{k}\left(\eta_{i}\right)
\end{gathered}
$$

If $\left\{\left\|y_{k}\right\|\right\}$ is bounded, say, $\left\|y_{k}\right\| \leq M_{1}$, for some M_{1} depending not on k, then we may assume that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mu_{k}=\infty \tag{4.6}
\end{equation*}
$$

Note that

$$
\frac{g\left(y_{k}(t)\right)}{y_{k}(t)} \geq \inf \left\{\left.\frac{g(s)}{s} \right\rvert\, 0<s \leq M_{1}\right\}>0
$$

By condition (A1), there exist some $0<\alpha<\beta<1$ such that $h(t)>0$ for $t \in[\alpha, \beta]$. So, there exists a constant $M_{2}>0$, such that

$$
\begin{equation*}
h(t) \frac{g\left(y_{k}(t)\right)}{y_{k}(t)}>M_{2}>0, \quad t \in[\alpha, \beta] . \tag{4.7}
\end{equation*}
$$

Combining (4.6) and (4.7) with the relation

$$
\begin{equation*}
y_{k}^{\prime \prime}(t)+\mu_{k} h(t) \frac{g\left(y_{k}(t)\right)}{y_{k}(t)} y_{k}(t)=0, \quad t \in(0,1) \tag{4.8}
\end{equation*}
$$

From [3, Theorem 6.1], we deduce that y_{k} must change its sign on $[\alpha, \beta]$ if k is large enough. This is a contradiction. Hence $\left\{\left\|y_{k}\right\|\right\}$ is unbounded.

Now, taking $\left\{\left(\mu_{k}, y_{k}\right)\right\} \subset \mathcal{C}$ be such that

$$
\begin{equation*}
\left\|y_{k}\right\| \rightarrow \infty \quad \text { as } k \rightarrow \infty \tag{4.9}
\end{equation*}
$$

We show that $\lim _{k \rightarrow \infty} \mu_{k}=0$.
Suppose on the contrary that, choosing a subsequence and relabelling if necessary, $\mu_{k} \geq b_{0}$ for some constant $b_{0}>0$. Then we have from (4.9) $\left\|y_{k}\right\|_{0} \rightarrow \infty$,
as $k \rightarrow \infty$. This together with (4.2) and condition (A1) imply that there exist constants α_{1}, β_{1} with $\sigma<\alpha_{1}<\beta_{1}<1-\sigma$, such that

$$
h(t)>0, \quad \lim _{k \rightarrow \infty} \mu_{k} \frac{g\left(y_{k}(t)\right)}{y_{k}(t)}=\infty, \quad \text { for all } t \in\left[\alpha_{1}, \beta_{1}\right]
$$

for every fixed constant $0<\sigma<\min \left\{t_{0}, 1-t_{0}\right\}$. Thus, we have from (4.8) and [3, Theorem 6.1] that y_{k} must change its sign on $\left[\alpha_{1}, \beta_{1}\right]$ if k is large enough. This is a contradiction. Therefore $\lim _{k \rightarrow \infty} \mu_{k}=0$.

Proof of Theorem 4.2. (a) and (b) are immediate consequences of Theorem 4.1(a) and (b), respectively.

To prove (c), we rewrite (1.1)-(1.2) to

$$
u=\lambda \int_{0}^{1} H(t, s) h(s) f(u(s)) d s=: T_{\lambda} u(t)
$$

By Lemma 3.3, for every $r>0$ and $u \in \partial \Omega_{r}$,

$$
\left\|T_{\lambda} u\right\|_{0} \leq \lambda \widehat{M}_{r}\left(1+\frac{\sum_{i=1}^{m-2} \alpha_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}}\right) \int_{0}^{1} G(s, s) h(s) d s
$$

where $\widehat{M}_{r}=1+\max _{0 \leq s \leq r}\{f(s)\}$.
Let $\lambda_{r}>0$ be such that

$$
\lambda_{r} \widehat{M}_{r}\left(1+\frac{\sum_{i=1}^{m-2} \alpha_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}}\right) \int_{0}^{1} G(s, s) h(s) d s=r
$$

Then for $\lambda \in\left(0, \lambda_{r}\right)$ and $u \in \partial \Omega_{r},\left\|T_{\lambda} u\right\|_{0}<\|u\|_{0}$. This means that

$$
\begin{equation*}
\Sigma \cap\left\{(\lambda, u) \in(0, \infty) \times K \mid 0<\lambda<\lambda_{r}, u \in K:\|u\|_{0}=r\right\}=\emptyset \tag{4.10}
\end{equation*}
$$

By Lemma 3.4 and Theorem 4.1, it follows that \mathcal{C} is also an unbounded component joining $(0,0)$ and $(0, \infty)$ in $[0, \infty) \times Y$. Thus, (4.10) implies that for $\lambda \in\left(0, \lambda_{r}\right),(1.1)-(1.2)$ has at least two positive solutions.

Acknowledgements. The authors are very grateful to the anonymous referees for their valuable suggestions.

References

[1] E. Dancer, Global solutions branches for positive maps, Arch. Rational Mech. Anal. 55 (1974), 207-213.
[2] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
[3] Z. Deng, Introduction to BVPs and Sturmian Comparison Theory for Ordinary Differential Equations, Central China Normal University Press, 1987. (in Chinese)
[4] M. K. Kwong and J. S. W. Wong, The shooting method and nonhomogeneous multipoint BVPs of second-order ODE, Boundary Value Problems (2007), pp. 16.
[5] R. MA, Existence of positive solutions for superlinear semipositone m-point boundary value problems, Proc. Edinburgh Math. Soc. 46 (2003), 279-292.
[6] R. Ma and D. O'Regan, Nodal solutions for second-order m-point boundary value problems with nonlinearities across several eigenvalues, Nonlinear Anal. 64 (2006), 15621577.
[7] B. P. Rynne, Global bifurcation for $2 m$ th-order boundary value problems and infinitely many solutions of superlinear problems, J. Differential Equations 188 (2003), 461-472.
[8] J. R. L. Webb, Positive solutions of some three point boundary value problems via fixed point index theory, Nonlinear Anal. 47 (2001), 4319-4332.
[9] G. T. Whyburn, Topological Analysis, Princeton Math. Ser., vol. 23, Princeton University Press, Princeton, N. J., 1958.
[10] E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer-Verlag, New York, 1986.

Ruyun Ma

Department of Mathematics
Northwest Normal University
Lanzhou 730070, P.R. CHINA
E-mail address: mary@nwnu.edu.cn

Yulian An
Department of Mathematics
Northwest Normal University
Lanzhou 730070, P.R. CHINA
and
Department of Mathematics
Lanzhou Jiaotong University
Lanzhou 730070, P.R. CHINA
E-mail address: an_yulian@tom.com

[^0]: 2000 Mathematics Subject Classification. 34B10, 34G20
 Key words and phrases. Multiplicity results, multi-point boundary value problem, eigenvalues, bifurcation methods, positive solutions.

 The first named author supported by the NSFC(No.10671158), the NSF of Gansu Province (No. 3ZS051-A25-016), NWNU-KJCXGC-03-18, the Spring-sun program (No. Z2004-1-62033), SRFDP (No. 20060736001), and the SRF for ROCS, SEM(2006[311]).

