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SCHRÖDINGER EQUATION
WITH MULTIPARTICLE POTENTIAL

AND CRITICAL NONLINEARITY

Jan Chabrowski — Andrzej Szulkin — Michel Willem

Abstract. We study the existence and non-existence of ground states for

the Schrödinger equations −∆u − λ
P

i<j u/|xi − xj |2 = |u|2∗−2u, x =

(x1, . . . , xm) ∈ RmN , and −∆u − λu/|y|2 = |u|2∗−2u, x = (y, z) ∈ RN .

In both cases we assume λ 6= 0 and λ < λ, where λ is the Hardy constant
corresponding to the problem.

1. Introduction and statement of main results

Let x1, . . . , xm represent m particles in RN , denote x = (x1, . . . , xm) ∈ RmN

and let

(1.1) V (x) :=
∑
i<j

1
|xi − xj |2

.

It has been shown in a recent paper by M. Hoffmann-Ostenhof et al. [7] that the
following Hardy inequality holds if m ≥ 2 and N ≥ 3:

(1.2) λ := inf
u∈H1(RmN )\{0}

∫
RmN |∇u|2 dx∫

RmN V (x)u2 dx
> 0.
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For N = 1 (1.2) remains valid if H1(Rm) is replaced by H1
0 (Rm \Nm), where

(1.3) Nm := {x = (x1, . . . , xm) ∈ Rm : xi = xj for some i 6= j},

and in this latter case λ = 1/2, see [7].

In the present paper we study the Schrödinger equation

(1.4) −∆u− λV (x)u = |u|2
∗−2u in RmN ,

where λ < λ, λ 6= 0 and 2∗ := 2mN/(mN − 2) is the critical Sobolev exponent.
Let ‖ · ‖p denote the usual Lp(Rl)-norm and D1,2(Rl) the closure of C∞0 (Rl)

in the norm ‖∇u‖2 (l = mN or N depending on whether we consider (1.5) or
(1.7) below). Let m ≥ 2, N ≥ 3 and

(1.5) Sλ := inf
u∈D1,2(RmN )\{0}

∫
RmN |∇u|2 dx− λ

∫
RmN V (x)u2 dx

‖u‖22∗
.

Assuming λ < λ, it follows from (1.2) and the Sobolev inequality that Sλ > 0.
Moreover, if there exists a minimizer u, then u, normalized by ‖u‖2

∗−2
2∗ = Sλ, is

a solution of (1.4). It will be called a ground state. Obviously, S0 = S, where S
denotes the best Sobolev constant for the embedding D1,2(RmN ) ↪→ L2∗(RmN ).

Our main result is the following

Theorem 1.1. Suppose m ≥ 2 and N ≥ 3. If 0 < λ < λ, then Sλ < S and
there exists a ground state u ∈ D1,2(RmN ) for (1.4). If λ < 0, then Sλ = S and
there is no ground state.

In Remark 3.3 we make comments on the cases N = 1 and 2. For the
moment we only note that if N = 1, m ≥ 3 and 0 < λ < λ ≡ 1/2, then Sλ is
still well defined and positive; however, D1,2(RmN ) in (1.5) must be replaced by
D1,2

0 (RmN \Nm).
In the two-particle case we can change the variables to x = (y, z), where y =

(x1 − x2)/
√

2 and z = (x1 + x2)/
√

2 (cf. Lemma 4.6 in [7]). Then ∆u(x1, x2) =
∆u(y, z) and

V (x1, x2) = V (y, z) =
2
|y|2

.

Motivated by this, we let x = (y, z) ∈ Rk×RN−k, 1 ≤ k < N , 2∗ := 2N/(N −2)
and consider the equation

(1.6) −∆u− λ
u

|y|2
= |u|2

∗−2u in RN .

The corresponding minimization problem is

(1.7) Ŝλ := inf
u∈D1,2(RN )\{0}

∫
RN |∇u|2 dx− λ

∫
RN (u2/|y|2) dx

‖u‖22∗
.
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It is well known from the Hardy–Sobolev–Maz’ja inequality [8, Corollary 3, Sec-
tion 2.1.6] that if

λ := inf
u∈D1,2(RN )\{0}

∫
RN |∇u|2 dx∫

RN (u2/|y|2) dx
,

then λ = ((k − 2)/2)2 and Ŝλ > 0 for k ≥ 3, λ ≤ λ. The same is true for k = 1,
but with D1,2(RN ) replaced by D1,2

0 (RN \ ({0} × RN−k)). In [13] it has been
shown that Ŝλ is attained (in a larger space) if λ = λ; here we assume λ < λ.

Theorem 1.2. Suppose 3 ≤ k < N . If 0 < λ < λ, then Ŝλ < S and there
exists a ground state u ∈ D1,2(RN ) for (1.6). If λ < 0, then Ŝλ = S and there is
no ground state.

LetD1,2
sym(RN ) := {u ∈ D1,2(RN ) : u = u(|y|, |z|)}, i.e. u is radially symmetric

in each of the variables y and z but not necessarily in x. Denote the infimum in
(1.7), taken with respect to u ∈ D1,2

sym(RN ), by Ŝλ,sym.

Theorem 1.3. Suppose 3 ≤ k < N . If 0 < λ < λ, then Ŝλ,sym is attained
and Ŝλ,sym = Ŝλ. If λ < 0, then Ŝλ < Ŝλ,sym and Ŝλ,sym is attained (while Ŝλ is
not as follows from the preceding theorem).

The second author would like to thank Mónica Clapp for helpful discussions
from which the idea of the proof of Theorem 1.3 for λ < 0 originates.

Theorems 1.2 and 1.3 also hold for k = N . However, since this case has
already been considered in [10], [12], we do not discuss it here. We would also
like to mention some problems which are somewhat related to our work: to
minimize ∫

RN |∇u|2 dx
(
∫

RN (|u|q/|y|β) dx)2/q
,

where q = 2(N − β)/(N − 2), see e.g. [3], [4], [11], to minimize

1
‖u‖22∗

(∫
RN

|∇u|2 dx−
m∑

i=1

λi

∫
RN

u2

|x− ai|2
dx

)
,

where (a1, . . . , am) is fixed in RmN [6], and to find nonnegative solutions u ∈
H1(RN ) for the equation

−∆u+
u

|y|2
= f(u),

where f is of subcritical growth [1].
Finally we note that if u is a minimizer for (1.5) or (1.7), then so is |u|.

Therefore we may assume without loss of generality the ground states we have
found are non-negative.

When this paper was already written, the authors have learned about recent
work [2] and [9]. Our Theorem 1.3 is similar to Theorem 1 in [2] and Theorem 1.2
is similar to Theorem 2 in [9]. However, since our arguments are different and
simpler than those contained in [2], [9], we include them in this paper.
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2. Proofs of Theorems 1.2 and 1.3

LetM(RN ) denote the space of finite measures on RN and recall that µn ⇀ µ

inM(RN ) if 〈µn, ϕ〉 → 〈µ, ϕ〉 for all ϕ ∈ C0(RN ), where C0(RN ) is the closure, in
the L∞(RN )-norm, of the set of continuous and compactly supported functions.
For each R > 0, let ψR ∈ C∞(RN , [0, 1]) be a radially symmetric function such
that ψR(x) = 0 as |x| ≤ R and ψR(x) = 1 as |x| ≥ R + 1. Given λ < λ and a
sequence un ⇀ u in D1,2(RN ), we introduce the measures at infinity

(2.1) µ∞ := lim
R→∞

lim sup
n→∞

∫
RN

(
|∇un|2 − λ

u2
n

|y|2

)
ψ2

R dx

and

(2.2) ν∞ := lim
R→∞

lim sup
n→∞

∫
RN

|un|2
∗
ψ2∗

R dx.

Originally the definition of ν∞ has been given by the expression

ν∞ = lim
R→∞

lim sup
n→∞

∫
|x|≥R

|un|2
∗
dx,

and these two definitions are known to be equivalent, see [5] or the proof of
Lemma 1.40 in [15]. The corresponding two definitions of µ∞ are equivalent
when λ ≤ 0, and obviously, µ∞ ≥ 0 in this case. However, if 0 < λ < λ, this is
no longer clear, the reason being that the inequality |∇un|2 − λu2

n/|y|2 ≥ 0 may
not hold almost everywhere. By the same reason it is not clear that the limit as
R→∞ exists in the definition of µ∞, see Remark 2.2 below.

Lemma 2.1. Let (un) ⊂ D1,2(RN ) be a sequence such that un ⇀ u in
D1,2(RN ), un → u almost everywhere in RN ,

(2.3) |∇(un − u)|2 − λ
(un − u)2

|y|2
⇀ µ and |un − u|2

∗
⇀ ν in M(RN ).

Then

‖ν‖2/2∗ ≤ Ŝ−1
λ ‖µ‖, ν2/2∗

∞ ≤ Ŝ−1
λ µ∞,

(2.4) lim sup
n→∞

∫
RN

(
|∇un|2 − λ

u2
n

|y|2

)
dx

=
∫

RN

(
|∇u|2 − λ

u2

|y|2

)
dx+ ‖µ‖+ µ∞

and

lim sup
n→∞

‖un‖2
∗

2∗ = ‖u‖2
∗

2∗ + ‖ν‖+ ν∞.
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Moreover, if u = 0 and ‖ν‖2/2∗ = Ŝ−1
λ ‖µ‖, then µ and ν are concentrated at

a single point.

This is a variant of the concentration-compactness lemma [15]. Below we
shall show that µ and µ∞ are positive measures. Assuming this, the proof of
Lemma 2.1 is exactly the same as that of Lemma 1.40 in [15]. We note in
particular that the expressions for µ∞ and ν∞ employed in the proof are those
given by (2.1) and (2.2).

Remark 2.2. It follows from (2.4) that µ∞ is independent of the particu-
lar choice of the functions ψR satisfying the required properties. As we have
mentioned above, it is not clear whether the limit in (2.1) exists as R → ∞.
Therefore when adapting the proof of Lemma 1.40 in [15] to our case, we need
to replace this limit with either lim supR→∞ or lim infR→∞. Since we obtain
the same equality (2.4) in both cases, these limits must be equal and µ∞ is well
defined.

Lemma 2.3. The measures µ and µ∞ are positive.

Proof. Let ϕ ∈ C∞0 (RN ), ϕ ≥ 0, and put ϕε :=
√
ϕ+ ε2 − ε, ε > 0. Since

un − u ⇀ 0 in L2
loc(RN ) and ϕε ∈ C1

0 (RN ), we have

0 ≤ lim
n→∞

∫
RN

(
|∇(ϕε(un − u))|2 − λ

(ϕε(un − u))2

|y|2

)
dx

= lim
n→∞

∫
RN

(
|∇(un − u)|2 − λ

(un − u)2

|y|2

)
ϕ2

ε dx→ 〈µ, ϕ2
ε〉.

Since ϕ2
ε → ϕ in L∞(RN ) as ε→ 0, 〈µ, ϕ〉 ≥ 0 and therefore µ ≥ 0.

Let ψR be as in the definition of µ∞. Then

0 ≤
∫

RN

(
|∇(ψRun)|2 − λ

(ψRun)2

|y|2

)
dx =

∫
RN

(
|∇un|2 − λ

u2
n

|y|2

)
ψ2

R dx

+ 2
∫

RN

unψR∇un · ∇ψR dx+
∫

RN

u2
n|∇ψR|2 dx.

By Hölder’s inequality and since ‖∇un‖2 ≤ c for some c > 0,∫
RN

|unψR∇un · ∇ψR| dx ≤ c‖un∇ψR‖2 → c‖u∇ψR‖2 as n→∞.

Letting R→∞ we see that the right-hand side above tends to 0. Similarly,

lim
R→∞

lim
n→∞

∫
RN

u2
n|∇ψR|2 dx = 0,

and it follows that µ∞ ≥ 0. �

Proof of Theorem 1.2. If λ < 0, then it is clear that S ≤ Ŝλ. Let

Uε(x) = (N(N − 2))(N−2)/4

(
ε

ε2 + |x|2

)(N−2)/2

,
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choose x̃ = (ỹ, z̃) with ỹ 6= 0 and let ϕ ∈ C∞0 (RN , [0, 1]) be a function such
that ϕ(x) = 1 in a neighbourhood of x̃ and suppϕ ⊂ B(x̃, r) for some r < |ỹ|
(B(x̃, r) is the open ball centered at x̃ and having radius r). Then, setting
uε(x) := ϕ(x)Uε(x− x̃), we see by an easy calculation that for a suitable C > 0,∫

RN

u2
ε

|y|2
dx ≤ C

∫
B(ex,r)

U2
ε (x− x̃) dx→ 0 as ε→ 0.

Hence, using the estimates on p. 35 in [15],

S≤
∫

RN |∇uε|2 dx
‖uε‖22∗

≤
∫

RN |∇uε|2 dx− λ
∫

RN (u2
ε/|y|2) dx

‖uε‖22∗
=

SN/2 + o(1)
S(N−2)/2 + o(1)

→ S

as ε→ 0, and it follows that Ŝλ = S. If u is a minimizer for (1.7) and ‖u‖2∗ = 1,
then

S = Ŝλ =
∫

RN

|∇u|2 dx− λ

∫
RN

u2

|y|2
dx >

∫
RN

|∇u|2 dx ≥ S,

a contradiction.
Suppose now 0 < λ < λ. Since∫

RN

(
|∇Uε|2 − λ

U2
ε

|y|2

)
dx < ‖∇Uε‖22 = S‖Uε‖22∗ ,

Ŝλ < S and it remains to show that Ŝλ is attained. We modify the argument of
Theorem 1.41 in [15].

Let (un) be a minimizing sequence for (1.7) such that ‖un‖2∗ = 1 and let

Qn(r) := sup
ex=(0,ez)

∫
B(ex,r)

|un|2
∗
dx

(this is a variant of Lévy’s concentration function). It is clear that Qn(r) → 0
as r → 0 and Qn(r) → 1 as r → ∞ (n fixed), hence Qn(rn) = 1/2 for some rn.
Moreover, since

∫
B(ex,r)

|un|2
∗
dx → 0 as |x̃| = |z̃| → ∞ (n and r fixed), Qn(rn)

is attained at some x̃n = (0, z̃n). It follows that setting

(2.5) vn(x) := r(N−2)/2
n un(rnx+ x̃n),

we obtain

(2.6)
∫

B(0,1)

|vn|2
∗
dx = sup

ex=(0,ez)

∫
B(ex,1)

|vn|2
∗
dx =

1
2
.

Since ∫
RN

(
|∇vn|2 − λ

v2
n

|y|2

)
dx =

∫
RN

(
|∇un|2 − λ

u2
n

|y|2

)
dx

and

‖vn‖2∗ = ‖un‖2∗ = 1,
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(vn) is a minimizing sequence for (1.7). In particular, it is bounded, hence vn ⇀ v

in D1,2(RN ), vn → v almost everywhere and (2.3) holds for vn, v and some µ, ν
after passing to a subsequence. As

lim
n→∞

∫
RN

(
|∇vn|2 − λ

v2
n

|y|2

)
dx = Ŝλ = Ŝλ lim

n→∞
‖vn‖22∗ ,

it follows using Lemma 2.1 and the definition of Ŝλ that

(2.7)
∫

RN

(
|∇v|2 − λ

v2

|y|2

)
dx+ ‖µ‖+ µ∞ = Ŝλ(‖v‖2

∗

2∗ + ‖ν‖+ ν∞)2/2∗

≤ Ŝλ(‖v‖22∗ + ‖ν‖2/2∗ + ν2/2∗

∞ ) ≤
∫

RN

(
|∇v|2 − λ

v2

|y|2

)
dx+ ‖µ‖+ µ∞.

Hence

1 = (‖v‖2
∗

2∗ + ‖ν‖+ ν∞)2/2∗ = ‖v‖22∗ + ‖ν‖2/2∗ + ν2/2∗

∞ ,

so exactly one of ‖v‖2∗ , ‖ν‖, ν∞ is 1 and the other two are 0. Since ν∞ cannot
be 1 according to (2.6), it must be 0. If v = 0, then ‖µ‖ = Ŝλ‖ν‖2/2∗ as follows
from (2.7), and µ, ν are concentrated at a single point x̃. If x̃ = (0, z̃), then,
employing (2.6),

(2.8)
1
2

=
∫

B(0,1)

|vn|2
∗
dx ≥

∫
B(ex,1)

|vn|2
∗
dx→ ‖ν‖ = 1,

a contradiction. Suppose x̃ = (ỹ, z̃), ỹ 6= 0, and let ϕ ∈ C∞0 (RN , [0, 1]) be such
that ϕ(x) = 1 in a neighbourhood of x̃ and suppϕ ⊂ B(x̃, r), r < |ỹ|. Since
µ∞ = 0 and µ concentrates at x̃, we have

(2.9) lim
n→∞

∫
RN

(
|∇vn|2 − λ

v2
n

|y|2

)
(1− ϕ2) dx = 0.

Moreover,
∫

RN (v2
n/|y|2)ϕ2 dx→ 0 because vn → 0 in L2

loc(RN ) and y is bounded
away from 0 on suppϕ. Since also ν concentrates at x̃, it follows using (2.9) that

Ŝλ = lim
n→∞

∫
RN

(
|∇vn|2 − λ

v2
n

|y|2

)
ϕ2 dx(2.10)

= lim
n→∞

‖∇(ϕvn)‖22 ≥ S lim
n→∞

‖ϕvn‖22∗ = S,

a contradiction again. Hence ν = 0, ‖v‖2∗ = 1 and

Ŝλ =
∫

RN

(
|∇v|2 − λ

v2

|y|2

)
dx. �

Proof of Theorem 1.3. That Ŝλ,sym = Ŝλ for 0 < λ < λ follows im-
mediately by the argument of Theorem 3.1 in [11]. More precisely, in this
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case Ŝλ is attained at some u ≥ 0 as follows from Theorem 1.2 and the com-
ment at the end of the introduction. If u∗( · , z) denotes the Schwarz sym-
metrization of u( · , z) and u∗∗(y, · ) the Schwarz symmetrization of u∗(y, · ), then
u∗∗ = u∗∗(|y|, |z|) ∈ D1,2

sym(RN ) and Ŝλ is attained at u∗∗.
Suppose λ < 0, let D̃1,2

sym(RN ) := {u ∈ D1,2(RN ) : u = u(|y|, z)} and let
S̃λ,sym be the corresponding infimum as in (1.7). Lemma 2.1 requires some
modification now. Since the measures µ and ν are invariant with respect to
the action of O(k) given by g̃(y, z) := (gy, z), g ∈ O(k), one sees by inspecting
the proof in [15] that if u = 0 and ‖ν‖2/2∗ = S̃−1

λ,sym‖µ‖, then µ and ν are
concentrated at a single orbit {(gy, z) : g ∈ O(k)}, cf. [14]. Taking this into
account, the same argument as in the proof of Theorem 1.2 shows that there
exists a minimizing sequence vn ⇀ v such that ν∞ = 0 and if v = 0, then
‖ν‖ = 1 and ν is concentrated at an orbit {(gỹ, z̃) : g ∈ O(k)}. Since ν consists
of at most countably many atoms, ỹ must be 0. But this leads to a contradiction
as in (2.8). So ‖v‖2∗ = 1 and S̃λ,sym is attained. Finally, Schwarz symmetrization
shows that Ŝλ,sym = S̃λ,sym, and since Ŝλ is not attained, Ŝλ < Ŝλ,sym. �

3. Proof of Theorem 1.1

Now we have x = (x1, . . . , xm) ∈ RmN and V (x) is given by (1.1). It will be
convenient to introduce the following notation:

J̃ := {(i, j) : 1 ≤ i < j ≤ m},

Jp := {J ⊂ J̃ : J contains p pairs (i, j)}
and

VJ(x) :=
∑

(i,j)∈J

1
|xi − xj |2

.

We also set J0 := ∅ and VJ := 0 if J ∈ J0. Clearly, Jm(m−1)/2 = J̃ and VJ = V

if J ∈ Jm(m−1)/2. Let

Sλ,p := min
J∈Jp

inf
u∈D1,2(RmN )\{0}

∫
RmN (|∇u|2 − λVJ(x)u2) dx

‖u‖22∗
,

and for λ < λ, a sequence un ⇀ u in D1,2(RmN ) and J ∈ Jp, let

µJ,∞ := lim
R→∞

lim sup
n→∞

∫
RmN

(|∇un|2 − λVJ(x)u2
n)ψ2

R dx

and
νJ,∞ := lim

R→∞
lim sup

n→∞

∫
RmN

|un|2
∗
ψ2

R dx,

where ψR ∈ C∞(RmN , [0, 1]) is radially symmetric, ψR = 0 for |x| ≤ R and
ψR = 1 for |x| ≥ R + 1. Inspecting the proof of Lemma 1.40 in [15] once more
we obtain the following
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Lemma 3.1. Let (un) ⊂ D1,2(RmN ) be a sequence such that un ⇀ u in
D1,2(RmN ), un → u almost everywhere in RmN ,

|∇(un − u)|2 − λVJ(x)(un − u)2 ⇀ µJ and |un − u|2
∗
⇀ νJ in M(RmN ).

Then

‖νJ‖2/2∗ ≤ S−1
λ,p‖µJ‖, ν

2/2∗

J,∞ ≤ S−1
λ,pµJ,∞,

lim sup
n→∞

∫
RmN

(|∇un|2 − λVJ(x)u2
n) dx

=
∫

RmN

(|∇u|2 − λVJ(x)u2) dx+ ‖µJ‖+ µJ,∞

and

lim sup
n→∞

‖un‖2
∗

2∗ = ‖u‖2
∗

2∗ + ‖νJ‖+ νJ,∞.

Moreover, if u = 0 and ‖νJ‖2/2∗ = S−1
λ,p‖µJ‖, then µJ and νJ are concentrated

at a single point.

That µJ,∞ is well defined and µJ , µJ,∞ are positive is seen as in Remark 2.2
and Lemma 2.3.

Proposition 3.2. Let λ ∈ (0, λ). Then Sλ,p < Sλ,p−1 and Sλ,p is attained
for each p = 1, . . . ,m(m− 1)/2.

We note that Sλ,0 = S (and is attained) while Sλ,m(m−1)/2 = Sλ. Hence
the existence part of Theorem 1.1 is an immediate consequence of Proposi-
tion 3.2. The non-existence part is shown as in Theorem 1.2 except that now
x̃ = (x̃1, . . . , x̃m) and r need to be chosen so that xi 6= xj for any i 6= j and
x = (x1, . . . , xm) ∈ B(x̃, r).

Proof of Proposition 3.2. We proceed by (finite) induction. Suppose it
has been shown that Sλ,p−1 is attained. If u is a minimizer for Sλ,p−1, ‖u‖2∗ = 1,
then

Sλ,p−1 =
∫

RmN

(|∇u|2 − λVJ(x)u2) dx

for some J ∈ Jp−1, hence∫
RmN

(|∇u|2 − λVJ∗(x)u2) dx < Sλ,p−1

for all J∗ ∈ Jp, J∗ ⊃ J . So Sλ,p < Sλ,p−1 and it remains to show that Sλ,p is
attained. Choose J ∈ Jp so that

(3.1) Sλ,p = inf
u∈D1,2(RmN )\{0}

∫
RmN (|∇u|2 − λVJ(x)u2) dx

‖u‖22∗
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and assume for notational convenience that the indices 1, . . . , l but not l +
1, . . . ,m appear in J . Let (un) be a minimizing sequence for (3.1), ‖un‖2∗ = 1,

X := {x = (x1, . . . , xm) ∈ RmN : x1 = . . . = xl}

and

Qn(r) := sup
ex∈X

∫
B(ex,r)

|un|2
∗
dx.

Define vn as in (2.5), with N replaced by mN . Then (2.6) holds except that
this time the supremum is taken over all x̃ ∈ X. Since the right-hand side of
(3.1) is invariant with respect to dilations and translations by elements of X,
(vn) is a minimizing sequence for (3.1). As in the proof of Theorem 1.2, we see
that νJ,∞ = 0 and if the weak limit of (vn) is 0, then ‖µJ‖ = Sλ,p‖νJ‖2/2∗

2 and
µJ , νJ are concentrated at a single point x̃. If x̃ ∈ X, then (2.8) holds and we
have a contradiction. If x̃ 6∈ X, then we may assume (for notational convenience
again) that x̃1 6= x̃2, and we set I := J \ {(1, 2)}. By the same argument as in
(2.9) and (2.10) (with ϕ such that suppϕ ∩X = ∅) we see that

lim
n→∞

∫
RmN

(|∇vn|2 − λVI(x)v2
n)(1− ϕ2) dx = 0

and

Sλ,p = lim
n→∞

∫
RmN

(|∇vn|2 − λVJ(x)v2
n)ϕ2 dx

= lim
n→∞

∫
RmN

(|∇(ϕvn)|2−λVI(x)(ϕvn)2) dx ≥ Sλ,p−1 lim
n→∞

‖ϕvn‖22∗ = Sλ,p−1,

a contradiction. So ‖v‖2∗ = 1 and the conclusion follows. �

Remark 3.3. If m ≥ 4, N = 1 and 0 < λ < λ, then the Hardy inequality
(1.2) still holds (with λ = 1/2) for a smaller class of functions as we have already
mentioned at the beginning of the introduction. In this case Sλ will be attained
if D1,2(RmN ) is replaced by D1,2

0 (RmN \ Nm), where Nm is as in (1.3). This
follows by inspection of the argument of Theorem 1.1. If N = 2, then λ = 0,
cf. Remark 2.2(i) in [7]. For λ < 0 there are no ground states if m ≥ 3, N = 1
or m ≥ 2, N = 2. The proof is the same as for m ≥ 2, N ≥ 3.
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