Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 34, 2009, 201–211

SCHRÖDINGER EQUATION WITH MULTIPARTICLE POTENTIAL AND CRITICAL NONLINEARITY

Jan Chabrowski — Andrzej Szulkin — Michel Willem

ABSTRACT. We study the existence and non-existence of ground states for the Schrödinger equations $-\Delta u - \lambda \sum_{i < j} u/|x_i - x_j|^2 = |u|^{2^*-2}u, x = (x_1, \ldots, x_m) \in \mathbb{R}^{mN}$, and $-\Delta u - \lambda u/|y|^2 = |u|^{2^*-2}u, x = (y, z) \in \mathbb{R}^N$. In both cases we assume $\lambda \neq 0$ and $\lambda < \overline{\lambda}$, where $\overline{\lambda}$ is the Hardy constant corresponding to the problem.

1. Introduction and statement of main results

Let x_1, \ldots, x_m represent *m* particles in \mathbb{R}^N , denote $x = (x_1, \ldots, x_m) \in \mathbb{R}^{mN}$ and let

(1.1)
$$V(x) := \sum_{i < j} \frac{1}{|x_i - x_j|^2}.$$

It has been shown in a recent paper by M. Hoffmann-Ostenhof et al. [7] that the following Hardy inequality holds if $m \ge 2$ and $N \ge 3$:

(1.2)
$$\overline{\lambda} := \inf_{u \in H^1(\mathbb{R}^{m_N}) \setminus \{0\}} \frac{\int_{\mathbb{R}^{m_N}} |\nabla u|^2 \, dx}{\int_{\mathbb{R}^{m_N}} V(x) u^2 \, dx} > 0.$$

©2009 Juliusz Schauder Center for Nonlinear Studies

²⁰⁰⁰ Mathematics Subject Classification. Primary 35J60; Secondary 35B33, 35J20, 35Q55. Key words and phrases. Schrödinger equation, multiparticle potential, Hardy inequality, ground state, concentration-compactness.

The second named author supported in part by the Swedish Natural Science Research Council.

For N = 1 (1.2) remains valid if $H^1(\mathbb{R}^m)$ is replaced by $H^1_0(\mathbb{R}^m \setminus N_m)$, where

(1.3)
$$N_m := \{x = (x_1, \dots, x_m) \in \mathbb{R}^m : x_i = x_j \text{ for some } i \neq j\},\$$

and in this latter case $\overline{\lambda} = 1/2$, see [7].

In the present paper we study the Schrödinger equation

(1.4)
$$-\Delta u - \lambda V(x)u = |u|^{2^*-2}u \quad \text{in } \mathbb{R}^{mN},$$

where $\lambda < \overline{\lambda}, \lambda \neq 0$ and $2^* := 2mN/(mN-2)$ is the critical Sobolev exponent.

Let $\|\cdot\|_p$ denote the usual $L^p(\mathbb{R}^l)$ -norm and $\mathcal{D}^{1,2}(\mathbb{R}^l)$ the closure of $C_0^{\infty}(\mathbb{R}^l)$ in the norm $\|\nabla u\|_2$ (l = mN or N depending on whether we consider (1.5) or (1.7) below). Let $m \geq 2, N \geq 3$ and

(1.5)
$$S_{\lambda} := \inf_{u \in \mathcal{D}^{1,2}(\mathbb{R}^{mN}) \setminus \{0\}} \frac{\int_{\mathbb{R}^{mN}} |\nabla u|^2 \, dx - \lambda \int_{\mathbb{R}^{mN}} V(x) u^2 \, dx}{\|u\|_{2^*}^2}$$

Assuming $\lambda < \overline{\lambda}$, it follows from (1.2) and the Sobolev inequality that $S_{\lambda} > 0$. Moreover, if there exists a minimizer \overline{u} , then \overline{u} , normalized by $\|\overline{u}\|_{2^*}^{2^*-2} = S_{\lambda}$, is a solution of (1.4). It will be called a ground state. Obviously, $S_0 = S$, where Sdenotes the best Sobolev constant for the embedding $\mathcal{D}^{1,2}(\mathbb{R}^{mN}) \hookrightarrow L^{2^*}(\mathbb{R}^{mN})$.

Our main result is the following

THEOREM 1.1. Suppose $m \ge 2$ and $N \ge 3$. If $0 < \lambda < \overline{\lambda}$, then $S_{\lambda} < S$ and there exists a ground state $u \in \mathcal{D}^{1,2}(\mathbb{R}^{mN})$ for (1.4). If $\lambda < 0$, then $S_{\lambda} = S$ and there is no ground state.

In Remark 3.3 we make comments on the cases N = 1 and 2. For the moment we only note that if N = 1, $m \ge 3$ and $0 < \lambda < \overline{\lambda} \equiv 1/2$, then S_{λ} is still well defined and positive; however, $\mathcal{D}^{1,2}(\mathbb{R}^{mN})$ in (1.5) must be replaced by $\mathcal{D}_0^{1,2}(\mathbb{R}^{mN} \setminus N_m)$.

In the two-particle case we can change the variables to x = (y, z), where $y = (x_1 - x_2)/\sqrt{2}$ and $z = (x_1 + x_2)/\sqrt{2}$ (cf. Lemma 4.6 in [7]). Then $\Delta u(x_1, x_2) = \Delta u(y, z)$ and

$$V(x_1, x_2) = V(y, z) = \frac{2}{|y|^2}.$$

Motivated by this, we let $x = (y, z) \in \mathbb{R}^k \times \mathbb{R}^{N-k}$, $1 \le k < N$, $2^* := 2N/(N-2)$ and consider the equation

(1.6)
$$-\Delta u - \lambda \frac{u}{|y|^2} = |u|^{2^* - 2} u \quad \text{in } \mathbb{R}^N$$

The corresponding minimization problem is

(1.7)
$$\widehat{S}_{\lambda} := \inf_{u \in \mathcal{D}^{1,2}(\mathbb{R}^N) \setminus \{0\}} \frac{\int_{\mathbb{R}^N} |\nabla u|^2 \, dx - \lambda \int_{\mathbb{R}^N} (u^2/|y|^2) \, dx}{\|u\|_{2^*}^2}.$$

It is well known from the Hardy–Sobolev–Maz'ja inequality [8, Corollary 3, Section 2.1.6] that if

$$\overline{\lambda} := \inf_{u \in \mathcal{D}^{1,2}(\mathbb{R}^N) \setminus \{0\}} \frac{\int_{\mathbb{R}^N} |\nabla u|^2 \, dx}{\int_{\mathbb{R}^N} (u^2/|y|^2) \, dx}$$

then $\overline{\lambda} = ((k-2)/2)^2$ and $\widehat{S}_{\lambda} > 0$ for $k \ge 3, \lambda \le \overline{\lambda}$. The same is true for k = 1, but with $\mathcal{D}^{1,2}(\mathbb{R}^N)$ replaced by $\mathcal{D}^{1,2}_0(\mathbb{R}^N \setminus (\{0\} \times \mathbb{R}^{N-k}))$. In [13] it has been shown that \widehat{S}_{λ} is attained (in a larger space) if $\lambda = \overline{\lambda}$; here we assume $\lambda < \overline{\lambda}$.

THEOREM 1.2. Suppose $3 \leq k < N$. If $0 < \lambda < \overline{\lambda}$, then $\widehat{S}_{\lambda} < S$ and there exists a ground state $u \in \mathcal{D}^{1,2}(\mathbb{R}^N)$ for (1.6). If $\lambda < 0$, then $\widehat{S}_{\lambda} = S$ and there is no ground state.

Let $\mathcal{D}_{\text{sym}}^{1,2}(\mathbb{R}^N) := \{ u \in \mathcal{D}^{1,2}(\mathbb{R}^N) : u = u(|y|, |z|) \}$, i.e. u is radially symmetric in each of the variables y and z but not necessarily in x. Denote the infimum in (1.7), taken with respect to $u \in \mathcal{D}^{1,2}_{\text{sym}}(\mathbb{R}^N)$, by $\widehat{S}_{\lambda,\text{sym}}$.

THEOREM 1.3. Suppose $3 \leq k < N$. If $0 < \lambda < \overline{\lambda}$, then $\widehat{S}_{\lambda,\text{sym}}$ is attained and $\widehat{S}_{\lambda,\text{sym}} = \widehat{S}_{\lambda}$. If $\lambda < 0$, then $\widehat{S}_{\lambda} < \widehat{S}_{\lambda,\text{sym}}$ and $\widehat{S}_{\lambda,\text{sym}}$ is attained (while \widehat{S}_{λ} is not as follows from the preceding theorem).

The second author would like to thank Mónica Clapp for helpful discussions from which the idea of the proof of Theorem 1.3 for $\lambda < 0$ originates.

Theorems 1.2 and 1.3 also hold for k = N. However, since this case has already been considered in [10], [12], we do not discuss it here. We would also like to mention some problems which are somewhat related to our work: to minimize

$$\frac{\int_{\mathbb{R}^N} |\nabla u|^2 \, dx}{\int_{\mathbb{R}^N} (|u|^q / |y|^\beta) \, dx)^{2/q}}$$

where $q = 2(N - \beta)/(N - 2)$, see e.g. [3], [4], [11], to minimize

$$\frac{1}{\|u\|_{2^*}^2} \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx - \sum_{i=1}^m \lambda_i \int_{\mathbb{R}^N} \frac{u^2}{|x - a_i|^2} \, dx \right),$$

where (a_1, \ldots, a_m) is fixed in \mathbb{R}^{mN} [6], and to find nonnegative solutions $u \in$ $H^1(\mathbb{R}^N)$ for the equation

$$-\Delta u + \frac{u}{|y|^2} = f(u),$$

where f is of subcritical growth [1].

Finally we note that if u is a minimizer for (1.5) or (1.7), then so is |u|. Therefore we may assume without loss of generality the ground states we have found are non-negative.

When this paper was already written, the authors have learned about recent work [2] and [9]. Our Theorem 1.3 is similar to Theorem 1 in [2] and Theorem 1.2 is similar to Theorem 2 in [9]. However, since our arguments are different and simpler than those contained in [2], [9], we include them in this paper.

J. Chabrowski — A. Szulkin — M. Willem

2. Proofs of Theorems 1.2 and 1.3

Let $\mathcal{M}(\mathbb{R}^N)$ denote the space of finite measures on \mathbb{R}^N and recall that $\mu_n \rightharpoonup \mu$ in $\mathcal{M}(\mathbb{R}^N)$ if $\langle \mu_n, \varphi \rangle \rightarrow \langle \mu, \varphi \rangle$ for all $\varphi \in C_0(\mathbb{R}^N)$, where $C_0(\mathbb{R}^N)$ is the closure, in the $L^{\infty}(\mathbb{R}^N)$ -norm, of the set of continuous and compactly supported functions. For each R > 0, let $\psi_R \in C^{\infty}(\mathbb{R}^N, [0, 1])$ be a radially symmetric function such that $\psi_R(x) = 0$ as $|x| \leq R$ and $\psi_R(x) = 1$ as $|x| \geq R + 1$. Given $\lambda < \overline{\lambda}$ and a sequence $u_n \rightharpoonup u$ in $\mathcal{D}^{1,2}(\mathbb{R}^N)$, we introduce the measures at infinity

(2.1)
$$\mu_{\infty} := \lim_{R \to \infty} \limsup_{n \to \infty} \int_{\mathbb{R}^N} \left(|\nabla u_n|^2 - \lambda \, \frac{u_n^2}{|y|^2} \right) \psi_R^2 \, dx$$

and

(2.2)
$$\nu_{\infty} := \lim_{R \to \infty} \limsup_{n \to \infty} \int_{\mathbb{R}^N} |u_n|^{2^*} \psi_R^{2^*} dx.$$

Originally the definition of ν_{∞} has been given by the expression

$$\nu_{\infty} = \lim_{R \to \infty} \limsup_{n \to \infty} \int_{|x| \ge R} |u_n|^{2^*} dx,$$

and these two definitions are known to be equivalent, see [5] or the proof of Lemma 1.40 in [15]. The corresponding two definitions of μ_{∞} are equivalent when $\lambda \leq 0$, and obviously, $\mu_{\infty} \geq 0$ in this case. However, if $0 < \lambda < \overline{\lambda}$, this is no longer clear, the reason being that the inequality $|\nabla u_n|^2 - \lambda u_n^2/|y|^2 \geq 0$ may not hold almost everywhere. By the same reason it is not clear that the limit as $R \to \infty$ exists in the definition of μ_{∞} , see Remark 2.2 below.

LEMMA 2.1. Let $(u_n) \subset \mathcal{D}^{1,2}(\mathbb{R}^N)$ be a sequence such that $u_n \rightharpoonup u$ in $\mathcal{D}^{1,2}(\mathbb{R}^N)$, $u_n \rightarrow u$ almost everywhere in \mathbb{R}^N ,

(2.3)
$$|\nabla(u_n-u)|^2 - \lambda \frac{(u_n-u)^2}{|y|^2} \rightharpoonup \mu \quad and \quad |u_n-u|^{2^*} \rightharpoonup \nu \quad in \ \mathcal{M}(\mathbb{R}^N).$$

Then

$$\|\nu\|^{2/2^*} \le \widehat{S}_{\lambda}^{-1} \|\mu\|, \quad \nu_{\infty}^{2/2^*} \le \widehat{S}_{\lambda}^{-1} \mu_{\infty},$$

(2.4)
$$\limsup_{n \to \infty} \int_{\mathbb{R}^N} \left(|\nabla u_n|^2 - \lambda \frac{u_n^2}{|y|^2} \right) dx = \int_{\mathbb{R}^N} \left(|\nabla u|^2 - \lambda \frac{u^2}{|y|^2} \right) dx + \|\mu\| + \mu_\infty$$

and

$$\limsup_{n \to \infty} \|u_n\|_{2^*}^{2^*} = \|u\|_{2^*}^{2^*} + \|\nu\| + \nu_{\infty}.$$

Moreover, if u = 0 and $\|\nu\|^{2/2^*} = \widehat{S}_{\lambda}^{-1} \|\mu\|$, then μ and ν are concentrated at a single point.

This is a variant of the concentration-compactness lemma [15]. Below we shall show that μ and μ_{∞} are positive measures. Assuming this, the proof of Lemma 2.1 is exactly the same as that of Lemma 1.40 in [15]. We note in particular that the expressions for μ_{∞} and ν_{∞} employed in the proof are those given by (2.1) and (2.2).

REMARK 2.2. It follows from (2.4) that μ_{∞} is independent of the particular choice of the functions ψ_R satisfying the required properties. As we have mentioned above, it is not clear whether the limit in (2.1) exists as $R \to \infty$. Therefore when adapting the proof of Lemma 1.40 in [15] to our case, we need to replace this limit with either $\limsup_{R\to\infty}$ or $\liminf_{R\to\infty}$. Since we obtain the same equality (2.4) in both cases, these limits must be equal and μ_{∞} is well defined.

LEMMA 2.3. The measures μ and μ_{∞} are positive.

PROOF. Let $\varphi \in C_0^{\infty}(\mathbb{R}^N)$, $\varphi \ge 0$, and put $\varphi_{\varepsilon} := \sqrt{\varphi + \varepsilon^2} - \varepsilon$, $\varepsilon > 0$. Since $u_n - u \rightharpoonup 0$ in $L^2_{loc}(\mathbb{R}^N)$ and $\varphi_{\varepsilon} \in C_0^1(\mathbb{R}^N)$, we have

$$0 \leq \lim_{n \to \infty} \int_{\mathbb{R}^N} \left(|\nabla(\varphi_{\varepsilon}(u_n - u))|^2 - \lambda \frac{(\varphi_{\varepsilon}(u_n - u))^2}{|y|^2} \right) dx$$
$$= \lim_{n \to \infty} \int_{\mathbb{R}^N} \left(|\nabla(u_n - u)|^2 - \lambda \frac{(u_n - u)^2}{|y|^2} \right) \varphi_{\varepsilon}^2 dx \to \langle \mu, \varphi_{\varepsilon}^2 \rangle$$

Since $\varphi_{\varepsilon}^2 \to \varphi$ in $L^{\infty}(\mathbb{R}^N)$ as $\varepsilon \to 0$, $\langle \mu, \varphi \rangle \ge 0$ and therefore $\mu \ge 0$. Let ψ_R be as in the definition of μ_{∞} . Then

$$0 \leq \int_{\mathbb{R}^N} \left(|\nabla(\psi_R u_n)|^2 - \lambda \frac{(\psi_R u_n)^2}{|y|^2} \right) dx = \int_{\mathbb{R}^N} \left(|\nabla u_n|^2 - \lambda \frac{u_n^2}{|y|^2} \right) \psi_R^2 dx + 2 \int_{\mathbb{R}^N} u_n \psi_R \nabla u_n \cdot \nabla \psi_R \, dx + \int_{\mathbb{R}^N} u_n^2 |\nabla \psi_R|^2 \, dx.$$

By Hölder's inequality and since $\|\nabla u_n\|_2 \leq c$ for some c > 0,

$$\int_{\mathbb{R}^N} |u_n \psi_R \nabla u_n \cdot \nabla \psi_R| \, dx \le c \|u_n \nabla \psi_R\|_2 \to c \|u \nabla \psi_R\|_2 \quad \text{as } n \to \infty.$$

Letting $R \to \infty$ we see that the right-hand side above tends to 0. Similarly,

$$\lim_{R \to \infty} \lim_{n \to \infty} \int_{\mathbb{R}^N} u_n^2 |\nabla \psi_R|^2 \, dx = 0,$$

and it follows that $\mu_{\infty} \geq 0$.

PROOF OF THEOREM 1.2. If $\lambda < 0$, then it is clear that $S \leq \widehat{S}_{\lambda}$. Let

$$U_{\varepsilon}(x) = (N(N-2))^{(N-2)/4} \left(\frac{\varepsilon}{\varepsilon^2 + |x|^2}\right)^{(N-2)/2}$$

choose $\tilde{x} = (\tilde{y}, \tilde{z})$ with $\tilde{y} \neq 0$ and let $\varphi \in C_0^{\infty}(\mathbb{R}^N, [0, 1])$ be a function such that $\varphi(x) = 1$ in a neighbourhood of \tilde{x} and $\operatorname{supp} \varphi \subset B(\tilde{x}, r)$ for some $r < |\tilde{y}|$ $(B(\tilde{x}, r)$ is the open ball centered at \tilde{x} and having radius r). Then, setting $u_{\varepsilon}(x) := \varphi(x)U_{\varepsilon}(x-\tilde{x})$, we see by an easy calculation that for a suitable C > 0,

$$\int_{\mathbb{R}^N} \frac{u_{\varepsilon}^2}{|y|^2} \, dx \leq C \int_{B(\widetilde{x},r)} U_{\varepsilon}^2(x-\widetilde{x}) \, dx \to 0 \quad \text{as } \varepsilon \to 0.$$

Hence, using the estimates on p. 35 in [15],

$$S \leq \frac{\int_{\mathbb{R}^N} |\nabla u_\varepsilon|^2 \, dx}{\|u_\varepsilon\|_{2^*}^2} \leq \frac{\int_{\mathbb{R}^N} |\nabla u_\varepsilon|^2 \, dx - \lambda \int_{\mathbb{R}^N} (u_\varepsilon^2/|y|^2) \, dx}{\|u_\varepsilon\|_{2^*}^2} = \frac{S^{N/2} + o(1)}{S^{(N-2)/2} + o(1)} \to S$$

as $\varepsilon \to 0$, and it follows that $\widehat{S}_{\lambda} = S$. If u is a minimizer for (1.7) and $||u||_{2^*} = 1$, then

$$S = \widehat{S}_{\lambda} = \int_{\mathbb{R}^N} |\nabla u|^2 \, dx - \lambda \int_{\mathbb{R}^N} \frac{u^2}{|y|^2} \, dx > \int_{\mathbb{R}^N} |\nabla u|^2 \, dx \ge S,$$

a contradiction.

Suppose now $0 < \lambda < \overline{\lambda}$. Since

$$\int_{\mathbb{R}^N} \left(|\nabla U_{\varepsilon}|^2 - \lambda \, \frac{U_{\varepsilon}^2}{|y|^2} \right) dx < \|\nabla U_{\varepsilon}\|_2^2 = S \|U_{\varepsilon}\|_{2^*}^2,$$

 $\widehat{S}_{\lambda} < S$ and it remains to show that \widehat{S}_{λ} is attained. We modify the argument of Theorem 1.41 in [15].

Let (u_n) be a minimizing sequence for (1.7) such that $||u_n||_{2^*} = 1$ and let

$$Q_n(r) := \sup_{\widetilde{x}=(0,\widetilde{z})} \int_{B(\widetilde{x},r)} |u_n|^{2^*} dx$$

(this is a variant of Lévy's concentration function). It is clear that $Q_n(r) \to 0$ as $r \to 0$ and $Q_n(r) \to 1$ as $r \to \infty$ (*n* fixed), hence $Q_n(r_n) = 1/2$ for some r_n . Moreover, since $\int_{B(\tilde{x},r)} |u_n|^{2^*} dx \to 0$ as $|\tilde{x}| = |\tilde{z}| \to \infty$ (*n* and *r* fixed), $Q_n(r_n)$ is attained at some $\tilde{x}_n = (0, \tilde{z}_n)$. It follows that setting

(2.5)
$$v_n(x) := r_n^{(N-2)/2} u_n(r_n x + \widetilde{x}_n),$$

we obtain

(2.6)
$$\int_{B(0,1)} |v_n|^{2^*} dx = \sup_{\tilde{x}=(0,\tilde{z})} \int_{B(\tilde{x},1)} |v_n|^{2^*} dx = \frac{1}{2}$$

Since

$$\int_{\mathbb{R}^N} \left(|\nabla v_n|^2 - \lambda \, \frac{v_n^2}{|y|^2} \right) dx = \int_{\mathbb{R}^N} \left(|\nabla u_n|^2 - \lambda \, \frac{u_n^2}{|y|^2} \right) dx$$

and

$$||v_n||_{2^*} = ||u_n||_{2^*} = 1,$$

 (v_n) is a minimizing sequence for (1.7). In particular, it is bounded, hence $v_n \rightarrow v$ in $\mathcal{D}^{1,2}(\mathbb{R}^N)$, $v_n \rightarrow v$ almost everywhere and (2.3) holds for v_n , v and some μ , ν after passing to a subsequence. As

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} \left(|\nabla v_n|^2 - \lambda \, \frac{v_n^2}{|y|^2} \right) dx = \widehat{S}_\lambda = \widehat{S}_\lambda \lim_{n \to \infty} \|v_n\|_{2^*}^2,$$

it follows using Lemma 2.1 and the definition of \widehat{S}_{λ} that

$$(2.7) \quad \int_{\mathbb{R}^N} \left(|\nabla v|^2 - \lambda \frac{v^2}{|y|^2} \right) dx + \|\mu\| + \mu_{\infty} = \widehat{S}_{\lambda} (\|v\|_{2^*}^{2^*} + \|\nu\| + \nu_{\infty})^{2/2^*} \\ \leq \widehat{S}_{\lambda} (\|v\|_{2^*}^2 + \|\nu\|^{2/2^*} + \nu_{\infty}^{2/2^*}) \leq \int_{\mathbb{R}^N} \left(|\nabla v|^2 - \lambda \frac{v^2}{|y|^2} \right) dx + \|\mu\| + \mu_{\infty}.$$

Hence

$$1 = (\|v\|_{2^*}^{2^*} + \|\nu\| + \nu_{\infty})^{2/2^*} = \|v\|_{2^*}^2 + \|\nu\|^{2/2^*} + \nu_{\infty}^{2/2^*},$$

so exactly one of $||v||_{2^*}$, $||\nu||$, ν_{∞} is 1 and the other two are 0. Since ν_{∞} cannot be 1 according to (2.6), it must be 0. If v = 0, then $||\mu|| = \hat{S}_{\lambda} ||\nu||^{2/2^*}$ as follows from (2.7), and μ , ν are concentrated at a single point \tilde{x} . If $\tilde{x} = (0, \tilde{z})$, then, employing (2.6),

(2.8)
$$\frac{1}{2} = \int_{B(0,1)} |v_n|^{2^*} dx \ge \int_{B(\tilde{x},1)} |v_n|^{2^*} dx \to ||\nu|| = 1,$$

a contradiction. Suppose $\tilde{x} = (\tilde{y}, \tilde{z}), \ \tilde{y} \neq 0$, and let $\varphi \in C_0^{\infty}(\mathbb{R}^N, [0, 1])$ be such that $\varphi(x) = 1$ in a neighbourhood of \tilde{x} and $\operatorname{supp} \varphi \subset B(\tilde{x}, r), \ r < |\tilde{y}|$. Since $\mu_{\infty} = 0$ and μ concentrates at \tilde{x} , we have

(2.9)
$$\lim_{n \to \infty} \int_{\mathbb{R}^N} \left(|\nabla v_n|^2 - \lambda \frac{v_n^2}{|y|^2} \right) (1 - \varphi^2) \, dx = 0.$$

Moreover, $\int_{\mathbb{R}^N} (v_n^2/|y|^2) \varphi^2 dx \to 0$ because $v_n \to 0$ in $L^2_{loc}(\mathbb{R}^N)$ and y is bounded away from 0 on supp φ . Since also ν concentrates at \tilde{x} , it follows using (2.9) that

(2.10)
$$\widehat{S}_{\lambda} = \lim_{n \to \infty} \int_{\mathbb{R}^N} \left(|\nabla v_n|^2 - \lambda \frac{v_n^2}{|y|^2} \right) \varphi^2 \, dx$$
$$= \lim_{n \to \infty} \|\nabla (\varphi v_n)\|_2^2 \ge S \lim_{n \to \infty} \|\varphi v_n\|_{2^*}^2 = S,$$

a contradiction again. Hence $\nu = 0$, $\|v\|_{2^*} = 1$ and

$$\widehat{S}_{\lambda} = \int_{\mathbb{R}^N} \left(|\nabla v|^2 - \lambda \, \frac{v^2}{|y|^2} \right) dx.$$

PROOF OF THEOREM 1.3. That $\widehat{S}_{\lambda,\text{sym}} = \widehat{S}_{\lambda}$ for $0 < \lambda < \overline{\lambda}$ follows immediately by the argument of Theorem 3.1 in [11]. More precisely, in this

case \widehat{S}_{λ} is attained at some $u \geq 0$ as follows from Theorem 1.2 and the comment at the end of the introduction. If $u^*(\cdot, z)$ denotes the Schwarz symmetrization of $u(\cdot, z)$ and $u^{**}(y, \cdot)$ the Schwarz symmetrization of $u^*(y, \cdot)$, then $u^{**} = u^{**}(|y|, |z|) \in \mathcal{D}^{1,2}_{\text{sym}}(\mathbb{R}^N)$ and \widehat{S}_{λ} is attained at u^{**} .

Suppose $\lambda < 0$, let $\widetilde{\mathcal{D}}_{sym}^{1,2}(\mathbb{R}^N) := \{u \in \mathcal{D}^{1,2}(\mathbb{R}^N) : u = u(|y|, z)\}$ and let $\widetilde{S}_{\lambda,sym}$ be the corresponding infimum as in (1.7). Lemma 2.1 requires some modification now. Since the measures μ and ν are invariant with respect to the action of O(k) given by $\widetilde{g}(y, z) := (gy, z), g \in O(k)$, one sees by inspecting the proof in [15] that if u = 0 and $\|\nu\|^{2/2^*} = \widetilde{S}_{\lambda,sym}^{-1}\|\mu\|$, then μ and ν are concentrated at a single orbit $\{(gy, z) : g \in O(k)\}$, cf. [14]. Taking this into account, the same argument as in the proof of Theorem 1.2 shows that there exists a minimizing sequence $v_n \rightharpoonup v$ such that $\nu_{\infty} = 0$ and if v = 0, then $\|\nu\| = 1$ and ν is concentrated at an orbit $\{(g\widetilde{y}, \widetilde{z}) : g \in O(k)\}$. Since ν consists of at most countably many atoms, \widetilde{y} must be 0. But this leads to a contradiction as in (2.8). So $\|v\|_{2^*} = 1$ and $\widetilde{S}_{\lambda,sym}$ is attained. Finally, Schwarz symmetrization shows that $\widehat{S}_{\lambda,sym} = \widetilde{S}_{\lambda,sym}$, and since \widehat{S}_{λ} is not attained, $\widehat{S}_{\lambda} < \widehat{S}_{\lambda,sym}$.

3. Proof of Theorem 1.1

Now we have $x = (x_1, \ldots, x_m) \in \mathbb{R}^{mN}$ and V(x) is given by (1.1). It will be convenient to introduce the following notation:

$$\widetilde{J} := \{ (i,j) : 1 \le i < j \le m \},\$$
$$J_p := \{ J \subset \widetilde{J} : J \text{ contains } p \text{ pairs } (i,j) \}$$

and

$$V_J(x) := \sum_{(i,j) \in J} \frac{1}{|x_i - x_j|^2}.$$

We also set $J_0 := \emptyset$ and $V_J := 0$ if $J \in J_0$. Clearly, $J_{m(m-1)/2} = \widetilde{J}$ and $V_J = V$ if $J \in J_{m(m-1)/2}$. Let

$$S_{\lambda,p} := \min_{J \in J_p} \inf_{u \in \mathcal{D}^{1,2}(\mathbb{R}^{mN}) \setminus \{0\}} \frac{\int_{\mathbb{R}^{mN}} (|\nabla u|^2 - \lambda V_J(x)u^2) \, dx}{\|u\|_{2^*}^2}$$

and for $\lambda < \overline{\lambda}$, a sequence $u_n \rightharpoonup u$ in $\mathcal{D}^{1,2}(\mathbb{R}^{mN})$ and $J \in J_p$, let

$$\mu_{J,\infty} := \lim_{R \to \infty} \limsup_{n \to \infty} \int_{\mathbb{R}^{mN}} (|\nabla u_n|^2 - \lambda V_J(x) u_n^2) \psi_R^2 \, dx$$

and

$$\nu_{J,\infty} := \lim_{R \to \infty} \limsup_{n \to \infty} \int_{\mathbb{R}^{mN}} |u_n|^{2^*} \psi_R^2 \, dx,$$

where $\psi_R \in C^{\infty}(\mathbb{R}^{mN}, [0, 1])$ is radially symmetric, $\psi_R = 0$ for $|x| \leq R$ and $\psi_R = 1$ for $|x| \geq R + 1$. Inspecting the proof of Lemma 1.40 in [15] once more we obtain the following

LEMMA 3.1. Let $(u_n) \subset \mathcal{D}^{1,2}(\mathbb{R}^{mN})$ be a sequence such that $u_n \rightharpoonup u$ in $\mathcal{D}^{1,2}(\mathbb{R}^{mN})$, $u_n \rightarrow u$ almost everywhere in \mathbb{R}^{mN} ,

$$|\nabla(u_n - u)|^2 - \lambda V_J(x)(u_n - u)^2 \rightharpoonup \mu_J$$
 and $|u_n - u|^{2^*} \rightharpoonup \nu_J$ in $\mathcal{M}(\mathbb{R}^{mN})$.

Then

$$\|\nu_J\|^{2/2^*} \le S_{\lambda,p}^{-1} \|\mu_J\|, \quad \nu_{J,\infty}^{2/2^*} \le S_{\lambda,p}^{-1} \mu_{J,\infty},$$

$$\limsup_{n \to \infty} \int_{\mathbb{R}^{mN}} (|\nabla u_n|^2 - \lambda V_J(x)u_n^2) dx$$
$$= \int_{\mathbb{R}^{mN}} (|\nabla u|^2 - \lambda V_J(x)u^2) dx + ||\mu_J|| + \mu_{J,\infty}$$

and

$$\limsup_{n \to \infty} \|u_n\|_{2^*}^{2^*} = \|u\|_{2^*}^{2^*} + \|\nu_J\| + \nu_{J,\infty}.$$

Moreover, if u = 0 and $\|\nu_J\|^{2/2^*} = S_{\lambda,p}^{-1} \|\mu_J\|$, then μ_J and ν_J are concentrated at a single point.

That $\mu_{J,\infty}$ is well defined and μ_J , $\mu_{J,\infty}$ are positive is seen as in Remark 2.2 and Lemma 2.3.

PROPOSITION 3.2. Let $\lambda \in (0, \overline{\lambda})$. Then $S_{\lambda,p} < S_{\lambda,p-1}$ and $S_{\lambda,p}$ is attained for each $p = 1, \ldots, m(m-1)/2$.

We note that $S_{\lambda,0} = S$ (and is attained) while $S_{\lambda,m(m-1)/2} = S_{\lambda}$. Hence the existence part of Theorem 1.1 is an immediate consequence of Proposition 3.2. The non-existence part is shown as in Theorem 1.2 except that now $\tilde{x} = (\tilde{x}_1, \ldots, \tilde{x}_m)$ and r need to be chosen so that $x_i \neq x_j$ for any $i \neq j$ and $x = (x_1, \ldots, x_m) \in B(\tilde{x}, r)$.

PROOF OF PROPOSITION 3.2. We proceed by (finite) induction. Suppose it has been shown that $S_{\lambda,p-1}$ is attained. If \overline{u} is a minimizer for $S_{\lambda,p-1}$, $\|\overline{u}\|_{2^*} = 1$, then

$$S_{\lambda,p-1} = \int_{\mathbb{R}^{mN}} (|\nabla \overline{u}|^2 - \lambda V_J(x)\overline{u}^2) \, dx$$

for some $J \in J_{p-1}$, hence

$$\int_{\mathbb{R}^{mN}} (|\nabla \overline{u}|^2 - \lambda V_{J^*}(x)\overline{u}^2) \, dx < S_{\lambda, p-1}$$

for all $J^* \in J_p$, $J^* \supset J$. So $S_{\lambda,p} < S_{\lambda,p-1}$ and it remains to show that $S_{\lambda,p}$ is attained. Choose $J \in J_p$ so that

(3.1)
$$S_{\lambda,p} = \inf_{u \in \mathcal{D}^{1,2}(\mathbb{R}^{mN}) \setminus \{0\}} \frac{\int_{\mathbb{R}^{mN}} (|\nabla u|^2 - \lambda V_J(x)u^2) \, dx}{\|u\|_{2^*}^2}$$

and assume for notational convenience that the indices $1, \ldots, l$ but not $l + 1, \ldots, m$ appear in J. Let (u_n) be a minimizing sequence for (3.1), $||u_n||_{2^*} = 1$,

$$X := \{ x = (x_1, \dots, x_m) \in \mathbb{R}^{mN} : x_1 = \dots = x_l \}$$

and

$$Q_n(r) := \sup_{\widetilde{x} \in X} \int_{B(\widetilde{x},r)} |u_n|^{2^*} dx.$$

Define v_n as in (2.5), with N replaced by mN. Then (2.6) holds except that this time the supremum is taken over all $\tilde{x} \in X$. Since the right-hand side of (3.1) is invariant with respect to dilations and translations by elements of X, (v_n) is a minimizing sequence for (3.1). As in the proof of Theorem 1.2, we see that $\nu_{J,\infty} = 0$ and if the weak limit of (v_n) is 0, then $\|\mu_J\| = S_{\lambda,p} \|\nu_J\|_2^{2/2^*}$ and μ_J, ν_J are concentrated at a single point \tilde{x} . If $\tilde{x} \in X$, then (2.8) holds and we have a contradiction. If $\tilde{x} \notin X$, then we may assume (for notational convenience again) that $\tilde{x}_1 \neq \tilde{x}_2$, and we set $I := J \setminus \{(1,2)\}$. By the same argument as in (2.9) and (2.10) (with φ such that $\supp \varphi \cap X = \emptyset$) we see that

$$\lim_{n \to \infty} \int_{\mathbb{R}^{mN}} (|\nabla v_n|^2 - \lambda V_I(x) v_n^2) (1 - \varphi^2) \, dx = 0$$

and

$$S_{\lambda,p} = \lim_{n \to \infty} \int_{\mathbb{R}^{mN}} (|\nabla v_n|^2 - \lambda V_J(x) v_n^2) \varphi^2 dx$$

=
$$\lim_{n \to \infty} \int_{\mathbb{R}^{mN}} (|\nabla (\varphi v_n)|^2 - \lambda V_I(x) (\varphi v_n)^2) dx \ge S_{\lambda,p-1} \lim_{n \to \infty} \|\varphi v_n\|_{2^*}^2 = S_{\lambda,p-1},$$

a contradiction. So $||v||_{2^*} = 1$ and the conclusion follows.

REMARK 3.3. If $m \ge 4$, N = 1 and $0 < \lambda < \overline{\lambda}$, then the Hardy inequality (1.2) still holds (with $\overline{\lambda} = 1/2$) for a smaller class of functions as we have already mentioned at the beginning of the introduction. In this case S_{λ} will be attained if $\mathcal{D}^{1,2}(\mathbb{R}^{mN})$ is replaced by $\mathcal{D}_{0}^{1,2}(\mathbb{R}^{mN} \setminus N_{m})$, where N_{m} is as in (1.3). This follows by inspection of the argument of Theorem 1.1. If N = 2, then $\overline{\lambda} = 0$, cf. Remark 2.2(i) in [7]. For $\lambda < 0$ there are no ground states if $m \ge 3$, N = 1or $m \ge 2$, N = 2. The proof is the same as for $m \ge 2$, $N \ge 3$.

References

- M. BADIALE, V. BENCI AND S. ROLANDO, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. European Math. Soc. 9 (2007), 355–381.
- [2] M. BADIALE, M. GUIDA, S. ROLANDO, Elliptic equations with decaying cylindrical potentials and power-type nonlinearities, Adv. Differential Equations 12 (2007), 1321–1362.
- M. BADIALE AND E. SERRA, Critical nonlinear elliptic equations with singularities and cylindrical symmetry, Rev. Mat. Iberoamericana 20 (2004), 33–66.

- [4] M. BADIALE AND G. TARANTELLO, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Rational Mech. Anal. 163 (2002), 259–293.
- [5] G. BIANCHI, J. CHABROWSKI AND A. SZULKIN, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent, Nonlinear Anal. 25 (1995), 41–59.
- V. FELLI AND S. TERRACINI, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, Comm. Partial Differential Equations 31 (2006), 469–495.
- [7] M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF, A. LAPTEV AND J. TIDBLOM, Many particle Hardy inequalities, J. London Math. Soc. 77 (2008), 99–114.
- [8] V. G. MAZ'JA, Sobolev Spaces, Springer-Verlag, Berlin, 1985.
- [9] R. MUSINA, Ground state solutions of a critical problem involving cylindrical weights, Nonlinear Anal. **68** (2008), 3972–3986.
- D. RUIZ AND M. WILLEM, Elliptic problems with critical exponents and Hardy potentials, J. Differential Equations 190 (2003), 524–538.
- [11] S. SECCHI, D. SMETS AND M. WILLEM, Remarks on a Hardy–Sobolev inequality, C. R. Acad. Sci. Paris Sér. I 336 (2003), 811–815.
- [12] S. TERRACINI, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations 1 (1996), 241–264.
- [13] A. TERTIKAS AND K. TINTAREV, On existence of minimizers for the Hardy-Sobolev-Maz'ya inequality, Ann. Mat. Pura Appl. 186 (2007), 645–662.
- [14] S. WALIULLAH, Minimizers and symmetric minimizers, Topol. Methods Nonlinear Anal. (to appear).
- [15] M. WILLEM, Minimax Theorems, Birkhäuser, Boston, 1996.

Manuscript received July 19, 2007

JAN CHABROWSKI Department of Mathematics University of Queensland St. Lucia 4072, Qld, AUSTRALIA

E-mail address: jhc@maths.uq.edu.au

ANDRZEJ SZULKIN Department of Mathematics Stockholm University 106 91 Stockholm, SWEDEN *E-mail address*: andrzejs@math.su.se

MICHEL WILLEM Institut de Mathématique Pure et Appliquée Université Catholique de Louvain 1348 Louvain-la-Neuve, BELGIUM

E-mail address: willem@math.ucl.ac.be

TMNA: Volume 34 - 2009 - N° 2