ON NONSYMMETRIC THEOREMS FOR \((H, G)\)-COINCIDENCES

DENISE DE MATTOS — EDIVALDO L. DOS SANTOS

Abstract. Let \(X\) be a compact Hausdorff space, \(\varphi : X \to S^n\) a continuous map into the \(n\)-sphere \(S^n\) that induces a nonzero homomorphism \(\varphi^* : H^n(S^n; \mathbb{Z}_p) \to H^n(X; \mathbb{Z}_p)\), \(Y\) a \(k\)-dimensional CW-complex and \(f : X \to Y\) a continuous map. Let \(G\) a finite group which acts freely on \(S^n\). Suppose that \(H \subset G\) is a normal cyclic subgroup of a prime order. In this paper, we define and we estimate the cohomological dimension of the set \(A_\varphi(f, H, G)\) of \((H, G)\)-coincidence points of \(f\) relative to \(\varphi\).

1. Introduction

K. D. Joshi [10] has proved a nonsymmetric generalization of the Borsuk–Ulam theorem [1], in which the \(n\)-sphere \(S^n\) is replaced by a certain compact subset \(X\) of the \((n + 1)\)-dimensional Euclidean space \(\mathbb{R}^{n+1}\). In this context, a pair of points \(x, y \in X\) are said to be antipodal if \(y = -\lambda x\), for some \(\lambda > 0\). The Joshi’s theorem shows that for every continuous map \(f : X \to \mathbb{R}^n\) there exist antipodal points \(x, y \in X\) such that \(f(x) = f(y)\).

K. Borsuk has suggested to define antipodal points in an arbitrary space in the following way: \(x_1, x_2 \in X\) are said to be antipodal points relative to an

2000 Mathematics Subject Classification. Primary 55M20 55R91; Secondary 55R25.
Key words and phrases. Borsuk–Ulam theorem, \(\mathbb{Z}_p\)-index, \((H, G)\)-coincidence, free actions.
The first author was supported in part by FAPESP of Brazil Grant numbers 06/03932-8 and 04/10229-6.
The second author was supported in part by FAPESP of Brazil Grant number 04/10229-6.
essential map \(\varphi: X \to S^n \) if \(\varphi(x_1) = -\varphi(x_2) \). Using the Borsuk’s suggestion, Spieć \([11]\) has proved that if \(X \) is a compact Hausdorff space and if \(\varphi: X \to S^n \) is an essential map, then for every continuous map \(f: X \to \mathbb{R}^k \), the covering dimension of the set

\[
A_{\varphi}(f) = \{ x \in X : \text{there exists } y \in X, \text{ such that } \varphi(x) = -\varphi(y) \text{ and } f(x) = f(y) \}
\]

is not less than \(n - k \), obtaining thus a generalization of the Joshi’s theorem.

M. Izydorek \([7]\) has extended the proposition of Borsuk for a cyclic group \(G \) of order prime which acts freely on a \(n \)-dimensional sphere \(S^n \) and has proved the following generalization of the Spieć’s theorem: if \(X \) is a compact Hausdorff space and if \(\varphi: X \to S^n \) is an essential map, then for every continuous map \(f: X \to \mathbb{R}^k \), the covering dimension of the set

\[
A_{\varphi}(f) = \{ x_1, \ldots, x_p \} \text{ such that } \varphi(x_1) = g^{-1}\varphi(x_2) = \ldots = g^{-1}p \varphi(x_p) \text{ and } f(x_1) = \ldots = f(x_p) \}
\]

is not less than \(n - (p - 1)k \), where \(g \) is a fixed generator of \(G \). Moreover, if \(\mathbb{R}^k \) is replace by a generalized \(k \)-dimensional manifold \(M^k \) over \(\mathbb{Z}_p \), then an analogous theorem has been proved (see \([7, \text{Theorem 4}]\)).

Gonçalves, Jaworowski and Pergher \([3]\) have defined \((H,G)\)-coincidence for a continuous map \(f \) from a \(n \)-sphere \(S^n \) into a \(k \)-dimensional CW-complex \(Y \), where \(G \) is a finite group which acts freely on \(S^n \) and have proved that if \(H \) is a nontrivial normal cyclic subgroup of a prime order, then

\[
\text{cohom.dim } A(f,H,G) \geq n - |G|k,
\]

where \(A(f,H,G) \) is the set of \((H,G)\)-coincidence points of \(f \) and cohom.dim denotes the cohomological dimension. The other papers closely related to \([3]\) are \([4]–[6], [8], [9] \) and \([13]\).

The purpose of this paper is to define the set \(A_{\varphi}(f,H,G) \) of \((H,G)\)-coincidence points of a continuous map \(f: X \to Y \) relative to an essential map \(\varphi: X \to S^n \), where \(X \) is a compact Hausdorff space, \(Y \) is a topological space, \(G \) is a finite group which acts freely on the \(n \)-dimensional sphere \(S^n \) and \(H \) is a subgroup of \(G \). Using this definition, under certain conditions, we estimate the cohomological dimension of the set \(A_{\varphi}(f,H,G) \). Specifically, we will prove the following nonsymmetric version of the main theorem of \([3]\):

Theorem 1.1. Let \(X \) be a compact Hausdorff space, \(Y \) a \(k \)-dimensional CW-complex and \(\varphi: X \to S^n \) an essential map. Given a finite group \(G \) which acts freely on \(S^n \) and \(H \) a normal cyclic subgroup of prime order, then for every
continuous map \(f: X \to Y \) such that \(f^*: H^n(Y; \mathbb{Z}_p) \to H^n(X; \mathbb{Z}_p) \) is trivial for \(i \geq 1 \), cohom.dim \(A_\varphi(f, H, G) \geq n - |G|k \).

For the proof of Theorem 1.1, it was fundamental to prove the following version of the main Theorem of [3],

Theorem 1.2. Let \(X \) be a paracompact Hausdorff space, \(Y \) a \(k \)-dimensional CW-complex, \(G \) a finite group which acts freely on \(X \) and \(H \subset G \) a normal cyclic subgroup of prime order. Let \(f: X \to Y \) be a continuous map such that \(f^*: H^n(Y; \mathbb{Z}_p) \to H^n(X; \mathbb{Z}_p) \) is trivial for \(i \geq 1 \). Suppose that the \(\mathbb{Z}_p \)-index of \(X \) is greater than or equal to \(n \), then the \(\mathbb{Z}_p \)-index of the set \(A(f, H, G) \) is greater than or equal to \(n - |G|k \). Consequently, cohom.dim \(A(f, H, G) \geq n - |G|k \).

2. Preliminaries

Throughout this paper the symbols \(H \) and \(H^* \) will denote Čech homology and cohomology groups with coefficients in \(\mathbb{Z}_p \), unless otherwise indicated. If \(G \) is a group which acts on a topological space \(X \), we will denote by \(X^G \) the orbit space \(X/G \).

We start by introducing some basic notions and definitions as follows.

2.1. \((H, G)\)-coincidence. Suppose that \(X, Y \) are topological spaces, \(G \) is a group acting freely on \(X \) and \(f: X \to Y \) is a map. If \(H \) is a subgroup of \(G \), then \(H \) acts on the right on each orbit \(Gx \) of \(G \) as follows: if \(y \in Gx \) and \(y = gx \), \(g \in G \), then \(hy = ghx \) (such action may depend on the choice of the reference point \(x \)). Following [4], [6], [9] the concept of \(G \)-coincidence is generalized as follows: a point \(x \in X \) is said to be a \((H, G)\)-coincidence point of \(f \) if \(f \) sends every orbit of the action of \(H \) on the \(G \)-orbit of \(x \) to a single point (see [5]). We will denote by \(A(f, H, G) \) the set of all \((H, G)\)-coincidence points of \(f \). If \(H \) is the trivial subgroup, then every point of \(X \) is a \((H, G)\)-coincidence. If \(H = G \), this is the usual definition of coincidence. If \(G = \mathbb{Z}_p \) with \(p \) prime, then a nontrivial \((H, G)\)-coincidence point is a \(G \)-coincidence point.

2.2. The space \(X_\varphi \) and the set \(A_\varphi(f, H, G) \). Let us consider \(X \) a compact Hausdorff space and an essential map \(\varphi: X \to S^n \). Suppose \(G \) be a finite group of order \(r \) which acts freely on \(S^n \) and \(H \) be a subgroup of order \(p \) of \(G \). Let \(G = \{g_1, g_2, \ldots , g_r\} \) be a fixed enumeration of elements of \(G \), where \(g_1 \) is the identity of \(G \). A nonempty space \(X_\varphi \) can be associated with the essential map \(\varphi: X \to S^n \) as follows:

\[
X_\varphi = \{(x_1, \ldots , x_r) \in X^r : \varphi(x_1) = (g_2)^{-1}\varphi(x_2) = \ldots = (g_r)^{-1}\varphi(x_r)\} = \{(x_1, \ldots , x_r) \in X^r : g_1\varphi(x_1) = \varphi(x_i), \ i = 1, \ldots , r\},
\]

where \(X^r \) denotes the \(r \)-fold cartesian product of \(X \). The set \(X_\varphi \) is a closed subset of \(X^r \) and so it is compact. We define a \(G \)-action on \(X_\varphi \) as follows: for
each \(g_i \in G \) and for each \((x_1, \ldots, x_r) \in X_\varphi \),

\[
 g_i(x_1, \ldots, x_r) = (x_{\sigma_i(1)}, \ldots, x_{\sigma_i(r)}),
\]

where the permutation \(\sigma_i \) is defined by \(\sigma_i(k) = j \), \(g_i g_j = g_j \). We observe that if \(x = (x_1, \ldots, x_r) \in X_\varphi \) then \(x_i \neq x_j \), for any \(i \neq j \) and therefore \(G \) acts freely on \(X_\varphi \).

Now, let us consider a continuous map \(f : X \to Y \), where \(Y \) is a topological space and \(\tilde{f} : X_\varphi \to Y \) given by \(\tilde{f}(x_1, \ldots, x_r) = f(x_1) \). Let \(y = (x_1, \ldots, x_r) \in A(\tilde{f}, H, G) \) and consider the orbit \(G y = \{g_1 y, g_2 y, \ldots, g_y y\} \). Note that

(i) From (2.1), we have that for each \(i \), the 1-th coordinate of \(g_i y \) is \(x_i \).

(ii) The action of \(H \) on \(G y \) determines a partition of the orbit \(G y \) in \(s = (r/p) \) disjoint suborbits, and we can be rewrite

\[
 G y = \{g_1 y, \ldots, g_{s_1} y; \ldots; g_{s_2} y, \ldots, g_{s_r} y\},
\]

where \(\{1, \ldots, r\} \leftrightarrow \{1, \ldots, l_p; \ldots; j_1, \ldots, j_{p_1}; \ldots; s_1, \ldots, s_p\} \) is a bijection.

Since \(y \) is a \((H,G)\)-coincidence point of \(\tilde{f} \), it follows from (i) and (ii) that,

\[
 f(x_{1_1}) = \ldots = f(x_{1_p}); \ldots; f(x_{s_1}) = \ldots = f(x_{s_p}); \ldots; f(x_{s_1}) = \ldots = f(x_{s_p}).
\]

In these conditions, we have the following

Definition 2.1. The set \(A_\varphi(f, H, G) \) of \((H,G)\)-coincidence points of \(f \) relative to \(\varphi \) is defined by

\[
 A_\varphi(f, H, G) = A(\tilde{f}, H, G) = \{(x_1, \ldots, x_r) \in X^r : g_i \varphi(x_1) = \varphi(x_i), \ i = 1, \ldots, r \text{ and } f(x_{j_1}) = \ldots = f(x_{j_s}), \ j = 1, \ldots, s\}.
\]

Remark 2.2. Let us observe that if \(G = H = Z_p \),

\[
 A_\varphi(f, H, G) = A_\varphi(f) = \{(x_1, \ldots, x_p) \in X^p : g_i \varphi(x_1) = \varphi(x_i), \ i = 1, \ldots, p \text{ and } f(x_1) = \ldots = f(x_p)\}.
\]

2.3. The \(Z_p \)-index. Suppose that the cyclic group \(G = Z_p \) of order prime \(p \) acts freely on a Hausdorff and paracompact space \(X \). Then \(X \to X^* \) is a principal \(Z_p \)-bundle and one can take \(h: X^* \to BZ_p \) a classifying map for the \(G \)-bundle \(X \to X^* \).

Remark 2.3. It is well known that if \(\hat{h} \) is another classifying map for the principal \(Z_p \)-bundle \(X \to X^* \), then there is a homotopy between \(h \) and \(\hat{h} \).

We will consider the following definition for the \(Z_p \)-index of \(X \) (see [7]).
DEFINITION 2.4. We say that the \mathbb{Z}_p-index of X is greater than or equal to k if the homomorphism $h^*: H^k(B\mathbb{Z}_p) \to H^k(X^*)$ is nontrivial. We say that the \mathbb{Z}_p-index of X is equal to k if it is greater than or equal to k and moreover $h^*: H^i(B\mathbb{Z}_p) \to H^i(X^*)$ is zero, for any $i \geq k + 1$.

REMARK 2.5. A model for $B\mathbb{Z}_2$ the classifying space for \mathbb{Z}_2 is the infinite real projective space P^∞. Then $H^*(B\mathbb{Z}_2) \cong H^*(P^\infty)$ is isomorphic to $\mathbb{Z}_2[a]$, where $a \in H^1(P^\infty)$ is the generator. The generator of $H^i(B\mathbb{Z}_2)$ is a^i for any $i \geq 0$. If $p > 2$ a model for $B\mathbb{Z}_p$ the classifying space for \mathbb{Z}_p is the infinite lens space $L^\infty_p = S^\infty/\mathbb{Z}_p$. Thus, $H^i(B\mathbb{Z}_p) = H^i(L^\infty_p) \cong \mathbb{Z}_p$ for any $i \geq 0$ and given any nonzero element $a \in H^1(L^\infty_p)$, one has that $b = \beta(a)$ is a nonzero element of $H^2(L^\infty_p)$, where $\beta: H^1(L^\infty_p) \to H^2(L^\infty_p)$ is the Bockstein homomorphism. More generally, a generator $\mu \in H^i(B\mathbb{Z}_p)$ is given by

\[\mu = \begin{cases} a \cdot b^{(i-1)/2} & \text{if } i \text{ is odd} \\ b^{i/2} & \text{if } i \text{ is even} \end{cases} \]

2.4. The Smith special cohomology groups with coefficients in \mathbb{Z}_p.

In this work, we will be considering the definition of the Smith special cohomology groups with coefficients in \mathbb{Z}_p in the sense of [2]. Smith homology and cohomology were originally defined in [12] and in a series of subsequent papers. A systematic exposition of the Smith theory can be found in [2]. Let X be a topological space; given a finite group G of prime order p which acts freely on X, let g be a fixed generator of G and put

\[\sigma = 1 + g + g^2 + \ldots + g^{p-1} \text{ and } \tau = 1 - g, \]

in the group ring $\mathbb{Z}_p(G)$. We have that $\sigma = \tau^{p-1}$. If $\rho = \tau^i$, we put $\overline{\rho} = \tau^{p-i}$, then $\tau = \overline{\sigma}$ and $\sigma = \overline{\tau}$. There exists an exact sequence with coefficients in \mathbb{Z}_p [2, p.125],

\[\xrightarrow{\delta} H^n_{\rho}(X) \xrightarrow{\partial^*} H^n(X) \xrightarrow{T} H^n(X^*) \xrightarrow{\delta} H^{n+1}_{\rho}(X^*) \xrightarrow{\partial^*} \]

called Smith exact sequence, where $H^n_{\rho}(X)$ denotes the Smith special cohomology groups and T is the transfer homomorphism.

REMARK 2.6. The Smith cohomology groups are natural with respect to \mathbb{Z}_p-equivariant maps, that is, if $f: X \to Y$ is a \mathbb{Z}_p-equivariant map then f induces homomorphism $f^*: H^n_{\rho}(Y) \to H^n_{\rho}(X)$ which commutes with the homomorphisms in the Smith sequence.

3. The \mathbb{Z}_p-index of X_{φ}

Let us consider the free G-space X_{φ} as defined in Section 2.2. If $H \subset G$ is a cyclic subgroup of prime order p, then X_{φ} is a free $H \cong \mathbb{Z}_p$-space. In these conditions, as in [7, Theorem 3], we have the following
Theorem 3.1. Let X be a compact Hausdorff space and $\varphi: X \to S^n$ an essential map. Then, the \mathbb{Z}_p-index of X_φ is equal to n.

Proof. For $i = 1, \ldots, r$, let us consider the maps $\varphi_i: X \to S^n$ given by $\varphi_i(x) = (g_i)^{-1}\varphi(x)$, where $g_i \in G$. Then, we can define the map

$$\psi = \varphi_1 \times \ldots \times \varphi_r: X^r \to [S^n]^r,$$

where $[S^n]^r$ denotes the r-fold cartesian product of S^n, such that $X_\varphi = \psi^{-1}\Delta[S^n]^r$, where $\Delta[S^n]^r$ is the diagonal in $[S^n]^r$. In these conditions, we prove the following

Lemma 3.2. The homomorphism $\psi^*: H^*([S^n]^r) \to H^*(X^r)$ induced by $\psi: X^r \to [S^n]^r$ is a monomorphism in each dimension.

Proof. Let m be an integer and for each $t = 1, \ldots, r$ consider $H^m([S^n]^r)$. If m is not divisible by n then $H^m([S^n]^r) = 0$ and the result follows. Suppose that m is divisible by n; one then has that there exists $\alpha = 0, 1, \ldots, n$ such that $m = \alpha n$. Let us consider the following commutative diagram

$$
\begin{array}{ccc}
H^\alpha([S^n]^r) \otimes H^0(S^n) \oplus H^{(\alpha-1)n}([S^n]^r) & \to & H^\alpha([S^n]^r) \\
\downarrow{(\varphi_1 \times \ldots \times \varphi_t)}^* \otimes \varphi_{t+1}^* & & \downarrow{(\varphi_1 \times \ldots \times \varphi_{t+1})}^* \\
H^\alpha(X^t) \otimes H^0(X) \oplus H^{(\alpha-1)n}(X^t) & \to & H^\alpha(X^t)
\end{array}
$$

(3.1)

Applying the Künneth’s formula, we have that the upper row of the above diagram is an isomorphism and the lower row is a monomorphism, for each $\alpha = 0, 1, \ldots$ and $t = 1, \ldots, r$.

The proof will be done by induction on t. We assume inductively that for some $t = 1, \ldots, r - 1$ and for each $\alpha = 0, 1, \ldots$ the homomorphism $(\varphi_1 \times \ldots \times \varphi_t)^*: H^\alpha([S^n]^r) \to H^\alpha(X^t)$ is a monomorphism and we will show that $(\varphi_1 \times \ldots \times \varphi_{t+1})^* \otimes \varphi_{t+1}^*$ is a monomorphism.

The result will follow from the commutativity of the diagram (3.1). By induction hypothesis it suffices to show that φ_{t+1}^* is a monomorphism. For this, observe that $\varphi_i^* = \varphi_j^*$, for any $1 \leq i, j \leq r$. If φ_{t+1}^* is not a monomorphism, then φ_i^* is not a monomorphism, for any $1 \leq i \leq t$, which completes the proof. \hfill \square

The next step is to use Lemma 3.2 to show that the homomorphism induced by $\psi|_{X_\varphi}: X_\varphi \to \Delta[S^n]^r$ is a monomorphism. Let us consider the following commutative diagram

$$
\begin{array}{ccc}
H^n(X^r, X_\varphi) & \xrightarrow{j^*} & H^n(X^r) \\
\downarrow{\psi^*} & & \downarrow{\psi^*} \\
H^n([S^n]^r, \Delta[S^n]^r) & \xrightarrow{\psi^*} & H^n([S^n]^r) \\
\end{array}
$$

(3.2)

Theorem 3.1 follows from this diagram, where j^* is the inclusion map.
whose rows are exact. If γ is a generator of $H^n(S^n) \cong \mathbb{Z}_p$ let us denote by α_i the element $q_i^*(\gamma) \in H^n([S^n]^r)$, where $q_i: [S^n]^r \to S^n$ is the natural projection on the i-th coordinate for $i = 1, 2, \ldots, r$. Let us observe that $q_i \circ q_j = q_{ij}$ for any $1 \leq i, j \leq r$, where $i: [S^n]^r \hookrightarrow [S^n]^r$ is the natural inclusion. In this way, one has that

$$i^*(\alpha_i) = i^* \circ q_i^*(\gamma) = (q_i \circ i)^*(\gamma) = (q_j \circ i)^*(\gamma) = i^*(\alpha_j).$$

Lemma 3.3. $(\psi|_{X_{\varphi}})^*: H^n(\Delta[S^n]^r) \to H^n(X_{\varphi})$ is a monomorphism.

Proof. Since $\Delta[S^n]^r$ is homeomorphic to S^n, it follows from (3.3) that $i^*(\alpha_i)$ is a nonzero element in $H^n(\Delta[S^n]^r)$ for any $i = 1, \ldots, r$. Thus, it suffices to show that $(\psi|_{X_{\varphi}})^*(i^*(\alpha_1)) \neq 0$. Let us assume that this does not happen. From the diagram (3.2) we have that

$$k^* \circ \psi^*(\alpha_1) = (\psi|_{X_{\varphi}})^* \circ i^*(\alpha_1) = 0,$$

which implies that $\psi^*(\alpha_1) \in \ker(k^*) = \text{Im}(j^*)$ and there exists an element $U \in H^n(X^r, X_{\varphi})$ such that

$$j^*(U) = \psi^*(\alpha_1) \neq 0,$$

since by Lemma 3.2 ψ^* is a monomorphism and $\alpha_1 = q_1^*(\gamma) \in H^n([S^n]^r)$ is a nonzero element. Let us consider the following commutative diagram,

$$\begin{array}{ccc}
H^{(r-1)n}(X^r, X^r - X_{\varphi}) & \xrightarrow{j^*} & H^{(r-1)n}(X^r) \\
\xrightarrow{\psi^*} & D^{-1} & \xrightarrow{k^*} H^{(r-1)n}(X^r - X_{\varphi}) \\
\bigg\downarrow & \bigg\downarrow & \bigg\downarrow \\
H_n(\Delta[S^n]^r) & \xrightarrow{i^*} & H_n([S^n]^r)
\end{array}$$

where the first and the second rows are exact, D is the Alexander–Spanier Duality which is an isomorphism and all others maps are induced by appropriate inclusions.

Let us denote by a_1, \ldots, a_r the elements of $H_n([S^n]^r)$ which are conjugated to a_1, \ldots, a_r in $H^n([S^n]^r)$. More precisely,

$$\langle \alpha_j, \alpha_i \rangle = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{if } i \neq j,
\end{cases}$$

where the map $\langle \cdot, \cdot \rangle: H^n([S^n]^r) \times H_n([S^n]^r) \to \mathbb{Z}_p$ denotes the Kronecker product. Let us denote by $c \in H_n(\Delta[S^n]^r)$ the conjugated element to $i^*(\alpha_1) = \ldots = i^*(\alpha_r)$ in $H^n(\Delta[S^n]^r)$. Then for any $j = 1, \ldots, r$ one has $\langle i^*(\alpha_j), c \rangle = 1.$
Furthermore, it follows from properties of the Kronecker product that for any $j = 1, \ldots, r$

$$\langle j^*(\alpha_j), c \rangle = \langle \alpha_j, i_*(c) \rangle = 1,$$

which implies that

\begin{equation}
(3.6) \quad i_*(c) = \sum_{i=1}^{r} a_i.
\end{equation}

Let us consider for each $i = 1, \ldots, r$ the elements

$$\beta_i = \alpha_1 \wedge \ldots \wedge \alpha_{i-1} \wedge \hat{\alpha}_i \wedge \alpha_{i+1} \wedge \ldots \wedge \alpha_r \in H^{(n-1)r}([S^n]^r),$$

where the symbol $\hat{\alpha}_i$ means that the element α_i is omitted.

To simplify notation, here we will also denote by $[S^n]^r$ the generator of $H_{nr}([S^n]^r)$, which is called the fundamental class of $[S^n]^r$. We will show that

$$D^{-1}(a_i) = (-1)^{i+1}\beta_i, \quad \text{that is,} \quad (-1)^{i+1}\beta_i \wedge [S^n]^r = a_i.$$

In fact, it follows from properties of the cup and cap products with respect to the Kronecker product and by definition of β_i that

\begin{equation}
(3.7) \quad \langle \alpha_i, (-1)^{i+1}\beta_i \wedge [S^n]^r \rangle = \langle \alpha_i \wedge (-1)^{i+1}\beta_i, [S^n]^r \rangle
\end{equation}

$$= \langle (-1)^{i+1}(-1)^{n(i-1)}\alpha_1 \wedge \ldots \wedge \alpha_r, [S^n]^r \rangle
\end{equation}

$$= \langle \alpha_1 \wedge \ldots \wedge \alpha_r, [S^n]^r \rangle = 1$$

observing that $\alpha_1 \wedge \ldots \wedge \alpha_r$ is the generator of $H_{nr}([S^n]^r)$. Thus,

$$D^{-1}\left(\sum_{i=1}^{r} a_i\right) = \sum_{i=1}^{r} D^{-1}(a_i) = \sum_{i=1}^{r} (-1)^{i+1}\beta_i.$$

It follows from (3.6), (3.7) and from commutativity of diagram (3.5) that

$$j_1^* \circ D^{-1}(c) = D^{-1} \circ i_*(c) = \sum_{i=1}^{r} (-1)^{i+1}\beta_i,$$

that is,

$$\sum_{i=1}^{r} (-1)^{i+1}\beta_i \in \text{Im}(j_1^*).$$

Since the second row of diagram (3.5) is exact, one has that

$$k_1^*\left(\sum_{i=1}^{r} (-1)^{i+1}\beta_i\right) = 0.$$

By using again the commutativity of diagram (3.5)

$$k^* \circ \psi^*\left(\sum_{i=1}^{r} (-1)^{i+1}\beta_i\right) = \psi^* \circ k_1^*\left(\sum_{i=1}^{r} (-1)^{i+1}\beta_i\right) = 0,$$
which implies that
\[\psi^* \left(\sum_{i=1}^r (-1)^{i+1} \beta_i \right) \in \text{Ker}(k^*) = \text{Im}(j^*). \]

Thus, there exists an element \(V \in H^{(r-1)n}(X^r, X^r - X_\varphi) \) such that

\[j^*(V) = \psi^* \left(\sum_{i=1}^p (-1)^{i+1} \beta_i \right) \neq 0, \]

since \(\psi^* \) is a monomorphism. Using the naturality of the cup product in the following diagram

\[
\begin{array}{ccc}
H^n(X^r) \otimes H^{(r-1)n}(X^r) & \xymatrix{ \ar[r]^-{\sim} & } & H^{rn}(X^r) \\
\psi^* \ar@{|->}[u] & & \psi^* \ar@{|->}[u] \\
H^n([S^n]^r) \otimes H^{(r-1)n}([S^n]^r) & \xymatrix{ \ar[r]^-{\sim} & } & H^{rn}([S^n]^r)
\end{array}
\]

and observing that
\[
\sum_{i=2}^r \alpha_i \sim (-1)^{i+1} \beta_i = 0
\]

one has that

\[\psi^* (\alpha_1 \sim \ldots \sim \alpha_r) = \psi^*(\alpha_1) \sim \psi^* \left(\sum_{i=1}^r (-1)^{i+1} \beta_i \right) \]

\[= \psi^*(\alpha_1 \sim \beta_1 + \sum_{i=2}^r \alpha_1 \sim (-1)^{i+1} \beta_i) \]

\[= \psi^*(\alpha_1 \sim \beta_1) = \psi^*(\alpha_1 \sim \ldots \sim \alpha_r) \neq 0, \]

since \(\alpha_1 \sim \ldots \sim \alpha_r \) is the generator of \(H^{rn}([S^n]^r) \) and \(\psi^* \) is a monomorphism.

On the other hand, from naturality of the cup product in the diagram

\[
\begin{array}{ccc}
H^n(X^r, X_\varphi) \otimes H^{(r-1)n}(X^r, X^r - X_\varphi) & \xymatrix{ \ar[r]^-{\sim} & } & H^{rn}(X^r, X^r) \\
\psi^* \ar@{|->}[u] & & \psi^* \ar@{|->}[u] \\
H^n(X^r) \otimes H^{(r-1)n}(X^r) & \xymatrix{ \ar[r]^-{\sim} & } & H^{rn}(X^r)
\end{array}
\]

and from equations (3.4) and (3.8) we conclude that

\[\psi^*(\alpha_1 \sim \ldots \sim \alpha_r) = \psi^*(\alpha_1) \sim \psi^* \left(\sum_{i=1}^p (-1)^{i+1} \beta_i \right) \]

\[= j^*(U) \sim j^*(V) = j^*(U \sim V) = j^*(0) = 0, \]

which contradicts (3.9). This completes the proof. \(\square \)
Now, let us consider the map \(\theta = q_1 \circ \psi|_{X_\varphi}: X_\varphi \to S^n \), where \(q_1: \Delta[S^n]^r \to S^n \) is the natural projection on the 1-th coordinate, which is an homeomorphism. Since by Lemma 3.3, \((\psi|_{X_\varphi})^* \) is a monomorphism, one then has that \(\theta^*: H^n(S^n) \to H^n(X_\varphi) \) is a monomorphism. Note that, if \((x_1, \ldots, x_r) \in X_\varphi \), we have that for each \(i, g_i \theta(x_1, \ldots, x_r) = g_i \varphi(x_1) = \varphi(x_i) = \theta g_i(x_1, \ldots, x_r) \), thus \(\theta \) is a \(G \)-equivariant map, and consequently, \(\theta \) is an \(H \)-equivariant map, where \(H \subset G \) is a cyclic subgroup of prime order. Thus, in particular for \(\rho = \sigma \), we can consider the homomorphism induced by \(\theta \), \(\theta^\sigma_\sigma^\rho: H^n(S^n) \to H^n(X_\varphi) \), where \(H^n_\rho \) denotes the \(n \)-dimensional Smith special cohomology group with coefficients in \(\mathbb{Z}_p \) in the sense of Section 2.4.

By remarks in [2, Results following 5.2] whose dual holds in cohomology, \(i^*: H^n(S^n) \to H^n_\rho(S^n) \) is an isomorphism, and since \(\theta^*: H^n(S^n) \to H^n(X_\varphi) \) is a monomorphism it follows that \(\theta^\sigma_\sigma^\rho \) is a monomorphism. To conclude that the \(\mathbb{Z}_p \)-index of \(X_\varphi \) is equal to \(n \) it suffices to verify that the map between the orbit spaces \(\bar{\theta}: X_\varphi/H \to S^n/H \) induces a monomorphism in cohomology. From results in [2, (3.10), p. 125], we have that \(H^n_\rho(S^n) \cong H^n(S^n/H) \) and \(H^n_\rho(X_\varphi) \cong H^n(X_\varphi/H) \), and considering the commutative diagram

\[
\begin{array}{ccc}
H^n_\rho(S^n) & \xrightarrow{\theta^\sigma_\sigma^\rho} & H^n_\rho(X_\varphi) \\
\cong \downarrow & \hspace{1cm} & \cong \\
H^n(S^n/H) & \xrightarrow{\bar{\theta}^\sigma} & H^n(X_\varphi/H)
\end{array}
\]

it follows that \(\bar{\theta}^\sigma: H^n(S^n/H) \to H^n(X_\varphi/H) \) is a monomorphism. Therefore, the \(\mathbb{Z}_p \)-index of \(X_\varphi \) is equal to \(n \).

\[\square \]

4. Proof of Theorems 1.1 and 1.2

PROOF OF THEOREM 1.2. By following the similar steps of [3], we first prove Theorem 1.2 in the case that \(G = H = \mathbb{Z}_p \), where \(p \geq 2 \). We need to show that the \(\mathbb{Z}_p \)-index of the set \(A_f = \{ x \in X : f(x) = f(gx) = \ldots = f(g^{p-1}x) \} \) is greater than or equal to \(n - pk \). For this, let us consider \(F: X \to Y^p \) given by \(F(x) = (f(x), f(gx), \ldots, f(g^{p-1}x)) \), where \(Y^p = Y \times \ldots \times Y \) denotes the \(p \)-fold cartesian product of \(Y \) and \(g \) is a fixed generator of \(\mathbb{Z}_p \). In these conditions, we prove the following

LEMMA 4.1. The homomorphism \(F^*: H^q(Y^p) \to H^q(X) \) induced by the map \(F: X \to Y^p \) is zero for any \(q \geq 1 \).

Proof. We have that \(F = (f_0 \times \ldots \times f_{p-1}) \circ d \), where \(d: X \to X^p \) is the diagonal map and \(f_i(x) = f(g^ix), \) for any \(x \in X \) and \(i = 0, \ldots, p-1 \). In this way, it suffices to show that \((f_0 \times f_1 \times \ldots \times f_{p-1})^*: H^q(Y^p) \to H^q(X^p) \) is trivial
for any \(q \geq 1 \). Let us consider the following commutative diagram

\[
\begin{array}{ccc}
\bigoplus_{i+j=q} H^i(Y^t) \otimes H^j(Y) & \xrightarrow{=} & H^q(Y^{t+1}) \\
(f_0 \times \ldots \times f_t)^* \otimes f_{t+1}^* & & (f_0 \times \ldots \times f_{t+1})^* \\
\bigoplus_{i+j=q} H^i(X^t) \otimes H^j(X) & \xrightarrow{=} & H^q(X^{t+1})
\end{array}
\]

(4.1)

Since \(Y \) is a CW-complex, applying the Künneth’s formula we have that the upper row of diagram (4.1) is an isomorphism for any \(q = 1, 2, \ldots \) and \(t = 1, \ldots, p - 1 \).

The proof will be done by induction on \(t \). Suppose inductively that \((f_0 \times \ldots \times f_t)^*: H^t(Y^t) \rightarrow H^t(X^t)\) is zero for some \(t = 1, \ldots, p - 1 \) and for each \(i = 1, 2, \ldots \). By hypothesis, \(f \) induces the zero homomorphism in each dimension; in particular \(f_{t+1}^* \) is zero and thus \((f_0 \times \ldots \times f_t)^* \otimes f_{t+1}^*\) is trivial. It follows from commutativity of the diagram (4.1) that \((f_0 \times \ldots \times f_{t+1})^*\) is zero, which completes the proof.

We can define a \(\mathbb{Z}_p \)-action on \(Y^p \) as follows: for each \((y_1, \ldots, y_p) \in Y^p \)

\[g(y_1, \ldots, y_{p-1}, y_p) = (y_p, y_1, \ldots, y_{p-1}). \]

Since \(p \) is a prime, this action is free on \(Y^p - \Delta \), where \(\Delta \) is the diagonal in \(Y^p \). Let us observe that \(A_f = F^{-1}(\Delta) \), thus \(F \) determines a \(\mathbb{Z}_p \)-equivariant map \(F_0: X - A_f \rightarrow Y^p - \Delta \), which induces a map between the orbit spaces \(F_0: [X - A_f]^* \rightarrow [Y^p - \Delta]^* \). In these conditions, we prove that

Lemma 4.2. The map \(F_0^*: H^{pk}([Y^p - \Delta]^*) \rightarrow H^{pk}([X - A_f]^*) \) is zero.

Proof. Let us consider the map of pairs \((F, F_0): (X, X - A_f) \rightarrow (Y, Y - \Delta)\). One then has the following commutative diagram

\[
\begin{array}{cccccc}
H^{pk}(X) & \xrightarrow{i^*} & H^{pk}(X - A_f) & \xrightarrow{H^{pk+1}(X, X - A_f)} & H^{pk+1}(Y, Y - \Delta) \\
\downarrow F_0^* & & \downarrow F_0^* & & \downarrow (F, F_0)^* \\
H^{pk}(Y^p) & \xrightarrow{j^*} & H^{pk}(Y^p - \Delta) & \xrightarrow{H^{pk+1}(Y^p, Y^p - \Delta)} & H^{pk+1}(Y^p, Y^p - \Delta)
\end{array}
\]

where the homomorphisms \(i^* \) and \(j^* \) are induced by appropriate inclusions. Since \(\dim(Y^p) \) is less than or equal to \(pk \) we have that \(H^{pk+1}(Y^p, Y^p - \Delta) \) is trivial and thus \(j^* \) is surjective. On the other hand \(F_0: (X - A_f) \rightarrow (Y^p - \Delta) \) is
a \mathbb{Z}_p-equivariant map and it follows from Remark 2.6 that the diagram
\[
\begin{array}{ccc}
H^{pk}(X - A_f) & \xrightarrow{T} & H^{pk}([X - A_f]^*) \\
F_0^* & \downarrow & \uparrow F_0^*
\end{array}
\quad
\begin{array}{ccc}
H^{pk}(Y^p - \Delta) & \xrightarrow{T} & H^{pk}([Y^p - \Delta]*) \\
F_0^* & \downarrow & \uparrow F_0^*
\end{array}
\]

between the Smith sequences of $X - A_f$ and $Y^p - \Delta$ is commutative and since
$H^{pk+1}_p(Y^p - \Delta)$ is zero, T is surjective.

Putting together these diagrams, one obtains a new commutative diagram
\[
\begin{array}{ccc}
H^{pk}(X) & \xrightarrow{T} & H^{pk}([X - A_f]^*) \\
F^* & \downarrow & \uparrow F_0^*
\end{array}
\quad
\begin{array}{ccc}
H^{pk}(Y^p) & \xrightarrow{T} & H^{pk}([Y^p - \Delta]*) \\
F_0^* & \downarrow & \uparrow F_0^*
\end{array}
\]

where the horizontal sequences are not necessarily exacts, but the composition $T \circ j^*$ is surjective. Therefore, as F^* is zero by Lemma 4.1, it follows from commutativity of the diagram (4.2) that F_0^* is zero. \square

Let $h: X^* \to B\mathbb{Z}_p$ be a classifying map for the principal \mathbb{Z}_p-bundle $X \to X^*$. Then the compositions $h \circ i_1: A_f^* \to B\mathbb{Z}_p$ and $h \circ i_2: [X - A_f]^* \to B\mathbb{Z}_p$ are classifying maps for the following principal \mathbb{Z}_p-bundles $A_f \to A_f^*$ and $X - A_f \to [X - A_f]^*$ respectively, where the maps $i_1: A_f^* \to X^*$ and $i_2: [X - A_f]^* \to X^*$ are induced by the inclusions between the orbit spaces.

Let us consider $G: Y^p - \Delta \to B\mathbb{Z}_p$ a classifying map for the principal \mathbb{Z}_p-bundle $Y^p - \Delta \to [Y^p - \Delta]^*$. Since $F_0: X - A_f \to Y^p - \Delta$ is a \mathbb{Z}_p-equivariant map, one has that
\[
G \circ F_0: [X - A_f]^* \to B\mathbb{Z}_p
\]
also classifies the principal \mathbb{Z}_p-bundle $X - A_f \to [X - A_f]^*$. In this way,
\[
i_2^* \circ h^* = F_0^* \circ G^*: H^*(B\mathbb{Z}_p) \to H^*([X - A_f]^*).
\]

To conclude that the \mathbb{Z}_p-index of A_f is greater than or equal to $n - pk$, it suffices to show that $i_1^* \circ h^*(\mu) \neq 0$, where μ is the generator of $H^{n-pk}(B\mathbb{Z}_p)$.

We first consider the case when k is odd. Let us observe that n must be necessarily odd, since $p > 2$ is a prime. Then, $n - pk$ is even and it follows from Remark 2.5 that $\mu = b^{(n-pk)/2} \in H^{n-pk}(B\mathbb{Z}_p)$. Suppose that $i_1^* \circ h^*(\mu) = 0$. From continuity of the cohomology, there exists a neighbourhood V of A_f in X which is invariant by the action of \mathbb{Z}_p and such that $i_1^* \circ h^*(\mu) = 0$ in $H^{n-pk}(V^*)$. From the exact cohomology sequence of the pair (X^*, V^*) one has
\[
h^*(\mu) \in \text{Im}[H^{n-pk}(X^*, V^*) \to H^{n-pk}(X^*)].
\]
Since \(pk \) is odd from Remark 2.5 \(\eta = a \sim b^{(pk-1)/2} \) is a generator of \(H^{pk}(B\mathbb{Z}_p) \). It follows from Lemma 4.2 and (4.3) that

\[
i_2^* \circ h^*(\eta) = \mathcal{T}_0^* \circ G^*(\eta) = 0 \in H^{pk}([X - A_f]^*)
\]

and from the exact cohomology sequence of the pair \((X^*, [X - A_f]^*) \) one has

\[
(4.5) \quad h^*(\eta) \in \text{Im} [H^{pk}(X^*, [X - A_f]^*) \rightarrow H^{pk}(X^*)].
\]

Thus from (4.4), (4.5) and by the naturality of the cup product we have

\[
h^*(\eta \sim \mu) = h^*(\eta) \sim h^*(\mu) \in \text{Im} [H^n(X^*, [X - A_f]^* \cup V^*) \rightarrow H^n(X^*)].
\]

Let us note that the element

\[
\eta \sim \mu = a \sim b^{(pk-1)/2} \sim b^{(n-pk)/2} = a \sim b^{(n-1)/2}
\]

is a generator of \(H^n(B\mathbb{Z}_p) \). Furthermore,

\[
H^n(X^*, [X - A_f]^* \cup V^*) = H^n(X^*, X^*) = 0
\]

and then \(h^*(\eta \sim \mu) = 0 \in H^n(X^*) \), that is, \(h^*: H^n(B\mathbb{Z}_p) \rightarrow H^n(X^*) \) is trivial which contradicts the hypothesis that the \(\mathbb{Z}_p \)-index of \(X \) is greater than or equal to \(n \).

If \(k \) is even, then \(n - pk \) is odd and \(pk \) is even. In this case, the proof is analogous to the previous case, considering now the generators

\[
\mu = a \sim b^{(n-pk-1)/2} \in H^{n-pk}(B\mathbb{Z}_p) \quad \text{and} \quad \eta = b^{(pk)/2} \in H^{pk}(B\mathbb{Z}_p).
\]

Let us examine the case where \(G = \mathbb{Z}_2 \). Here, \(n \) can be any positive integer and the generator of \(H^{n-2k}(B\mathbb{Z}_2) \) is \(\mu = a^{n-2k} \). To show that the \(\mathbb{Z}_2 \)-index of \(A_f \) is greater than or equal to \(n - 2k \), it suffices to prove that \(i_2^* \circ h^*(\mu) \neq 0 \). Let us assume that \(i_2^* \circ h^*(\mu) = 0 \). Then there exists a neighbourhood \(V \) of \(A_f \) in \(X \) which is invariant with respect to the action and such that \(i_2^* \circ h^*(\mu) = 0 \) in \(H^{n-2k}(V^*) \). From exact cohomology sequence of the pair \((X^*, V^*) \) one has that

\[
(4.6) \quad h^*(\mu) \in \text{Im} [H^{n-2k}(X^*, V^*) \rightarrow H^{n-2k}(X^*)].
\]

On the other hand, \(\eta = a^{2k} \) is the generator of \(H^{2k}(B\mathbb{Z}_2) \) and it follows from Lemma 4.2 and (4.3) that

\[
i_2^* \circ h^*(\eta) = \mathcal{T}_0^* \circ G^*(\eta) = 0 \in H^{2k}([X - A_f]^*).
\]

Moreover, from exact cohomology sequence of \((X^*, [X - A_f]^*) \) one has that

\[
(4.7) \quad h^*(\eta) \in \text{Im} [H^{2k}(X^*, [X - A_f]^*) \rightarrow H^{2k}(X^*)].
\]

Thus, from (4.6), (4.7) and by the naturality of the cup product we have

\[
h^*(\eta \sim \mu) = h^*(\eta) \sim h^*(\mu) \in \text{Im} [H^n(X^*, [X - A_f]^* \cup V^*) \rightarrow H^n(X^*)].
\]
Let us observe that \(\eta \sim \mu = a^{2k} \sim a^{n-2k} = a^n \) is the generator of \(H^n(B\mathbb{Z}_2) \). Furthermore, \(H^n(X^*, [X - A_1]^* \cup V^*) = H^n(X^*, X^*) \) is trivial and then \(h^* \eta \sim \mu = 0 \in H^n(X^*) \) which contradicts the hypothesis that the \(\mathbb{Z}_2 \)-index of \(X \) is greater than or equal to \(n \). This concludes the proof of Theorem 1.2 in the case \(G = H = \mathbb{Z}_p \).

For the general case, suppose that \(G \) is a finite group which acts freely on \(X \) and let \(H \subset G \) be a normal cyclic subgroup of prime order \(p \). We denote by \(s = |G|/p \), the number of the left cosets of \(G/H \) and let \(a_1, \ldots, a_s \) be a set of representatives of the cosets. We define the map \(F : X \to Y^s \) by

\[
(4.8) \quad F(x) = (f(a_1x), \ldots, f(a_sx)).
\]

We need to show that

\[
A(f, H, G) = A_F = \{ x \in X : F(x) = F(hx), \text{ for all } h \in H \}.
\]

Let \(x \) be a point in the set \(A(f, H, G) \), then \(f \) collapses each orbit determined by the action of \(H \) on \(a_ix \) to a single point, for each \(i = 1, \ldots, s \). If \(h \in H \)

\[
F(hx)_i = f(ha_ix),
\]

for each \(i = 1, \ldots, s \) which implies that \(F(x) = F(hx) \). Therefore \(x \in A_F \). The proof of the another inclusion is entirely analogous.

To conclude, let us observe that \(H \cong \mathbb{Z}_p \) acts freely on \(X \) by restriction and by hypothesis the \(\mathbb{Z}_p \)-index of \(X \) is greater than or equal to \(n \). By using Lemma 4.1 for the map \(F : X \to Y^s \) defined in (4.8) one has that \(F^*: H^q(Y^s) \to H^q(X) \) is trivial for any \(q \geq 1 \). Since dimension of \(Y^s \) is \(ks \) and Theorem 1.2 is true for \(G = \mathbb{Z}_p \) we can conclude that the \(\mathbb{Z}_p \)-index of \(A_F = A(f, H, G) \) is greater than or equal \(n - pk(|G|/p) = n - |G|k \) and this completes the proof. \(\square \)

Proof of Theorem 1.1. Let \(\tilde{f} : X_\varphi \to Y \) given by \(\tilde{f}(x_1, \ldots, x_r) = f(x_1) \), that is \(\tilde{f} = f \circ \pi_1 \) where \(\pi_1 \) is the natural projection on the 1-th coordinate. By hypothesis \(f \) induces the zero homomorphism in each dimension, then we have that \(\tilde{f}^*: H^i(Y) \to H^i(X_\varphi) \) is trivial for any \(i \geq 1 \). Moreover, the \(\mathbb{Z}_p \)-index of \(X_\varphi \) is equal to \(n \) by Theorem 3.1. In this way, \(X_\varphi \) and \(\tilde{f} \) satisfy the hypotheses of Theorem 1.2 which implies that the \(\mathbb{Z}_p \)-index of the set \(A(\tilde{f}, H, G) \) is greater than or equal to \(n - |G|k \). By Definition 2.1 \(A_\varphi(f, H, G) = A(\tilde{f}, H, G) \), and then cohom.dim \(A_\varphi(f, H, G) \geq n - |G|k \). \(\square \)

Remark 4.3. In the particular case that \(G = H = \mathbb{Z}_p \) with \(p \) prime, Volovikov in [13, Theorem 3.2] proved a version of Theorem 1.1.
Acknowledgements. The authors are grateful to the referee for the comments and suggestions concerning the presentation of this article, which led to this present version.

REFERENCES

Manuscript received December 31, 2007

Denise de Mattos
Universidade de São Paulo-USP-ICMC
Departamento de Matemática
Caixa Postal 668
13560-970, São Carlos-SP, BRAZIL
E-mail address: deniseml@icmc.usp.br

Edivaldo Lopes dos Santos
Universidade Federal de São Carlos-UFSCAR
Departamento de Matemática
Caixa Postal 668
13560-970, São Carlos-SP, BRAZIL
E-mail address: edivaldo@dm.ufscar.br

TMNA: Volume 33 – 2009 – No 1