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Abstract. Let Pε ∈ C0(Rn, Rn) be the Poincaré–Andronov operator over
period T > 0 of T -periodically perturbed autonomous system ẋ = f(x) +

εg(t, x, ε), where ε > 0 is small. Assuming that for ε = 0 this system

has a T -periodic limit cycle x0 we evaluate the topological degree d(I −
Pε, U) of I − Pε on an open bounded set U whose boundary ∂U contains

x0([0, T ]) and P0(v) 6= v for any v ∈ ∂U \ x0([0, T ]). We give an explicit

formula connecting d(I−Pε, U) with the topological indices of zeros of the
associated Malkin’s bifurcation function. The goal of the paper is to prove

the Mawhin’s conjecture claiming that d(I − Pε, U) can be any integer in

spite of the fact that the measure of the set of fixed points of P0 on ∂U
is zero.

1. Introduction

Consider the system of ordinary differential equations

(1.1) ẋ = f(x) + εg(t, x, ε),
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where f ∈ C1(Rn, Rn), g ∈ C0(R×Rn × [0, 1], Rn), g(t + T, v, ε) ≡ g(t, v, ε) and
ε > 0 is a small parameter.

We suppose that equation (1.1) defines a flow in Rn, i.e. assume the unique-
ness and global existence for the solutions of the Cauchy problems associated
to (1.1). For each v ∈ Rn we denote by xε( · , v) the solution of (1.1) with
xε(0, v) = v. Thus, the Poincaré–Andronov operator over the period T > 0 is
defined by

Pε(v) := xε(T, v).

The problem of the existence (and even stability, see Ortega [11]) of T -periodic
solutions of (1.1) with initial conditions inside an open bounded set U can be
solved by evaluating the topological degree d(I −Pε, U) of I −Pε on U (see [6]).
In the case when P0 has no fixed points on the boundary ∂U of U the prob-
lem is completely solved by Capietto, Mawhin and Zanolin [2] who proved that
d(I −P0, U) = (−1)nd(f, U) generalizing the result by Berstein and Halanay [1]
where U is assumed to be a neighbourhood of an isolated zero of f . In the
case when P0 has fixed points on ∂U the pioneer result has been obtained by
Mawhin [10] who considered the situation when f = 0. Mawhin proved that if
g0(v) =

∫ T

0
g(τ, v, 0) dτ does not vanish on ∂U then d(I − Pε, U) is defined for

ε > 0 sufficiently small and it can be evaluated as d(I−Pε, U) = d(−g0, U). This
paper studies an intermediate situation when the fixed points of P0 fill a part of
∂U . Current results on this subject deal with the case when ∂U contains a fixed
number of fixed points, e.g. Feckan [4], Kamenskĭı–Makarenkov–Nistri [5]. As
a part of a wider study of this problem Jean Mawhin (his seminar, Novem-
ber 2005) asked a question on evaluating d(I − Pε, U) in the case when ∂U

contains a curve of fixed points of P0. He settled the following conjecture:

Mawhin’s Conjecture. For small ε > 0 the topological degree d(I−Pε, U)
can be any integer depending on the perturbation term g in spite of the fact that
the measure of {v ∈ ∂U : P0(v) = v} is zero.

The goal of this paper is to evaluate d(I − Pε, U) and to give a proof of the
above conjecture in the case when {v ∈ ∂U : P0(v) = v} forms a curve coming
from a T -periodic limit cycle of the unperturbed system

(1.2) ẋ = f(x).

Our fundamental assumption is that the algebraic multiplicity of the multiplica-
tor +1 of the linearized system

(1.3) ẏ = f ′(x0(t))y

equals to 1. In this case we say that the cycle x0 is nondegenerate.
The paper is organized as follows. In Section 2 for a fixed point vε of Pε

satisfying vε → v0 ∈ x0([0, T ]) as ε → 0 we obtain an asymptotic direction of the
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vector vε − v0. By means of this result we evaluate in Section 3 the topological
index of such fixed points vε → v0 ∈ x0([0, T ]) as ε → 0 that vε ∈ U . Finally in
Section 4 we give a proof of the Mawhin’s conjecture provided that a technical
assumption (see assumption 4.1) is satisfied.

2. Direction the fixed points of Poincaré–Andronov operator move
when the perturbation increases

Since the cycle x0 is nondegenerate we can define (see [3], Chapter IV, § 20,
Lemma 1) a matrix function Zn−1 solving the adjoint system

(2.1) ż = −(f ′(x0(t)))∗z

and having the form Zn−1(t) = Φ(t)eΛt, where Φ is a continuous T -periodic
n× n− 1 matrix function and Λ is a n− 1× n− 1-matrix with different from 0
eigenvalues. Let z0 be the T -periodic solution of (2.1) satisfying z0(0)∗ẋ0(0) = 1.
Finally, we denote by Yn−1 the n × n − 1 matrix function whose columns are
solutions of the linearized system (1.3) satisfying Yn−1(0)∗Zn−1(0) = I.

The results of this paper are formulated in terms of the following auxiliary
functions:

M(θ) =
∫ T

0

z0(τ)∗g(τ − θ, x0(τ), 0) dτ,

M⊥(t, θ) = (eΛT )∗((eΛT )∗ − I)−1

∫ t+θ

t−T+θ

(Zn−1(τ))∗g(τ − θ, x0(τ), 0) dτ,

∠(u, v) = arccos
〈u, v〉

‖u‖ · ‖v‖
.

The function M was proposed by Malkin (see [9], formula 3.13) and the
function M⊥ is a generalization of the function M⊥

z of [8].
Next Theorem 2.1 shows that if a family {xε,λ}λ∈Λ of T -periodic solutions

of (1.1) emanate from x0( · + θ0) then a suitable projection of xε,λ(t) − x0(t +
θ0) can be always controlled. Though motivated by the Mawhin’s conjecture,
Theorem 2.1 can be of a general interest in the theory of oscillations playing a
role of the first approximation formula (see Loud [7], formula 1.3, Lemma 1 and
formula for x at p. 510) in the case when the zeros of the bifurcation function
M are not necessary isolated.

Theorem 2.1. Let x0 be a nondegenerate T -periodic cycle of (1.2). Let
{xε,λ}λ∈Λ be a family of T -periodic solutions of (1.1) such that xε,λ(t) → x0(t +
θ0) as ε → 0 uniformly with respect to t ∈ [0, T ] and λ ∈ Λ. Then

∠(Zn−1(t + θ0)∗(xε,λ(t)− x0(t + θ0)),M⊥(t, θ0)) → 0 as ε → 0

uniformly with respect to t ∈ [0, T ] and λ ∈ Λ.
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Proof. The proof makes use of the idea of Theorem 3.1 of [8]. In the sequel
(A,B) denotes the matrix composed by columns of matrixes A and B. Let
aε ∈ C0([0, T ], Rn) be given by

(2.2) aε(t) = (z0(t + θ0), Zn−1(t + θ0))∗ (xε(t)− x0(t + θ0)).

Denoting Y (t) = (ẋ0(t), Yn−1(t)) by Perron’s lemma [12] (see also Demidovich
([3, Section III, § 12]) we have

(z0(t), Zn−1(t))∗ Y (t) = I, for any t ∈ R.

Thus

(2.3) xε(t)− x0(t + θ0) = Y (t + θ0)aε(t), for any t ∈ R.

By subtracting (1.2) where x is replaced by x0( · + θ0) from (1.1) where x is
replaced by xε we obtain

(2.4) ẋε(t)− ẋ0(t + θ0) = f ′(x0(t + θ0))(xε(t)− x0(t + θ0))

+ εg(t, xε(t), ε) + o(t, xε(t)− x0(t + θ0)),

where o(t, v)/‖v‖ → 0 as Rn 3 v → 0 uniformly with respect to t ∈ [0, T ]. By
substituting (2.3) into (2.4) we have

Ẏ (t + θ0)aε(t) + Y (t + θ0)ȧε(t)

= f ′(x0(t + θ0))Y (t + θ0)aε(t) + εg(t, xε(t), ε) + o(t, xε(t)− x0(t + θ0)).

Since f ′(x0(t))Y (t) = Ẏ (t) the last relation can be rewritten as

(2.5) Y (t + θ0)ȧε(t) = εg(t, xε(t), ε) + o(t, xε(t)− x0(t + θ0)).

Applying Zn−1(t + θ0)∗ to both sides of (2.5) we have

(0, I)ȧε(t) = εZn−1(t + θ0)∗ g(t, xε(t), ε) + Zn−1(t + θ0)∗ o(t, xε(t)− x0(t + θ0)),

where 0 denotes the n− 1 dimensional zero vector and I stays for the identical
n− 1× n− 1 matrix. So

(2.6) (0, I)aε(t) = (0, I)aε(t0) + ε

∫ t

t0

Zn−1(τ + θ0)∗g(τ, xε(τ), ε) dτ

+
∫ t

t0

Zn−1(τ + θ0)∗o(τ, xε(τ)− x0(τ + θ0)) dτ.

From the definition of Zn−1 we have that Zn−1(t)∗ = (eΛT )∗Zn−1(t − T )∗ for
any t ∈ R and so (0, I)aε(t) satisfies

(2.7) (0, I)aε(t0) = (eΛT )∗(0, I)aε(t0 − T ) for any t0 ∈ [0, T ].
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Solving (2.6)–(2.7) with respect to (0, I)aε,n(t0) we obtain

(0, I)aε(t0) = ε(eΛT )∗((eΛT )∗ − I)−1

∫ t0

t0−T

Zn−1(τ + θ0)∗g(τ, xε(τ), ε) dτ

+ (eΛT )∗((eΛT )∗ − I)−1

∫ t0

t0−T

Zn−1(τ + θ0)∗o(τ, xε(τ)− x0(τ + θ0)) dτ

for any t0 ∈ [0, T ]. On the other hand from (2.2) we obtain

Zn−1(t + θ0)∗(xε(t)− x0(t + θ0)) = (0, I)aε(t)

and therefore

(2.8) Zn−1(t + θ0)∗(xε(t)− x0(t + θ0))− qε(t)

= ε(eΛT )∗((eΛT )∗ − I)−1

∫ t

t−T

Zn−1(τ + θ0)∗g(τ, xε(τ), ε) dτ,

where

qε = (eΛT )∗((eΛT )∗ − I)−1

∫ t

t−T

Zn−1(τ + θ0)∗o(τ, xε(τ)− x0(τ + θ0)) dτ.

From (2.8) we obtain

∠(Zn−1(t + θ0)∗(xε(t)− x0(t + θ0)),M⊥(t, θ0))

= ∠

(
Zn−1(t + θ0)∗

xε(t)− x0(t + θ0)
‖xε − x0( · + θ0)‖[0,T ]

,M⊥(t, θ0)
)

− ∠

(
Zn−1(t + θ0)∗

xε(t)− x0(t + θ0)
‖xε − x0( · + θ0)‖[0,T ]

− qε(t)
‖xε − x0( · + θ0)‖[0,T ]

,M⊥(t, θ0)
)

+ ∠

(
(eΛT )∗((eΛT )∗ − I)−1

∫ t

t−T

Zn−1(τ + θ0)∗g(τ, xε(τ), ε) dτ, M⊥(t, θ0)
)

.

But the difference of the first two terms in the right hand part of the last equality
tends to zero as ε → 0 and thus the thesis follows. �

Next theorem is a reformulation of Theorem 2.1 suitable for our further
considerations.

Theorem 2.2. Let x0 be a nondegenerate T -periodic cycle of (1.2). Let
{xε,λ}λ∈Λ be a family of T -periodic solutions of (1.1) such that xε,λ(t) → x0(t +
θ0) as ε → 0 uniformly with respect to t ∈ [0, T ] and λ ∈ Λ. Let l ∈ Rn be an
arbitrary vector such that 〈l, ẋ0(θ0)〉=0. Assume that 〈l, Yn−1(θ0)M⊥(0, θ0)〉 6=0.
Then there exists ε0 > 0 such that, for any λ ∈ Λ and any ε ∈ (0, ε0],

〈l, xε,λ(0)− x0(θ0)〉 > 0 or 〈l, xε,λ(0)− x0(θ0)〉 < 0

according as

〈l, Yn−1(θ0)M⊥(0, θ0)〉 > 0 or 〈l, Yn−1(θ0)M⊥(0, θ0)〉 < 0.
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Proof. By Perron’s lemma [12] (see also Demidovich ([3, Section III, § 12])
we have

v = Yn−1(t)Zn−1(t)∗v + ẋ0(t)z0(t)∗v

for any v ∈ Rn and t ∈ R. Therefore

〈l, xε,λ(0)− x0(θ0)〉 = 〈l, Yn−1(θ0)Zn−1(θ0)∗(xε,λ(0)− x0(θ0))

+ ẋ0(θ0)z0(θ0)∗(xε,λ(0)− x0(θ0))〉〈Yn−1(θ0)∗l, Zn−1(θ0)∗(xε,λ(0)− x0(θ0))〉.

Since 〈Yn−1(θ0)∗l,M⊥(0, θ0)〉 6= 0 then by Theorem 2.1 there exists ε0 > 0 such
that

sign〈Yn−1(θ0)∗l, Zn−1(θ0)∗(xε,λ(0)− x0(θ0))〉 = sign〈Yn−1(θ0)∗l,M⊥(0, θ0)〉

for any ε ∈ (0, ε0] and λ ∈ Λ and thus the proof is complete. �

3. The topological degree
of the perturbed Poincaré–Andronov operator

To proceed to the proof of our main Theorem 3.1 we need three additional
theorems which are formulated below for the convenience of the reader.

Malkin’s Theorem (see [9, p. 41]). Assume that T -periodic solutions xε

of (1.1) satisfy the property xε(t) → x0(t + θ0) as ε → 0. Then M(θ0) = 0.

Capietto–Mawhin–Zanolin Theorem (see [2, Corollary 2]). Let V ⊂
Rn be an open bounded set. Assume that P0(v) 6= v for any v ∈ ∂V . Then
d(I − P0, V ) = (−1)nd(f, V ).

Kamenskĭı–Makarenkov–Nistri Theorem (see [5, Corollary 2.8]). Assu-
me that θ0 ∈ [0, T ] is an isolated zero of the bifurcation function M . Then there
exist ε0 > 0 and r > 0 such that Pε(v) 6= v for any ‖v − v0‖ = r and any
ε ∈ (0, ε0]. Moreover, d(I − Pε, Br(v0)) = ind(θ0,M).

We will say that the set U ⊂ Rn has a smooth boundary if given any v ∈
∂U there exists r > 0 and a homeomorphism of {ξ ∈ Rn−1 : ‖ξ‖ ≤ 1} onto
∂U ∩Br(v). Thus any set U with a smooth boundary possesses a tangent plane
to ∂U at any v ∈ ∂U . This tangent plane will be denoted by LU (v). Moreover,
if U has a smooth boundary and Rn 3 h 6∈ LU (v) then there exists λ0 > 0 such
that either λh + v ∈ U for any λ ∈ (0, λ0] or λh + v 6∈ U for any λ ∈ (0, λ0].
In this case we will say that h centered at v is directed inward to U or outward
respectively.

Theorem 3.1. Let x0 be a nondegenerate T -periodic cycle of (1.2). Let
U ⊂ Rn be an open bounded set with a smooth boundary and x0([0, T ]) ⊂ ∂U .
Assume that P0(v) 6= v for any v ∈ ∂U \ x0([0, T ]). Assume that M has a finite
number of zeros 0 ≤ θ1 < . . . < θk < T on [0, T ] and ind(θi,M) 6= 0 for any
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i ∈ 1, k. Assume that Yn−1(θi)M⊥(0, θi) 6∈ LU (x0(θi)) for any i ∈ 1, k. Then,
for any ε > 0 sufficiently small, d(I − Pε, U) is defined. Moreover,

d(I − Pε, U) = (−1)nd(f, U)−
k∑

i=1

ind(θi,M)Di,

where Di = 1 or Di = 0 according as Yn−1(θi)M⊥(0, θi) centered at x0(θi) is
directed inward to U or outward.

Proof. By Kamenskĭı–Makarenkov–Nistri theorem there exists r > 0 and
ε0 > 0 such that

(3.1) d(I − Pε, Br(x0(θi))) = ind(θi,M)

for any ε ∈ (0, ε0] and i ∈ 1, k. From Malkin’s theorem we have the following
“Malkin’s property”: r > 0 can be decreased, if necessary, in such a way that
there exists ε0 > 0 such that any T -periodic solution xε of (1.1) with initial con-
dition xε(0) ∈ Br(x0([0, T ])) and ε ∈ (0, ε0] satisfies xε(0) ∈

⋃
i∈1,k Br(x0(θi)).

Malkin’s property implies that

(3.2) d

(
I − Pε,

(
Br(x0([0, T ])) \

⋃
i∈1,k

Br(x0(θi))
)
∩ U

)
= 0

for any ε ∈ (0, ε0]. Denote by li the perpendicular to LU (x0(θi)) directed outward
away from U or inward according as (Zn−1(θi)∗)−1M⊥(0, θi) centered at x0(θi)
is directed outward away from U or inward. From Theorem 2.2 and Malkin’s
property we have that ε0 > 0 can be diminished in such a way that for any i ∈ 1, k

any T -periodic solution xε of (1.1) with initial condition xε(0) ∈ Br(x0(θi)) and
ε ∈ (0, ε0] satisfies xε(0) ∈ Br(x0(θi)) ∩ U or xε(0) 6∈ Br(x0(θi)) ∩ U according
as Di = 1 or Di = 0. This observation allows to deduce from (3.1) that

d(I − Pε, Br(x0(θi)) ∩ U) = ind(θi,M), if D(θi) = 1,(3.3)

d(I − Pε, Br(x0(θi)) ∩ U) = 0, if D(θi) = 0,(3.4)

for any ε ∈ (0, ε0] and i ∈ 1, k.
Observe that our choice of r > 0 ensures that P0(v) 6= v for any v ∈ ∂(U \

Br(x0([0, T ]))). Thus, by Capietto–Mawhin–Zanolin theorem we have d(I −
P0, U \Br(x0([0, T ]))) = (−1)nd(f, U \Br(x0([0, T ]))). Without loss of generality
we can consider r > 0 sufficiently small such that d(f, U \ Br(x0([0, T ]))) =
d(f, U) obtaining

(3.5) d(I − P0, U \Br(x0([0, T ]))) = (−1)nd(f, U).
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Since

d(I − Pε, U) = d

(
I − Pε,

(
Br(x0([0, T ])) \

⋃
i∈1,k

Br(x0(θi))
)
∩ U

)

+ d

(
I − Pε,

⋃
i∈1,k

Br(x0(θi)
)
∩ U

)
+ d(I − Pε, U \Br(x0([0, T ])))

the conclusion follows from formulas (3.2)–(3.5). �

4. A proof of the Mawhin’s conjecture

In this section we assume that the set U ⊂ Rn has a smooth boundary and
there exists vn−1 ∈ Rn−1 satisfying the following assumption

(4.1) Yn−1(t)(eΛT )∗((eΛT )∗ − I)−1(eΛt)∗vn−1 6∈ LU (t) for any t ∈ [0, T ].

We note that assumption (4.1) does not depend on the perturbation term of
(1.1) and relies to unperturbed system (1.2). Let D = 1 or D = 0 according as
Yn−1(0)(eΛT )∗((eΛT )∗ − I)−1(eΛt)∗vn−1 centered at x0(0) is directed inward to
U or outward. Given odd m ∈ N we construct the perturbation term g in such
a way that d(I − Pε, U) = (−1)nd(f, U) −m(2D − 1) for any ε > 0 sufficiently
small. Without loss of generality we consider T = 2π.

Since (z0(t), Zn−1(t)) is nonsingular then ((z0(t),Φ(t))∗ is nonsingular as
well. Define Ω: x0([0, 2π]) → Rn as Ω(x0(t)) = ((z0(t),Φ(t))∗)−1 for any t ∈
[0, 2π]. By Uryson’s theorem (see [6, Chapter 1, Theorem 1.1]) Ω can be con-
tinued to the whole Rn in such a way that Ω ∈ C0(Rn, Rn). Analogously, we
consider Γ̃ ∈ C0(Rn, Rn) such that Γ̃(x0(t)) = (arcsin(sin t), 0, . . . , 0)∗ and de-
note by Γ ∈ C0(Rn, R) the first component of Γ̃. Let us define a 2π-periodic
α-approximation of ((eΛt)∗)−1 on [−2π, 0] by

eα(t) = ((eΛt)∗)−1, if t ∈ [−2π,−α],

eα(t) =
t

−α
((e−Λα)∗)−1 +

(
1− t

−α

)
((e−2πΛ)∗)−1, if t ∈ [−α, 0],

which is continued to (−∞,∞) by the 2π-periodicity. We are now in a position to
introduce the required perturbation term, namely we consider that the perturbed
system (1.1) has the following form

(4.2) ẋ = f(x) + εΓ(x)Ω(x)
(

D sin(mt) + (1−D) cos(mt)
(D cos(mt) + (1−D) sin(mt))eα(t)vn−1

)
,

where α > 0 is sufficiently small. Consequently we denote by Pε the Poincaré–
Andronov operator of system (4.2) over the period 2π.
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Proposition 4.1. Let x0([0, T ]) ⊂ U ⊂ Rn be an open bounded set with
a smooth boundary and assume that there exists vn−1 ∈ Rn such that (4.1) is
satisfied. Then given any odd m > 0 there exists α0 > 0 such that for any fixed
α ∈ (0, α0] and ε > 0 sufficiently small d(I − Pε, U) is defined and

d(I − Pε, U) =

{
(−1)nd(f, U)−m if D = 1,

(−1)nd(f, U) + m if D = 0.

Proof. By the definition of Ω and Γ we have(
z0(t)∗

Zn−1(t)∗

)
Ω(x0(t)) =

(
1 0
0 (eΛt)∗

)
,(4.3)

Γ(x0(t)) = arcsin(sin t).

Therefore, taking into account that m is odd, we obtain the following formula
for the bifurcation function M

M(θ) =
∫ 2π

0

arcsin(sin τ)(D sin(m(τ − θ)) + (1−D) cos(m(τ − θ))) dτ

= (−1)(m−1)/2 4D cos(mθ) + 4(1−D) sin(mθ)
m2

whose zeros are θj = (1/m)(Dπ/2 + jπ), j ∈ 0, 2m− 1. Moreover,

(4.4) ind(θj ,M) = sign(M ′(θj))

= (−1)(m−1)/2sign
(

4m(−D sin(Dπ/2 + jπ) + (1−D) cos(Dπ/2 + jπ))
m2

)
.

Let us denote by M⊥
α the function M⊥ corresponding to system (4.2). From

(4.3) we have that

M⊥
α (0, θ) = (eΛT )∗((eΛT )∗ − I)−1

∫ 0

−2π

(Zn−1(s + θ))∗g(s, x0(s + θ), 0) ds

=(eΛT )∗((eΛT )∗ − I)−1(eΛθ)∗

◦
∫ 0

−2π

(eΛs)∗eα(s)vn−1

· arcsin(sin(s + θ))(D cos(ms) + (1−D) sin(ms)) ds.

Since∫ 0

−2π

arcsin(sin(s + θ))(D cos(ms) + (1−D) sin(ms)) ds

= −(−1)(m−1)/2 · 4(D sin(mθ) + (1−D) cos(mθ))
m2
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by taking into account that m is odd we have that M⊥
α (0, θ) → M⊥

0 (0, θ) as
α → 0, where

M⊥
0 (0, θ) = −(eΛT )∗((eΛT )∗ − I)−1(eΛθ)∗vn−1(−1)(m−1)/2

· 4(D sin(mθ) + (1−D) cos(mθ))
m2

.

Put q(θ) = −(−1)(m−1)/2(D sin(mθ) + (1 −D) cos(mθ)). Then, taking any θ ∈
[0, 2π] and using the definition of D we conclude that Yn−1(θ)M⊥

0 (0, θ) centered
at x0(θ) is directed inward to U or outward according as sign(q(θ))(2D − 1) =
1 or sign(q(θ))(2D − 1) = −1. Therefore, there exists α0 > 0 such that for
any α ∈ [0, α0] and any θ ∈ [0, 2π] we have that Yn−1(θ)M⊥

α (0, θ) centered at
x0(θ) is directed inward to U or outward according as sign(q(θ))(2D − 1) = 1
or sign(q(θ))(2D − 1) = −1. Thus denoting by Pε,α the Poincaré–Andronov
operator of system (4.2) from Theorem 3.1 we have that

(4.5) d(I − Pε,α, U) = (−1)nd(f, U)−
∑

j∈0,2m−1:sign(q(θj))(2D−1)=1

ind(θj ,M)

for any α ∈ (0, α0]. Consider the case when D = 1. Then the property
sign(q(θj))(2D − 1) = 1 is equivalent to

(4.6) (−1)(m−1)/2sign(sin(π/2 + jπ)) = −1.

If j ∈ 0, 2m− 1 satisfies (4.6) then (4.4) implies ind(θj ,M) = 1. Since there
exists exactly m elements of 0, 2m− 1 satisfying (4.6) then (4.5) can be rewritten
as d(I−Pε, U) = d(f, U)−m. Analogously, if D = 0 then sign(q(θj))(2D−1) = 1
is equivalent to (−1)(m−1)/2sign(cos(jπ)) = −1 that in combination with (4.4)
gives ind(θj ,M) = −1 allowing to rewrite (4.5) in the form d(I − Pε, U) =
d(f, U) + m. �

At the end of the paper we note that system (1.2) should exhibit very complex
behavior in order that assumption (4.1) be not satisfied with any vn−1 ∈ Rn−1.
Particularly, (4.1) holds true for the prototypic unperturbed system (1.2)

(4.8)

ẋ1 = x2 − x1(x2
1 + x2

2 − 1),

ẋ2 = −x1 − x2(x2
1 − x2

2 − 1),

ẋ3 = −x3

possessing the nondegenerate 2π-periodic cycle x0(t) =
(
sin t
cos t

)
and U = B1(0) =

{v ∈ R3 : ‖v‖ < 1}. Indeed, it can be easily checked that

Φ(t) =
((

sin t

0

)
,

(
cos t

0

)
,

(
0
1

))∗

, eΛt =
(

e2t

0
0
et

)
and Yn−1(t) = Φ(t)e−Λt
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in this case. Thus, taking vn−1 =
(
1
0

)
we have

Yn−1(t)(eΛT )∗((eΛT )∗ − I)−1(eΛt)∗vn−1 =
e2t

e2t − 1
(sin t, cos t, 0)∗.

This last vector centered at x0(t) is perpendicular to ∂U for any t ∈ [0, 2π].
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1969, pp. 308–398.

[11] R. Ortega, A criterion for asymptotic stability based on topological degree, Proceedings

of the First World Congress of Nonlinear Analysts, Tampra, 1992, pp. 383–394.

[12] O. Perron, Die Ordnungszahlen der Differentialgleichungssysteme, Math. Zeitschr 31

(1930), 748–766.

Manuscript received January 18, 2008

Oleg Makarenkov
Research Institute of Mathematics

Voronezh State University
Universitetskaja pl. 1
394006, Voronezh, RUSSIA

E-mail address: omakarenkov@math.vsu.ru

TMNA : Volume 32 – 2008 – No 1


